Original Research Article 1 2 PREVALENCE OF HYPERTENSION AND ITS 3 **EFFECT ON SPECIFIC ORGAN FUNCTION** 4 AMONG GHANAIAN ADOLESCENT STUDENTS 5 6 89 10 ABSTRACT 11 Aims: To determine prevalence of hypertension among adolescent students and the effects of presence of hypertension on specific organ function among adolescent students. Study design: A cross-sectional study Place and Duration of Study: Three senior high schools (SHS) in Ashanti region of Ghana, namely Anglican SHS, Konongo Odumase SHS and Bonwire SHS, between October 2016 and March 2017. Methodology: A multi-stage sampling method was used to select 909 adolescents from the three SHS. Participants were screened for elevated blood pressure. A total of 142 participants had high blood pressure and were used for this study. Anthropometries; body mass index (BMI), percent body fat (%BF), visceral fat (VF), waist circumference (WC) and blood pressure levels were measured with recommended instruments and biochemical and haematological parameters were assessed. Sociodemographic data was taken with questionnaire. Results: Out of 909 adolescent students, prevalence of high blood pressure from first screening was 9.1%. However, upon second screening from those with high blood pressure from the first screening, prevalent rate for high blood pressure had declined to 1.21%. Hypertension was higher in males (10.7%), compared to females (4.5%, P= 0.658). There were no significant differences between BMI (P= 0.847), %BF (P= 0.501), VF (P= 0.195), WC (P= 0.450) among hypertensive, pre-hypertensive and normotensive participants. There was no significant mean difference between urea (P= 0.236), creatinine (P= 0.995), serum sodium (P= 0.126), serum chloride (P= 0.516), serum potassium (P= 0.878) and alanine aminotransferase (ALT) levels (P= 0.397) and blood pressure status. Total cholesterol (P= 0.765), triglycerides (P= 0.381), HDL (P= 0.777) and LDL (P= 0.768) was not significantly associated with blood pressure status. Conclusions: Participants had high blood pressure level. Despite the prevalence of high blood pressure among adolescent population, it had not caused any dysfunction in kidney, cardiovascular and liver. Hence, appropriate diet and lifestyle management are needed to prevent early and/or future complication of hypertension among adolescents. 12 13 Keywords: High blood pressure, organ function, Ghanaian adolescents, hypertension 14 15 **1. INTRODUCTION** 16 17 The prevalence of hypertension among adolescents has become an emerging health problem across the 18 globe [1]. Hypertension is a non-communicable disease that is very common and affects both male and female adolescents of all races [2]. It is detected when the Systolic Blood Pressure (SBP) is greater than 19 20 140 mmHg or Diastolic Blood Pressure (DBP) is greater than 90 mmHg or a combination of both [3]. It 21 can be classified as pre-hypertension, essential hypertension and secondary hypertension [4]. Within the

- 22 age group of 3 to 18 years, the prevalence of pre-hypertension is 3.4 % and prevalence of both essential 23
 - and secondary hypertension is 3.6 % [5]. A hypertensive individual is susceptible to increased

54

55 56

61

62

24 cardiovascular diseases such as ischemic heart disease, left ventricular hypertrophy and pathological 25 vascular changes and renal failure [6]. It is also identified to be associated with high risk of chronic kidney 26 disease, cerebro- and cardiovascular diseases and insulin resistance. The hazard ratio of 27 cerebrovascular disease is 1.41 and that of cardiovascular disease is 2.0 in male and female respectively 28 [7, 8]. Consequently, it is argued that cardiovascular diseases have resulted in the death of 29 approximately 16.7 million in adult population in both developed and developing countries. This figure is expected to increase to about 23 million, with increasing rate of 37.72 % by the year 2030 [9]. This 30 31 portrays the risky nature of hypertension on the adolescent population [10]. Kaerney et al. [11] describes 32 the disease as a silent threat to the health of a population. This is because records indicate that about 1 33 billion adult population worldwide had hypertension in 2000. This figure is expected to increase to about 34 1.56 billion by 2025 [11]. 35

36 In Ghana, the prevalence rate of hypertension among adolescent is increasing and this has become a 37 major concern to health practitioners. In Ashanti region, a prevalence of 28% was reported by Cappucio 38 et al. [12]. Though researches have been done on the prevalence of hypertension in Ghana and other countries, data on adolescent hypertension and its effects on organs function are very scarce [13]. The 39 40 consequences of adolescent hypertension are spreading across the globe, despite the growth of the 41 economy. Adolescent stage provides opportunity for smooth healthy transition from childhood to 42 adulthood [14]. This is the best time to address childhood problems and promote good dietary choices 43 and healthy living for adulthood. However, since this age has been assumed as a healthy stage globally, 44 issues on adolescent hypertension have been ignored [15]. Also, few studies have been conducted to 45 establish the precise extent of the hypertension prevalence rates and incidence of hypertension risk 46 factors in adolescents [13, 16-17].

