# Tautomeric Equilibria of Substituted 2-Pyridone/2-Hydroxypyridine in the Gas and Aqueous Phases

#### **Abstract**

Heats of formation, entropies and Gibbs free energies for the twenty structures of substituted 2-pyridone and 2-hydroxypyridine were studied using semiempirical Austin Model (AMI) and Parametric Model 3 (PM3) calculations at the self-consistent field level, both in the gas and liquid phases, with full geometry optimization. 2-hydroxypyridine is predominant in the gas phase, while 2-pyridone in the liquid phase, agrees with the experimental and theoretical predictions. All substituents (F, Cl, OH, CH<sub>3</sub>, NH<sub>2</sub>, NO<sub>2</sub>, CHO, CN, CF<sub>3</sub>) stabilize the 2-pyridone in the gas and liquid phases except F, Cl and NH<sub>2</sub> in PM3 calculations in the gas phase. Substituents stabilization is more effective in the liquid phase. This was confirmed by thermodynamic calculations and isodesmic reactions.

Key words: 2-Pyridone; 2-Hydroxypyridine; Tautomerism; Substituents, AM1, PM3

#### 1. Introduction

The tautomerism of 2-pyridone/2-hydroxypyridine plays a role in many areas of chemistry and biochemistry: e.g., the rationalization of structures, properties, and reactivities in heterocyclic chemistry [1,2]; concepts and probes of aromaticity [3]; measures of intrinsic stabilities verse solvent effect [4, 5]; mechanisms of enzymatic catalysis and receptor interactions [6]; and possibly even mutations during DNA replication [2, 7]. Investigations of tautomerism of 2-pyridone date from 1907 [8]. Most studies since then have dealt with the equilibrium in liquid media [1, 9]. X-ray crystallography shows that pyridone is also favored in the solid [10-12].

The dominance of the pyridone tautomer in solution neat liquid and solid has been shown to be the result of strong solvent effects, ion binding and self associations [1, 4, 5, 10-16]. In contrast, infra-red (IR) and ultraviolet (UV) measurements have established that the tautomers are nearly equal in energy when unassociated in the vapor [4, 17, 18]. IR spectroscopy in inert gas matrices [19], and microwave spectroscopy [20] have led to conclusion that the free energy differences between the hydroxy form and the oxy form is 0.478-0.717 kcal/mol in favor of the hydroxy form. Similar gas-phase tautomerizations have since been investigated for a number of lactam/lactim pairs by using IR [21], UV [22], photoelectron [23, 24], ion cyclotron resonance [25-27] and mass spectroscopy [28, 29]. All of these gas-phase equilibria show marked differences from solution data [1, 2, 9, 13-17, 30].

Numerous theoretical studies have attempted to reproduce the tautomerization energy for pyridone/hydroxypyridine and similar heterocyclic systems [31-38].

In solution state, the energy difference between the two tautomers seems to be very small and depending on the polarity of the solvent, polar solvents favor the 2-pyridone whereas in non-polar solvents both tautomers can co-exist [39, 40]. The experimental tautomerism free energy changes for 2-pyridone in the gas phase and acetonitrile are -0.81 and 2.96 kcal/mol respectively [40].

Electronegative substituents at the C-6 position have been shown [41] to have a considerable effect on the pyridone/hydroxypyridine equilibrium, both in the gas phase and in a variety of solvents. The studies of Beak *et al.* [4,42] have provided such experimental data on a number of chloro derivatives of 2-hydroxypyridine and 2-mercaptopyridine. Experimentally the equilibrium between 6-chloro-2-pyridone and 6-chloro-2-hydroxypyridine in the gas phase, in water and in carbon tetrachloride was found that, both in

the gas phase and in carbon tetrachloride, the hydroxy-form is dominant whilst in an aqueous environment the 2-pyridone is preferred [43-46].

The main objective of this paper is to give more theoretical insight to the problem of the tautomerism of 2-pyridone/2-hydroxypyridine (Scheme 1) by studying the effect of substituents X (X= F, OH, NH<sub>2</sub>, CH<sub>3</sub>, CN, NO<sub>2</sub> and CF<sub>3</sub>) at C-6 position in

Scheme 1.

the gas phase ( $\varepsilon = 1$ ) and liquid phase ( $\varepsilon = 78.4$ ) using the semiempirical methods AM1 [47] and PM3 [48].

## 2. Materials and Methods

Materials are substituted 2-pyrydone.2-hydroxypyridine. Substituents are F, Cl, OH, CH<sub>3</sub>, NH<sub>2</sub>, NO<sub>2</sub> and CHO. Theoretical calculations were performed using well known AM1 and PM3 for calculation [47, 48].

#### 3. Results and discussion

The present work first performed by AM1 method and then by PM3 method.

## 3.1 AM1 Method

Calculations were first performed in the gas phase and then in liquid phase.

# 3.1.1 AM1 Calculations in the Gas Phase ( $\varepsilon = 1$ )

The calculated molecular structures of 20 compounds are given in Figure 1. Calculations were first performed on the parent compounds (2-pyridone and 2-hydroxypyridine without substitution), and then on the substituted parent compounds.

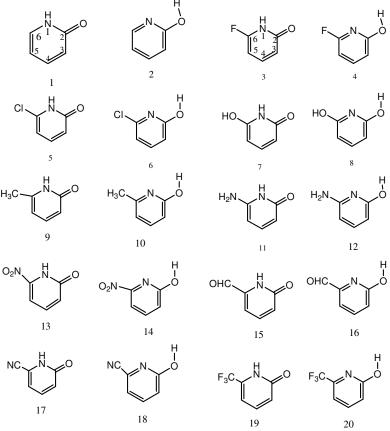



Figure 1. Molecular structures of the substituted 2-Pyridone and 2-Hydroxypyridine.

- a) Parent Compounds (2-pyridone and 2-hydoxypyridine)
  - 2- hydroxypyridine: Exists in two forms:

Scheme 2.

The forms **1B** and **2B** (Scheme 2) differ in the orientation of OH group relative to the nitrogen atom. The calculated heat of formation of **2B** (-11.854 kcal/mol) is more negative than that of **1B** (-7.977 kcal/mol), suggesting that **2B** is preferred. This agrees with theoretical calculations [32, 34, 49].

Tautomerism:

#### Scheme 3.

Thermodynamic calculations of Gibbs free energies of 2-pyridone and 2-hydroxypyridine are given in Table 1.

The Gibbs free energy of the tautomerization ( $\Delta G$ ) (Scheme 3) at 298.15 K were predicated by adding the heat of formation ( $\Delta H_f$ ) and entropic (-T $\Delta S$ ) terms. The calculated Gibbs free energy for the tautomerization ( $\Delta G$ ) is - 0.540 kcal/mol, in favor of the product (2-hydroxypyridine). This result agrees with the experimental values [19, 20]. It also agrees with and the theoretical calculations [33, 34, 40]. This  $\Delta G$  was taken as reference for determining the relative stability of X-substituted 2-pyridone and 2- hydroxypyridine.

# b) Effect of substituents:

# Effect of F

The thermodynamic calculation of compound 3 (Fig. 1) shows that  $\Delta G = -0.240$  kcal/mol (Table 1) is slightly more positive than that of the parent ( $\Delta G = -0.540$  kcal/mol) which suggests that F substituent slightly stabilizes the 2-pyridone.

The stabilization effect is also supported by isodesmic reactions [50-56]. A negative value for the reaction indicates a less stable, and a positive value a more stable product.

It was observed that  $\Delta H_{rxn}$  value of the isodesmic reaction of compound 3 (Table 2) is positive (0.044 kcal /mol) and that of 4 is negative (-0.253 kcal/mol) which suggests that F slightly stabilizes the compound 3. This agrees with the present thermodynamic calculation, which predicts a small shift in equilibrium to the 2-pyridone compared to parent.