The conditions in the school setting does not promote much activity, coupled with students' low intake of nutrients, irregular meal times and high intake of sugary and salt-based products. These lifestyles can expose them to risk factors of hypertension. Also, bad dietary pattern practiced at this period may lead to obesity and eating disorders that may result in several chronic diseases of which hypertension is one. Early assessment of the risk factors and prevalence of hypertension among adolescents in Senior High School (SHS), as well as diabetes and dyslipidaemia is warranted to curb future development especially for Ghana, where much data does not exist.

2. METHODOLOGY

2.1 STUDY DESIGN AND ELIGIBILITY

A cross-sectional study was carried out on adolescent SHS students aged 13-19 years, in three
 administrative districts of Ghana. Using the Cochrane's formula; n= (Z² p (1-p))/e², a sample size of 909
 was determined. SHS students between 13 and 19 years and in boarding house were included. Students
 who stayed at home and above 19 years were excluded from the study.

2.2 STUDY POPULATION AND SAMPLING

63 First, a multi-stage sampling was used; the 29 districts in the Ashanti region were grouped into three. 64 using the number of schools in each district as the basis. Using this criterion, the Eiisu-Juaben 65 Municipality, the Asante Akim Central Municipality and the Kumasi Metropolis were randomly selected. A 66 school was then selected from each of the districts. The schools were selected, based on the location 67 (such as being a well-known area), the condition of the boarding facilities and the number of students who 68 were in the boarding house. The Anglican Senior High School (KASS), the Bonwire Senior High School 69 (BOSS) and the Konongo Odumase Senior High School (KOSS) were selected for this study. A simple 70 random sampling was used to select 909 participants. Students were asked to pick 'yes/no' paper in a 71 bowl and those who picked 'yes' were chosen for the study. Out of the 909 selected participants, 142 72 participants had elevated blood pressure and were automatic included for follow-up study. The study 73 population was made up of adolescents in the three SHSs, from year one to year three. The

reconnaissance survey to the school revealed that the three SHSs had a student population of 7,036. This was made up of 3246 in KASS, 2803 in the KOSS and 887 in BOSS.

76

Table 1: Participants Selected for Screening

	Screening/School	Anglican SHS	Konongo SHS	Bonwire SHS	Total	
	First Screening	376	342	191	909	
	Re-screening	60	62	20	142	
77		Source: Author	or's Construct, 2017.			
78		2.3	ETHICS			
79 80 81 82	Ethical clearance for the Ethics (CHRPE) of the So was sought from the selec the CHRPE regul	study was obtained fro chool of Medical Scienc ted schools. All particip lations, before answerir	m the Committee on Hun ces, KNUST, Kumasi (CH ants signed an informed ng the questionnaire and	nan Research Publicati IRPE/AP/491/16) and c consent form, in accor taking blood samples.	ion and consent dance to	
83		2.4 DATA				
84 85	A questionnaire was used to collect data on demography of participants. Data was collected between October, 2016 and March, 2017.					
86		2.4.1 Anthropol	<u>metric measurements</u>			
87 88 90 91 92 93 94 95 96	The Omron Body compos participants, by entering th and step on the monitor b stand on the monitor wit bodies until the total body calculated and displayed the umbilicus, while subju- taken around the maxim	ition monitor (BF511, U heir age, sex and heigh are-footed. After weigh h hands on the monitor / fat, Body Mass Index digitally. A metric meas ect stood straight to me um part of the buttocks circumference (cm) to e	K) was used to take bod t. Participants were aske t was measured to the ne 's horns and held at wais (BMI), visceral fat and me suring tape was tied arou asure the waist circumfe the waist circumference estimate the waist to hip	y composition paramet d to take off any heavy earest 0.1 kg, they cont at level, at right angles to uscle mass were autom nd the abdomen at the rence. Hip circumferen e (cm) was divided by to ratio.	ers from clothing inued to to their natically level of ce was the hip	
97		2.4.2 Blood pre	essure measurement			
98 99 100 101 102 103 104 105	Blood pressure reading w with elevated blood press haematological analyse sphygmomanometer participants had relaxed t placed to cover the left times, with at least 5 m	vas taken during the init sure. Participants with h es. Blood pressure read and stethoscope. Meas for about 5 minutes. Dif arm at the heart level. S inutes interval, using a readings was n	tial screening of the 909 s nigh blood pressure were ding was taken by trained surements were taken fro ferent cuff sizes were us Systolic and diastolic blood digital sphygmomanome used for the analysis.	students, to recruit part recruited for biochemi d personnel using a me om the left upper arm a ed for different body siz od pressure were taken ter. The average of the	icipants cal and rcury fter zes and three three	
106		<u>2.4.3 Bioche</u>	emical assessment			
107 108 109 110	Participants were asked sample were collected in activator vacuum tubes Germany) to obtain ser	d to fast overnight prior nto gel-activated tubes (were left to stand for 30 um. The serum was the	to blood sample collectic (Channel Med, England)) minutes and centrifuged en analysed for lipid profi	on. Three ml of venous for biochemical analys d (Heraeus Christ-labof le, ALT, urea, creatinin	blood is. The uge A, e and	