Table 1. Calculated Gibbs free energies (kcal mol<sup>-1</sup>) of the substituted 2- pyridine/ 2 –hydoxypyridine in the gas phase ( $\varepsilon$  =1) and liquid phase ( $\varepsilon$  =78.4) using AM1.

$$X \longrightarrow A \longrightarrow B$$

$$Y \longrightarrow$$

| Н               |        | 7.140  |  |
|-----------------|--------|--------|--|
| F               | -0.240 | 7.628  |  |
| Cl              | -0.390 | 7.315  |  |
| ОН              | 0.300  | 8.090  |  |
| CH <sub>3</sub> | 0.264  | 7.534  |  |
| $NH_2$          | -0.080 | 8.433  |  |
| $NO_2$          | 0.130  | 8.610  |  |
| СНО             | 1.000  | 8.302  |  |
| CN              | -0.300 | 8.075  |  |
| CF <sub>3</sub> | 0.130  | 18.127 |  |
|                 |        |        |  |

## Effect of Cl

Thermodynamic calculation of compound **5** (Fig. 1) shows that  $\Delta G = -0.390$  kcal/mol (Table 1) is slightly greater than of the parent compounds ( $\Delta G = -0.540$  kcal/mol), which suggests that Cl slightly stabilizes the 2-pyridone. This is confirmed by the isodesmic reaction of compound **5** (Table 2) where  $\Delta H_{rxn}$  is negative (-0.276 kcal/mol) and that of **6** is also negative (-0.348 kcal/mol), but that for **5** is more positive than **6**. This suggests that Cl slightly stabilizes the compound **5**. This agrees with the present thermodynamic calculation ( $\Delta G = -0.390$  kcal/mol) which predicts a small shift in equilibrium to the 2-pyridone compared to the parent compounds ( $\Delta G = -0.540$  kcal/mol). But  $\Delta G$  is still negative, suggesting that 6-chloro-2-hydroxypyridine is dominant. This agrees with the experimental predictions [43-46].

Table 2. Evaluation of substituent effects of the substituted 2-pyridone 2-hydroxypyridine tautomerism via isodesmic reactions ( $\Delta H_{rxn}$  in kcal/mol), in the gas phase

# Effect of OH

Thermodynamic calculation of compound 7 (Fig. 1) shows that  $\Delta G = 0.300$  kcal /mol (Table 1) is greater than that of the parent ( $\Delta G = -0.540$  kcal/mol) which suggests that OH stabilizes the 2-pyridone. This is confirmed by the isodesmic reactions of compound 7 (Table 2) where  $\Delta H_{rxn}$  is 1.138 kcal/mol more positive than that for 8 ( $\Delta H_{rxn} = 0.243$  kcal/mol), which suggests that OH stabilizes compound 7. This agrees with the present thermodynamic calculation ( $\Delta G = 0.300$  kcal/mol) which predicts a small shift in equilibrium to the 2-pyridone compared to the parent compounds ( $\Delta G = -0.540$  kcal/mol).

# Effect of CH<sub>3</sub>

Thermodynamic calculation of compound **9** (Fig. 1) shows that  $\Delta G = 0.264$  kcal/mol (Table 1) is greater than of the parent ( $\Delta G = -0.540$  kcal/mol), which suggests that CH<sub>3</sub> slightly stabilizes the 2- pyridone.

This was confirmed by the isodesmic reaction of compound **9** (Table 2) where  $\Delta H_{rxn}$  is positive ( $\Delta H_{rxn} = 0.166$  kcal/mol) and that of **10** is negative ( $\Delta H_{rxn} = -0.239$  kcal/mol), which suggests that CH<sub>3</sub> stabilizes compound **9**.

#### Effect of NH<sub>2</sub>

Thermodynamic calculation of compound **11** (Fig. 1) shows that  $\Delta G = -0.080$  kcal/mol (Table 1) is greater than that of the parent ( $\Delta G = -0.54$  kcal/mol) which suggests that NH<sub>2</sub> stabilizes the 2- pyridone.

This was confirmed by the isodesmic reaction of compound 11 (Table 2) where  $\Delta H_{rxn}$  is positive (0.682 kcal/mol) and that of 12 also is positive (0.245 kcal/mol), but that of 11 is more positive than 12, which suggests that NH<sub>2</sub> stabilizes the compound 11.

## Effect of NO<sub>2</sub>

Thermodynamic calculation of compound 13 (Fig. 1) shows that  $\Delta G = 0.130$  kcal/mol (Table 1) is greater than of the parent ( $\Delta G = -0.540$  kcal/mol) which suggest that NO<sub>2</sub> stabilizes the 2- pyridone.

This was confirmed by the isodesmic reaction of compound 13 (Table 2) where  $\Delta H_{rxn}$  (1.528 kcal/mol) is greater than that of compound 14 ( $\Delta H_{rxn} = 0$ . 817 kcal/mol), which suggests that NO<sub>2</sub> stabilizes the compound 13.

#### Effect of CHO

Thermodynamic calculation of compound **15** (Fig. 1) shows that  $\Delta G = 1.000$  kcal/mol (Table 1) is greater than of the parent ( $\Delta G = -0.540$  kcal/mol) which suggests that CHO stabilizes the 2-pyridone.

The stabilization effect is confirmed by the isodesmic reaction, it can be seen from Table 2 that  $\Delta H_{rxn}$  value of the isodesmic reaction of compound 15 is 2.445 kcal/mol greater than that of compound 16 ( $\Delta H_{rxn} = 0.828$  kcal/mol), which suggests that CHO stabilizes the compound 15.

# Effect of CN

Thermodynamic calculation of compound 17 (Fig. 1) shows that  $\Delta G = -0.300$  kcal/mol (Table 1) is slightly greater than that of the parent ( $\Delta G = -0.540$  kcal/mol) which suggests that CN slightly stabilizes the 2-pyridone. The stabilization effect is confirmed by the isodesmic reaction. It can be see from Table 2 that  $\Delta H_{rxn}$  value of the isodesmic reaction of compound 17 is 0.617 kcal/mol greater than that of compound 18 ( $\Delta H_{rxn} = 0.392$  kcal/mol), which suggests that CN stabilizes the compound 17.

## Effect of CF<sub>3</sub>

Thermodynamic calculation of compound **19** (Fig. 1) shows that  $\Delta G = 0.130$  kcal/mol (Table 1) is greater than of the parent ( $\Delta G = -0.540$  kcal/mol) which suggests that CF<sub>3</sub> stabilizes the 2-pyridone.

The stabilization effect was confirmed by isodesmic reaction, it can be seen from Table 2 that  $\Delta H_{rxn}$  value of the isodesmic reaction of compound 19 is 0.975 kcal/mol greater than that of compound 20 (0.444 kcal/mol), which suggests that CF<sub>3</sub> stabilizes the compound 19.

Therefore, all substituents show an increase in the stability of 2-pyridone.

# 3.1.2 AM1 Calculations in Liquid Phase ( $\varepsilon = 78.4$ )

Calculations first performed on the parent compounds (2-pyridone and 2-hydroxypyridine without substitution), and then on the substituted parent compounds.

## a) Parent Compounds (2-pyridone and 2-hydoxypyridine)

The calculated Gibbs free energies of 2-pyridone and 2-hydroxypyridine are given in Table 1 The heat of formation of 2-pyridone (A) ( $\Delta H_f = -31.480 \text{ kcal/mol}$ ) is more negative than that of 2-hydroxypyridine (B) ( $\Delta H_f = -24.204 \text{ kcal/mol}$ ) which suggests that compound (A) is the more stable (Scheme 3). This agrees with the published work [1, 4, 5, 10-16].

The calculated Gibbs free energy ( $\Delta G$ ) for the tautomerization (Scheme 3) is 7.140 kcal/mol, suggesting that 2-pyridone is predominant. This agrees with theoretical and experimental predictions [33, 34, 40]. This  $\Delta G$  taken as reference for determining the relative stability of X-substituted 2-pyridone and 2-hydroxypyridine.

## b) Effect of substituents

All substituents show an increase in the Gibbs free energy values ( $\Delta G$ ) (Table 1) as compared to the parents ( $\Delta G = 7.140$  kcal/mol), which suggests that all the substituents stabilize the 2-pyrididone thermodynamically. This was confirmed by the isodesmic reactions in Table 3, where all  $\Delta H_{rxn}$  values of the 2-pyridone are more positive than that of 2-hdroxypyridine.

Table 3 .Evaluation of substituent effects of the X-substituted 2-pyridone 2-hydroxypyridine tautomerism via isodesmic reaction ns ( $\Delta H_{rxn}$  in kcal/mol), in liquid phase

X

Isodesmic Reaction

F Cl OH CH<sub>3</sub> NH<sub>2</sub> NO<sub>2</sub> CHO CN CF<sub>3</sub>

X

H

O X

O 213 -0.222 0.937 0.093 0.659 2.60 2.162 1.505 1.283

X

O 378 -0.460 -0.046 -0.144 0.094 1.180 0.922 0.666 0.609

#### 3.2 PM3 Calculations

PM3 calculations are first performed in the gas phase and then in the liquid phase.