111 112	electrolytes; to examine liver and kidney function. Reagents used were manufactured by Fortress Diagnostic (UK).
113	2.5 DATA ANALYSIS
114 115 116 117 118 119 120	Data was analysed using Statistical Package for Social Sciences version 23 (SPSS Inc Chicago, IL). Categorical variables for sociodemography, anthropometric, and blood pressure status were presented as absolute and relative frequencies. A one-way analysis of variance (ANOVA) was performed to determine mean difference (standard error mean) between age, anthropometric, lipid profile, liver function parameters, kidney function parameters among blood pressure groups. A bivariate correlation was done to determine relationship between lipid profile, liver function parameters, kidney function parameters and blood pressure. All reported p-values were compared to significance level of 0.05.
121 122 123	3. RESULTS The study included 909 adolescents; however, biochemical tests were assessed among the 142 participants who had high blood pressure during the first screening. Results are presented for both first
124 125 126 127	and second screening. Among 142 adolescent students, 75 (52.8%) participants were males and 67 (47.2%) participants were females. The occupational status of the parents and the blood pressure status of the participants showed no significant difference (p>0.05) with the majority of the detected cases being associated with the self-employed parents (Table 2)

127 128 129

> Self employed

45 (48.9)

Parameters	Normotensive n (%)	Pre- hypertensive n (%)	Hypertensive n (%)	Total n (%)	P-value
Gender		<u>, , , , , , , , , , , , , , , , , </u>			0.200
Male	32 (42.6)	35 (46.6)	8 (10.6)	75(52.8)	
Female	37 (55.2)	27 (40.3)	3 (4.5)	67(47.2)	
Mothers occupation					0.830
Civil servant	3 (50.0)	3 (50.0)	0 (0.0)	6 (4.2)	
Public Servant	7 (46.6)	7 (46.6)	1 (6.6)	15 (10.5)	
Unemployed	1 (20.0)	3 (60.0)	1 (20.0)	5 (3.5)	
Self employed	58 (50.0)	49 (42.2)	9 (7.7)	116(81.6)	
Fathers occupation					0.950
Civil Servant	11 (47.8)	9 (39.1)	3 (13.0)	23 (16.2)	
Public Servant	11 (47.8)	10 (43.4)	2 (8.7)	23 (16.2)	
Unemployed	2 (50.0)	2 (50.0)	0 (0.0)	4 (2.8)	

41 (44.5)

6 (6.5)

92 (64.7)

P-value is significant at P < 0.05

131 132 The prevalence of elevated blood pressure using the first screening was 9.1%. However, upon second 133 screening from those who had high blood pressure the first screening, prevalent rate for high blood pressure for the entire study population had reduced to 1.21%. Majority of the participants (66.1%) had 134 normal blood pressure level. There were significant differences in blood pressure status and selected 135 schools, with participants from KASS (15.2%), having high blood pressure level (P < 0.001). 136 137 According to the second screening, there was higher prevalence of hypertension among male participants 138 (10.7%) compared to female participants (4.5%). This was not significant (*P* = 0.658) (Table 3).