# 3.2.1 PM3 Calculations in the Gas Phase ( $\varepsilon = 1$ )

Calculations were first performed on the parent compounds (2-pyridone and 2-hydroxypyridine without substitution), and then on the substituted parent compounds.

a) Parent Compounds (2-pyridone and 2-hydoxypyridine)

The calculated Gibbs free energies of 2-pyridone and 2-hydroxypyridine are given in Table 4. The heat of formation of 2-hydroxypyridine (B) ( $\Delta H_f$  = - 18.150 kcal /mol) is more negative than that of 2-pyridone (A) ( $\Delta H_f$  = - 15.658 kcal/mol), which suggests that compound (B) is the more stable (Scheme 3). i.e 2-hydroxypyridine is predominant in the gas phase, agrees with the theoretical and experimental predictions [4, 17-20, 33, 34, 40]. The calculated Gibbs free energy for the tautomerization ( $\Delta G$ ) (Scheme 3) is - 2.571 kcal /mol (Table 4), which is not closed to the experimental value (- 0.81 kcal/mol) [40] as that calculated by the present AM1. i.e. the present AM1 calculation gives better result in regard to the Gibbs free energy in the gas phase. This  $\Delta G$  was used as reference for determining the relative stability of X-substituted 2-pyridone and 2- hydroxypyridine.

Table 4. Gibbs free energies (kcal/mol) of the X- substituted 2-pyridone/2-hydroxypyridine in the gas phase ( $\epsilon$  =1) and liquid phase ( $\epsilon$  =78.4) using PM3.

| X               | $X = \begin{cases} H & O \\ A & A \end{cases}$ $\Delta G (\varepsilon = 1)$ | $= X N O O$ $B$ $\Delta G (\varepsilon = 78.4)$ |
|-----------------|-----------------------------------------------------------------------------|-------------------------------------------------|
| Н               | -2.571                                                                      | 7.199                                           |
| F               | -3.001                                                                      | 7.750                                           |
| Cl              | -2.798                                                                      | 8.567                                           |
| ОН              | -2.414                                                                      | 7.533                                           |
| $CH_3$          | -1.617                                                                      | 7.898                                           |
| $NH_2$          | -4.049                                                                      | 7.439                                           |
| $NO_2$          | -1.313                                                                      | 8.679                                           |
| СНО             | -1.397                                                                      | 7.485                                           |
| CN              | -2.313                                                                      | 8.136                                           |
| CF <sub>3</sub> | -2.010                                                                      | 8.225                                           |

# b) Effect of Substituents

The substituents F, Cl and NH<sub>2</sub> show a decrease in Gibbs energy values  $\Delta G$  (Table 4) as compared to the parent ( $\Delta G$  = - 2.571 kcal/mol), indicating that the substituents destabilize the 2-pyrdone. i.e in favor of the product (2-hydroxypyridine). This was confirmed by the isodesmic reactions in Table 5, where the values of  $\Delta H_{rxn}$  of the substituents (F, Cl and NH<sub>2</sub>) in the case of the 2-hydroxypyridine are more

Table 5. Evaluation of substituent effects of the X- substituted 2-Pyridone  $\rightleftharpoons$  2-Hydroxy pyridine tautomerism via isodesmic reactions ( $\Delta H_{\rm rxn}$  in kcal/mol)in the gas phase.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | X                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Isodesmic Reactions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F Cl OH CH <sub>3</sub> NH <sub>2</sub> NO <sub>2</sub> CHO CN CF <sub>3</sub> |
| $X \longrightarrow \bigcup_{i=1}^{N} $ | -0.363 -0.369 2.616 0.967 -1.497 2.763 2.096 0.659 1.287                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.103 -0.116 2.469 -0.059 -0.162 1.437 0.809 0.411 0.695                       |

positive than that of 2-pyridone, which suggests a destabilization of 2-pyridone. The rest of the substituents (OH, CH<sub>3</sub>, NO<sub>2</sub>, CHO, CN and CF<sub>3</sub>) show more positive  $\Delta H_{rxn}$  values for the 2-pyridone than that of the 2-hydroxypyridine, which suggests a more stabilization of the 2-pyridone.

Thus, all substituents stabilize the 2-pyridone, except F, Cl, NH<sub>2</sub>.

#### 3.2.2 PM3 Calculations in Liquid Phase ( $\varepsilon = 78.4$ )

Calculations were first performed on the parent compounds (2-pyridone and 2-hydroxypyridine without substitution), and then on the substituted parent compounds.

#### *a* ) Parent Compounds (2-pyridone and 2-hydoxypyridine)

The calculated Gibbs free energies of 2-pyridone and 2-hydroxypyridine are given in Table 4.

The heat of formation of 2-pyridone (A)  $\Delta H_f$  ( - 36.426 kcal/mol) is more negative than that of 2-hydroxypyridine (B)( $\Delta H_f$  = - 28.749 kcal/mol) which suggests that compound (A) is the more stable (Scheme 3). This agrees with the published work [1, 4, 5, 10-16].

The calculated Gibbs free energy ( $\Delta G$ ) for the tautomerization (Scheme 3) is 7.199 kcal/mol, suggesting that 2-pyridone is predominant in the liquid phase, which agrees with theoretical and experimental predictions [33,34,40]. This  $\Delta G$  agrees also with the present AM1 calculation ( $\Delta G = 7.140$  kcal/mol) in the liquid phase. This  $\Delta G$  will be taken as reference for determining the relative stability of X-substituted 2-pyridone and 2-hydroxypyridine.

#### b) Effect of substituents

All substituents showed an increase in the Gibbs free energy values ( $\Delta G$ ) (Table 4) as compared to the parents ( $\Delta G = 7.199 \text{ kcal/mol}$ ), which suggests that all substituents stabilizes the 2-pyrididone thermodynamically. This was confirmed by the isodesmic reactions in Table 6, where all  $\Delta H_{rxn}$  values of the 2-pyridione were more positive than that of 2-hdroxypyridine. Therefore, thermodynamically, all substituents showed an increase in the stability of 2-pyridione.

Table 6. Evaluation of substituent effects on the X- substituted 2-Pyridone  $\longrightarrow$  2-Hydroxypyridine tautomerism via isodesmic reactions ( $\Delta H_{\text{rxn}}$  in kcal/mol), in liquid phase.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |    |    |        | X               |        |     |                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|----|--------|-----------------|--------|-----|----------------------------|
| Isodesmic Reactions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F | Cl | ОН | $CH_3$ | NH <sub>2</sub> | $NO_2$ | СНО | CN CF <sub>3</sub>         |
| $\begin{array}{c} X \\ X \\ N \\ + \end{array} \begin{array}{c} N \\$ |   |    |    | 0.189  |                 |        |     | 1.771 1.737<br>0.839 0.836 |

#### 4. Conclusion

It can be concluded that 2-hydroxypyridine is dominant in the gas phase, while 2-pyridone in the aqueous phase, which agrees with the theoretical and experimental predictions. Thermodynamically, all substituents show an increase in the stability of the 2-pyridone in the gas and aqueous phases apart from the substituents F, Cl and NH<sub>2</sub> in PM3 calculations in the gas phase. These results were confirmed by Gibbs free energy calculations and isodesmic reactions.