1	39
1	40

130

SHS Students	Blood pressure status			X ²	df	P-value
	Hypertensive	Pre- hypertensive	Normotensive	-		
N (%) = 909		2.				
<u>Senior high</u> schools				32.993	4	<0.001
KOSS (%)	19 (5.6)	82 (28.9)	241 (70.5)			
KASS (%)	57 (15.2)	82 (21.8)	237 (63.0)			
BOSS (%)	7 (3.7)	61 (31.9)	123 (64.4)			
Total	83 (9.1)	225 (24.8)	601 (66.1)			
Second screening	11 (1.21)					
<u>Gender</u> N=142						0.658
Male	10.7	46.6	42.7			
Female	4.5	40.3	55.2			
		P-value is s	ignificant at P < 0.0)5		
The age, wai heir relationsh between age	st circumference hip with the blood (<i>P</i> = 0.461), WC	, BMI, body fat, m pressure status ((p= 0.450), BMI (blood press	nuscle mass and visor of participants. The P = 0.847), % BF (aure status (Table 4	sceral fat v ere was no P = 0.501)).	was as o signi), visce	ssessed to de ficant mean c eral fat (<i>P</i> = 0.

Table 3. Distribution of blood pressure among KOSS, KASS and BONWIRE Students

UNDER PEER REVIEW

160 161

Table 4. Age, anthropometric and body composition of normotensive, pre-hypertensive and hypertensives participants

	ny	ypertensives part	licipants	
Parameter	Normotensive	Pre-	Hypertensive	P-value
		hypertensive		
Age (years)	17.12±1.39	17.45±1.71	17.91±1.14	0.461
WC (cm)	74.42±8.09	74.18±7.50	74.27±7.72	0.450
BMI (Kg/m²)	18.88±8.56	20.02±7.41	20.66±6.99	0.847
Body Fat (%)	23.88±12.60	22.07±12.72	20.79±12.42	0.501
Muscle mass (%)	36.46±8.10	36.75±8.39	39.14±8.52	0.416
Visceral Fat	1.43±1.87	1.66±2.13	2.73±1.90	0.195

102

Values are presented as means \pm SEM, *P-value* is significant at *P* < 0.05.

163 164

3.1 EFFECTS OF BLOOD PRESSURE ON ORGAN FUNCTION OF PARTICIPANT

165Table 5 shows the comparison of lipid profile and blood pressure status of participants. There was no166significant mean difference between total cholesterol (TC, *P*= 0.765), triglycerides (TG, *P*= 0.381, high-167density lipoprotein (HDL, *P*= 0.777) and low-density lipoprotein (LDL, *P*= 0.768) and blood pressure168status.

169 Table 5. Comparison of lipid profile of respondents on different blood pressure ratings Blood pressure HDL (mmol/L) TCHOL TG LDL status (mmol/L) (mmol/L) (mmol/L) Normotensive 1.60±0.03 1.73±0.08 3.97±0.18 0.97±0.04 **Pre-hypertensive** 1.73±0.11 3.83±0.12 1.02±0.04 1.60±0.03 Hypertensive 1.65±0.06 1.90±0.18 4.02±0.20 0.89±0.06 F-ratio 0.252 0.264 0.269 0.971 2 2 2 2 Df 0.777 0.768 P-value 0.765 0.381

Values are presented as means ± SEM, *P-value* is significant at *P* < 0.05 *Tchol- Total cholesterol; TG-Triglycerides; HDL- High density lipoprotein; LDL- Low density lipoprotein*

171 172

170

173Table 6 presents effect of blood pressure on liver and kidney functions. There was no significant mean174difference between urea (P= 0.236), creatinine (P= 0.995) and alanine aminotransferase (ALT) levels (P=1750.397) and blood pressure status.