#### **REFERNCES**

- [1] a) A. R. Katritzky and J. M. Lagowski . Adv. Heterocycl. Chem. 1, 339 (1963); 2, (1964); b) I. Elguero, C. Marzin, A. R. Katritzky and P. Linda, Adv. Heterocycl. Chem. Suppl. 1 (1976).
- [2] a) J. S. Kwiatkowski, B. Pullman, Adv. Heterocycl. Chem. **18**, 199 (1975); b) N. Rasool, A. Kanwal, T. Rasheed, Ain, T. Mahmood, K. Ayub, M. Zubair, K.M. Khan, M. Nadeem. Abdullah, M. Asiri, M. Zia-Ul-Haq, H. Jaafar, Int. J. Mol. Sci., **17**(7), 912 (2016)...
- [3] M. J. Cook, A. R. Katritzky, P. Linda, R. D. Tack., J. Chem.Soc. Perkin Trans. 2, 1295 (1972), 1080 (1973).
- [4] a) P. Beak, J. B. Covington, J. W. White, J. Org. Chem. 45, 1347 (1980); b) B. W. McCann, S. McFarland, O. Acevedo; J. Phys. Chem. A, 119 (32), 8724 (2015).
- [5] P. Beak, Acc. Chem. Res. 10, 186 (1977).
- [6] a) C. R. Ganellin, In "Drug Action t the Molecular Level" G. C. K. Roberts, Ed.; University Park Press: Baltimore, MD, Chapter 1 (1977) and references cited therein; b) J. J. Neitzel Enzyme Catalysis: The Serine Proteases . Nature Education 3(9):21(2010).
- [7] B. Pullman, A. Pullman, "Quantum Biochemistry", Wiley-Interscience; New
- [8] F. Baker, E. C. C. Baley, J. Chem. Soc. 91, 1122 (1907).
- [9] A. Albert, J. N. J. Phillips, Chem. Soc. 1294 (1956).
- [10] B. Penfold, Acta Crystallogr. **6**, 591 (1953).
- [11] J. Almof, A. Kvick, I. Olonsson, Acta Crystallogr. Sect. B 27, 1201 (1971).
- [12] a) G. L. Wheeler, H. L. Ammon, Acta Crystallogr, Sect. **B30**, 680 (1974); b) W. Clegg and G. S. Nicol, Acta Cryst. **E60**, 1433 (2004); c) S. K. Rai, S. Khanam, R. S. Khanna, A. K. Tewari, *Cryst. Growth Des.*, , **15** (3), 1430 (2015).
- [13] a) P. Beak, J. B. Covington, S. G. Smith, J. Am. Chem. Soc. 98, 8284 (1976); b) R,Esfandiary,A, Parupudi,J, Casas-Finet,D, Gadre,H, Sathish, Pharmaceutical Biotechnology,104(2),577(2015).
- [14] P. Beak, J. B. Covington, J. M. Zeigler, J. Org. Chem. 43, 177 (1978).
- [15] O. Bensaude, M. Chevrier, J. E Du Bois, J. Am. Chem. Soc. 100, 7055 (1978).
- [16] O. Bensaude, M. Chevrier, J. Guillerez, J. E Du Bois, J. Am. Chem. Soc. 102, 401 (1980).
- [17] P. Beak, F. S. Fry, Jr., J. Lee, F. Steele, J. Am. Chem. Soc. 98, 171 (1976).
- [18] P. Beak, F. S. Fry, Jr., J. Am. Chem. Soc. 95, 1700 (1973).
- [19] a) M. J. Nowak, L. Lapinski, J. Fulara, A. Les, L. Adamowics, J. Phys. Chem. 96, 2585 (1992); b) J. M. Flitcroft, M. Molinari, N. A. Brincat, N. R. Williams, M T. Storr, G. C. Allen, S. C. Parker, J. Mater. Chem. A (2018)
- [20] L. D. Hatherley, R. D. Brown, P. D. Godfrey, A. P. Pierlot, W. Caminati, D. Damiani, S. Melandri, L. B. Favero, J. Phys. Chem. **97**, 46 (1993)