176 177

178

179

180

181

182

UNDER PEER REVIEW

Blood Pressure status Normotensive Pre-hypertensive Hypertensive	UREA (mmol/L) 3.71±0.10	CREATININE	ALT
Blood Pressure status Normotensive Pre-hypertensive Hypertensive	UREA (mmol/L) 3.71±0.10	CREATININE	ALT
Normotensive Pre-hypertensive Hypertensive	(mmol/L) 3.71±0.10		
Normotensive Pre-hypertensive Hypertensive	3.71±0.10	(µmol/L)	(U/L)
Pre-hypertensive		56.82±1.05	13.14±0.85
Hypertensive	3.50±0.10	56.90±1.03	12.06±0.65
	3.43±0.15	56.64±2.02	14.36±1.11
F-ratio	1.459	0.005	0.930
Df	2	2	2
P-value	0.236	0.995	0.397
Table 7. Effect of blo	ood pressure status	on electrolytes (N	a ⁺ , Cl ⁻ , K ⁺) of responde
Table 7. Effect of blo Blood pressure status	ood pressure status Na⁺	s on electrolytes (N Cl ⁻	la ⁺ , Cl ⁻ , K ⁺) of responde K ⁺
Table 7. Effect of blo Blood pressure status	ood pressure status Na ⁺ (mmol/L)	s on electrolytes (N Cl ⁻ (mmol/L)	la ⁺ , Cl ⁻ , K ⁺) of responde K ⁺ (mmol/L)
Table 7. Effect of blo Blood pressure status Normotensive	ood pressure status Na ⁺ (mmol/L) 139.77±0.18	s on electrolytes (N Cl ⁻ (mmol/L) 100.74±0.21	a ⁺ , Cl ⁻ , K ⁺) of responde K ⁺ (mmol/L) 4.04±0.02
Table 7. Effect of bloBlood pressure statusNormotensivePre-hypertensive	ood pressure status Na ⁺ (mmol/L) 139.77±0.18 140.31±0.20	<mark>s on electrolytes (NCI⁻ (mmol/L) 100.74±0.21 99.02±1.61</mark>	la ⁺ , Cl ⁻ , K ⁺) of responde K ⁺ (mmol/L) 4.04±0.02 4.05±0.03
Table 7. Effect of bloBlood pressure statusNormotensivePre-hypertensiveHypertensive	ood pressure status Na ⁺ (mmol/L) 139.77±0.18 140.31±0.20 140±0.38	<mark>5 on electrolytes (N Cl⁻ (mmol/L) 100.74±0.21 99.02±1.61 99.91±0.48</mark>	la ⁺ , Cl ⁻ , K ⁺) of responde K ⁺ (mmol/L) 4.04±0.02 4.05±0.03 4.05±0.05
Table 7. Effect of blo Blood pressure status Normotensive Pre-hypertensive Hypertensive F-ratio	ood pressure status Na ⁺ (mmol/L) 139.77±0.18 140.31±0.20 140±0.38 2.099	s on electrolytes (N Cl ⁻ (mmol/L) 100.74±0.21 99.02±1.61 99.91±0.48 0.665	la ⁺ , Cl ⁻ , K ⁺) of responde K ⁺ (mmol/L) 4.04±0.02 4.05±0.03 4.05±0.05 0.131
Table 7. Effect of blo Blood pressure status Normotensive Pre-hypertensive Hypertensive F-ratio Df	ood pressure status Na ⁺ (mmol/L) 139.77±0.18 140.31±0.20 140±0.38 2.099 2	s on electrolytes (N Cl ⁻ (mmol/L) 100.74±0.21 99.02±1.61 99.91±0.48 0.665 2	la ⁺ , Cl ⁻ , K ⁺) of responde K ⁺ (mmol/L) 4.04±0.02 4.05±0.03 4.05±0.05 0.131 2
Table 7. Effect of blo Blood pressure status Normotensive Pre-hypertensive Hypertensive F-ratio Df P-value	ood pressure status Na ⁺ (mmol/L) 139.77±0.18 140.31±0.20 140±0.38 2.099 2 0.126	s on electrolytes (N Cl ⁻ (mmol/L) 100.74±0.21 99.02±1.61 99.91±0.48 0.665 2 0.516	la ⁺ , Cl ⁻ , K ⁺) of responde K ⁺ (mmol/L) 4.04±0.02 4.05±0.03 4.05±0.05 0.131 2 0.878

Table 6. Effect of blood pressure status on kidney (urea, creatinine) and liver (ALT) functions of

200

203

213 214

215

=	Biochemical Parameters	Systolic	Diastolic					
_		Correlation coefficient, r						
	Tchol	0.02	0.048					
	Trig	0.048	0.014					
	HDL	0.05	0.15					
	LDL	0.017	0.012					
	UREA	-0.113	175					
	CREAT	0.043	-0.125					
	ALT	-0.084	-0.03					
	Na [⁺]	0.105	-0.095					
	K⁺	0.084	0.01					
	CI	-0.09	-0.111					

209 *P values were above 0.05.* Tchol- Total cholesterol; Trig- Triglycerides; HDL- High density lipoprotein;
 210 LDL- Low density lipoprotein; ALT- Alanine aminotransferase; Na⁺- Sodium; K⁺ - Potassium; Cl⁻Chloride,
 211 ^{*}P-value is significant at P < 0.05.
 212

4. DISCUSSION

216 Finding from the initial screening' showed prevalence of elevated blood pressure among adolescents in 217 the selected schools was 9.1%, whilst 24.8% of them were pre-hypertensive. Blood pressure readings 218 were measured three times at a relaxed state and the average was considered the study data. However, 219 in the second screening, which considered participants (N=142) with high blood pressure from the first 220 screening, prevalence of high blood pressure for the entire study population had dropped to 1.21% 221 among the adolescents. The decline in prevalent rate of elevated blood pressure may be due to be some 222 uncontrolled confounding factors such as stress, personal fear exhibited by study population. The 223 prevalence of high blood pressure is of significant consideration in this setting, as it poses threat to our 224 public health, owing to the affected population group. As such, collaborative efforts by various 225 stakeholders are needed to identify population at risk and effectively manage this menace using 226 comprehensive approaches that can be delivered at both health facilities and community level. This 227 prevalence of hypertension was significantly higher among participants from KASS (15.2%), compared to 228 KOSS (5.6%), and BOSS (3.7%; P < 0.001). Similar but higher prevalence of hypertension among 229 adolescents was found in a study by Kumar et al. [18]. On the other hand, another study by Tadesse and 230 Alemu [19] in Ethiopia found slightly lower prevalence of hypertension (7.7%) among adolescents. KASS 231 and KOSS are located at urban communities whereas; BOSS is located in a sub-urban area of Ashanti 232 region. Considering the location of these schools, it could be deduced that hypertension was more 233 prevalent in the urban adolescents (KASS and KOSS), compared to sub-urban to rural adolescents 234 (BOSS). An observed high prevalence of pre-hypertension and hypertension among adolescent students 235 raises alarm that the disease is no longer found in adults but is gradually emerging among adolescents. This calls for awakening of health stakeholders to develop appropriate intervention health programs to 236 237 curb the menace among the youth of the country.

High prevalence of hypertension among adolescents would affect the public health system in Ghana, if
appropriate measures are not put in place. According to Amma *et al.* [20] and Widjaja *et al.* [21],
hypertension was associated with low socio-economic status, waist circumference, overweight/obesity,
high soft drinks consumption, low fruit consumption and physical inactivity. Out of the 142 participants,

242 116 (81.6%) of them have parents who are self-employed, which is a key factor to note. Self-employed 243 persons tend to dedicate much time to their business, thus have little time for themselves and their 244 families. This mostly results in their wards eating from fast food joints and resorting to other seemingly 245 unwholesome and unhealthy eating patterns, such as late-night eating as they report home late from 246 work. The data showed that 81.6% of the mothers, who are primarily responsible for the diet of their 247 families, were self-employed with extended working hours, leading to poor eating patterns in their 248 households. However, there is no statistical significance in the link between the parents' occupation and 249 the hypertensive status of their wards (P > 0.05). Age did not have significant effect on blood pressure.

250 There was higher prevalence of hypertension in males than females, though not statistically significant. 251 The higher prevalence in males is similar to the finding by Goncalves et al. [22], where they showed a 252 prevalence of 9.3% in males as against 6.5% in females. Moselakgomo et al. [23] also reported a higher 253 prevalence of 4.1% in males, as opposed to 2.8% in females. They attributed the cause of the increasing 254 prevalence of hypertension to the changing lifestyles of the population, following the rural-urban drift, 255 particularly in sub-Saharan Africa with the primary causes being poor diet, salt intake and physical 256 inactivity. They also observed that the poor socio-economic and environmental conditions the children 257 were exposed to from childhood to adolescence were the risk factors to the development of hypertension. 258 The high prevalence of hypertension in males, as opposed to females could be attributed to the higher 259 tendency of males to eat more and resort to unhealthy lifestyle practices such as alcoholism and smoking 260 [24]. Studies have shown that sedentary lifestyles, use of tobacco and alcohol, lack of physical exercises, 261 and unhealthy diet are mostly found among adolescents [25].

There was no significant mean difference between age (P = 0.461), WC (P = 0.450), BMI (P = 0.847), % BF (P = 0.501), visceral fat (P = 0.195) and blood pressure status. Obesity, abdominal obesity is known risk factors of hypertension [26]. However, in this study, the waist circumference, BMI and visceral fat did not contribute significantly (P > 0.05) to the hypertension status of participants. A study by Danasekaran and Vinoth [27], showed a positive correlation between BMI (P < 0.001) and family history (P = 0.03) in adolescents with hypertension.