- [21] a) M. J. Nowak, K. Szczepaniak, A. Barski, D. Z. Shugar, Naturforsch. C: Biosci, 33C, 876 (1978); b) C. S. Peng, A.Tokmakof J. Phys. Chem. Lett., 3 (22), 3302 (2012); c) C. S. Peng, C. R. Baiz, A. Tokmakoff, Proc. Natl. Acad. Sci. 110, 9243 (2013).
- [22] J. Lin, C. Yu, S. Peng, L. Akiyama, K. Li, L. K. Lee, P. R. LeBreton, J.Am. Chem. Soc. 102, 4627 (1980).
- [23] C. Guimon, G. Garrabe, G. Pfister-Guillouzo, Tetrahedron Lett. 2585 (1979).
- [24] R. S. Brown, A. Tse, J. C. Vederas, J. Am. Chem. Soc. 102,1174 (1980).
- [25] M. J. Cook, A. R. Katritzky, M. Taapgepera, T. D. Singh, R. W. Taft, J. Am. Chem. Soc. 98, 6048 (1976).
- [26] C. B. Theisling, N. M. M. Nibbering, Tetrahedron Lett. 1777 (1977).
- [27] D. H. Aue, L. D. Betowski, W. R. Davidson, M. T. Bowers, P. Beak, J. Lee, J. Am. Chem. Soc. **101**, 1361 (1979).
- [28] A. Maquestiau, Y. van Haverbeke, C. de Meyer, A. R. Katritzky, M. J. Cook, A. D. Page, Can. J. Chem. **53**, 490 (1975).
- [29] A. Maquestiau, Y. van Haverbeke, R. Flammang, H, Mispreuve, A, R. Katritzky, J. Ellison, J. Frank, Z. J. Meszaros, J. Chem. Soc. Chem. Commun. **888** (1979).
- [30] M. J. Cook, A. R. Katritzky, L. G. Hepler, T. Matsui, Tetrahedron Lett. 2685 (1976).
- [31] a) N. Bodor, M. J. S. Dewar, A. J. Harget, J. Am. Chem. Soc. 92, 2929 (1970); b) S.A. Hejazi, O.I. Osman, A.O. Alyoubi, S.G. Aziz, R.H. Hilal, Int J Mol Sci., 17(11) 1893.(2016).
- [32] H. Bernhard Schlegel, P. Gund, E. M. Fluder, J. Am. Chem. Soc. 104, 5347(1982).
- [33] A. R. Katritzky, M. Szafran, J. Stevens, J. Mol. Struct. (Theochem) **184**, 179 (1989).
- [34] O. G. Parchment, N. A. Burton, I. H. Hillier, Chem. Phys. Letters 203, 46 (1993).
- [35] P. T. Chou, C. Y. Wei, F. T. Hung, J. Phys. Chem. **B 101**, 9119 (1997).
- [36] M. Esboui, M. Nsangou, N. Jaidane, Z. Ben Kakhdar, Chem. Phys. **311**, 277 (2005).
- [37] A. Dkhissi, L. Houben, J. Smets L. Adamowicz, G. Maes, J. Mol. Struct. 484, 215 (1999).
- [38] a) G. S. Nichol, W. Clegg, Acta Cryst. C61, 0383 (2005); b) S. A. Hijazi, O. I. Osman, A. O. Alyoubi, S. G. Aziz and R. H, Hilal, Int. J. Mol. Sci., 17(11), 1893(2016).
- [39] G. S. Nichol and W. Clegg, Inorg. Chim. Acta **359**, 3474 (2006).
- [40] M. W. Wong, K. B. Wiberg and M. J. Frisch, J. Am. Chem. Soc. **114**, 1645 (1992).
- [41] S. S. T. King, W. L. Dilling and N. B. Tefertiller, Tetrahedron 28, 5859 (1972).
- [42] P. Beak and J. B. Convington J. Am. Chem. Soc. **100**, 3961 (1978).
- [43] A. R. Katritzky, J. D. Rowe and S. K. Roy, J. Chem. Soc. B, 758 (1967).
- [44] A. Kvick and I. Olovsson, Ark. Kemi. 30, 71 (1968).
- [45] E. S. Levin and G. N. Rodionova, Dokl. Akad. Nauk SSSR. 189, 900 (1969).
- [46] A. Gordon and A. R. Katritsky, Tetrahedron Lett. 2767 (1968).
- [47] M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. J. P. Stewart, J. Am. Chem. Soc. 107, 3902 (1985).
- [48] J. J. P. Stewart, J. Comput. Chem. 10, 209 (1989).
- [49] M. J. Scanlan, I. H. Hillier and A. A. MacDowell, J. Am. Chem. Soc. **105**, 3568 (1983).
- [50] S. M. Khalil, Z. Naturforsh. 63a, 42 (2008).
- [51] W. F. Al-Halasah, M. Mahasnah and S. M. Khalil, Z. Naturforsch. 59a, 299

(2004).

- [52] M. I. Sway, I. D. Al-Shawabkeh and S. M. Khalil, Z. Naturforsch. **59a**, 838 (2004).
- [53] H. M. Jarjis and S. M. Khalil, J. Chem. Soc. Perkin Trans. 2,1701 (1986).
- [54] M. S. Al-Noeemat, R. A. Al-Ma'ani and S. M. Khalil, Z. Naturforsch. **58a**, 738 (2003).
- [55] A. El-Alali, A. A. Marashdeh and S. M. Khalil, Z. Naturforsch. 58a,749 (2003)
- [56] M. H. Lien and A. C. Hopkinson, J. Phys. Chem. 88, 1513 (1984).