268 269 The high prevalence of hypertension warranted an investigation into the probable toll the condition might 270 be having on the kidney and liver organ functions of the participants. According to Tedla et al. [28], 271 hypertension can be directly or indirectly related to chronic kidney disease (CKD) and electrolyte 272 imbalances. There was no significant mean difference between urea (P = 0.236), creatinine (P = 0.995), 273 serum sodium (P = 0.126), serum chloride (P = 0.516), serum potassium levels (P = 0.878) and alanine 274 aminotransferase (ALT) levels (P = 0.397) and blood pressure status. This means that the presence of 275 high blood pressure did not influence the electrolytes, kidney and liver parameters of participants. Also, 276 lipid profile such as total cholesterol (P = 0.765), triglycerides (P = 0.381), HDL (P = 0.777) and LDL (P =0.768) was not significantly associated with blood pressure status. Although prevalence of hypertension 277 278 was high among the adolescent population, it did not have any influence on the lipid profile, representing 279 cardiovascular risk factor.

280 Additionally, a correlation between total cholesterol, triglyceride, high density lipoprotein cholesterol, low 281 density lipoprotein cholesterol, kidney and liver parameters and systolic and diastolic blood pressure 282 showed no significant association. The fact however is, hypertension is a chronic disease which 283 progresses gradually to cause damage to heart, kidney and liver, as duration of hypertension extends. 284 The early detection of hypertension in adolescents, timely dietary and lifestyle management are helpful to 285 avoid future hypertension complications. An observed high blood pressure among boarding school 286 adolescents is worrying and calls for immediate attention by stakeholders to look at the diet and lifestyle 287 engagement of these school children. Also, there is the need to include nutrition education in our various 288 second cycle institutions to help promote healthy eating and right food choices. Stakeholders can 289 promote an enabling environment which can stimulate healthy lifestyle behaviours among the 290 adolescents. 291

5. CONCLUSIONS

Prevalence of pre-hypertension (24.8%) and hypertension (9.1%) was high among adolescent students. Despite the high prevalence of pre-hypertension and hypertension among adolescent population in the study, it did not have any effect on their kidney and liver. There is the need for appropriate diet and lifestyle management to prevent the progression of the pre-hypertension and hypertension to stages where they can cause target organ damage.

299	
300	Abbreviations
301	TCHOL- Total Cholesterol
302	HDL- High density lipoprotein
303	LDI - Low density lipoprotein
304	
305	REFERENCES
306	
307	1. Pramanike P, Koley D, Biswas S. Prevalence of hypertension among clinically asymptomatic school
308	going adolescents in sub-urban area of West Bengal. International Journal of Medical and Health
309	Sciences. 2015; 4(1):1-6.
310 311 312 313 314	 World Health Organization. The World Health Report 2002. Geneva, Switzerland. 2002; Retrieved from <u>www.who.int/whr/2002/en/whr02_en.pdf on 12/10/2016</u> National Institute of Health. The Fourth Report on the Diagnosis, Evaluation and Treatment of High Blood Pressure in Adolescents. 2005; <u>https://www.nhlbi.nih.gov/files/docs/resources/heart/hbp_ped.pdf</u> (Accessed on 12/12/2016)
315 316	4. Sur A, Tirkey BN, Mishra PK. Evaluation of role of serum lipoprotein and lipid profile in essential hypertension patients in a Tertiary Care Hospital. J Hypertens. 2015; 4(3):1-5
317 318	5. Hansen ML, Gunn PW, Kaelber DC. Underdiagnoses of hypertension in children and adolescents. JAMA. 2007; 298 (8): 874-879.
319 320	 Sanchez RG, Labarathe DR, Forthofer RN, Fernandez CA. National standard of blood pressure of children and adolescents in Spain: International comparison. Int J Epidemiol. 1992; 21: 478-487.
321 322	 Arima H, Murakami Y, Lam TH. Effects of prehypertension and hypertension subtype on cardiovascular disease in the Asia-Pacific Region. Hypertension. 2012; 59: 1118-1123.
323 324	8. Lee M, Saver JL, Chang B. Presence of baseline pre-hypertension and risk of incident stroke: a meta- analysis. Neurology. 2011; 77: 1330-1337.
325 326	 World Health Organization. World health statistics. Geneva: World Health Organization; 2012. Retrieved from www.who.int/gho/publications/world_health_statistics/2012/en12/10/2016
327 328	10. Hajjar I, Kitchen TA. Trends in prevalence awareness, treatment, and control of hypertension in the United States 1986-2000. JAMA. 2003; 298 (10): 206-290.
329 330	11. Kaerney PM, Whelton M, Reynolds SK, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet. 2005; 365: 217-223.
331 332	12. Cappuccio FP, Micah FB, Emmett L. Prevalence, detection, management, and control of hypertension in Ashanti, West Africa. Hypertension, 2004; 43(5):1017–1022.
333 334 335	 Sundar JS, Adaikalam JMS, Parameswari S, Valarmarthi S, Kalpana S. Prevalence and determinants of hypertension among urban school children in the age group of 13- 17 years in Chennai, Tamilnadu. Epidemiol. 2013; 3(130): 1-5.

336	14. Cordeiro LS, Lamstein S, Mahmud Z, & Levinson FJ. Adolescent malnutrition in developing countries:
337	a close look at the problem and at two national experiences: United Nations. 2006; Retrieved at
338	<u>www.popline.org/node/174816</u> on 12/01/2017
339	 Gore FM, Bloem PJ, Patton GC, Ferguson J, and Joseph V. Global burden of disease in young
340	people aged 10-24 years: a systematic analysis. The Lancet. 2011; 377 (9783) : 2093-2102.
341	 Duah AF, Werts N, Hutton-Rogers L, Amankwa D, and Otupiri E. Prevalence and risk factors for
342	hypertension in Adansi South, Ghana. SAGE Open. 2012; 3(4): 2158244013515689.
343	 Owusu-Sekyere E, Bonyah E, and Ossei L. Spatial modeling of hypertension disease in the Kumasi
344	Metropolitan area of Ghana. International Journal of Statistics and Applications. 2013; 3(4):132-140.
345 346 347	18. Kumar P, Elsaidi HR, Zorniak B, Laurens E, Yang J, Bacchu V, et al. Synthesis and Biological Evaluation of Iodoglucoazomycin (I GAZ), an Azomycin–Glucose Adduct with Putative Applications in Diagnostic Imaging and Radiotherapy of Hypoxic Tumors. ChemMedChem. 2016; <i>11</i> (15): 1638-1645.
348	 Tadesse T, Alemu H. Hypertension and associated factors among university students in Gondar,
349	Ethiopia: a cross-sectional study. BMC Public Health. 2014; 14(937): 2-5.
350	20. Amma GM, Vasudevan B, Akshayakumar S. Prevalence and determinants of prehypertension and
351	hypertension among adolescents: a school-based study in a rural area of Kerala, India. International
352	Journal of Research in Medical Sciences. 2015; 3(1): 58-64
353 354 355	21. Widjaja FF, Santoso LA, Barus NRV, Pradana GA, and Estetika C. Prehypertension and hypertension among young Indonesian adults at a primary health care in a rural area. Med J Indones. 2013; 22(1): 39-45.
356	22. Gonçalves VSS, Galvão TF, Cordeiro de Andrade KR, Dutra SI, Bertolin MNTI, Baiocchi de Carvalho
357	KMI, et al. Prevalence of hypertension among adolescents: systematic review and meta-analysis. Rev
358	Saúde Pública. 2016; 50: 27.
359	 Moselakgomo VK, Toriola AL, Shaw BS, Goon DT, and Akinyemi O. Body mass index, overweight,
360	and blood pressure among adolescent schoolchildren in Limpopo province, South Africa. Rev Paul
361	Pediatr. 2012; 30(4): 562-9.
362	24. Babwah F, Baksh S, Blake L, Cupid-Thuesday J, Hosein I, Sookhai A, et al. The role of gender in
363	compliance and attendance at an outpatient clinic for type 2 diabetes mellitus in Trinidad. Revista
364	Panamericana de Salud Pública. 2006; 19(2): 79-84.
365	25. McNiece KL, Poffenbarger TS, Turner JL, Franco KD, Sorof JM, and Portman RJ. Prevalence of
366	hypertension and pre-hypertension among adolescents. J Pediatr. 2007; 150(6): 640-644.
367	26. Halley CE, Borges G, Talavera JO, Orozco R, Vargas-Aléman C, Huitrón-Bravo G, et al. Body mass
368	index and the prevalence of metabolic syndrome among children and adolescents in two Mexican
369	populations. J Adolesc Health. 2007; 40 (6): 521-526.
370	27. Danasekaran R, Vinoth R. A study on relation between BMI and hypertension among adolescents in
371	Kancheepuram district, Tamil Nadu. IJAR. 2015; 1(2): 8-12.
372 373 374 375 376	28. Tedla FM, Brar A, Browne R, and Brown C. Hypertension in Chronic KidneyDisease: Navigating the Evidence International Journal of Hypertension. 2011; Volume 2011, Article ID 132405, pp 1-9.

UNDER PEER REVIEW