

2
3 ***In Vitro Cytotoxicity of Scopoletin Derived from***
4 ***Eupatorium laevigatum Lam.***5 **ABSTRACT**
67
Aims: *Eupatorium laevigatum* Lam. is commonly used as anti-inflammatory, antiseptic, anti-rheumatic, and in the treatment of colds and ulcers. The present study aimed to characterize the active fractions of the aerial parts of *E. laevigatum*, isolate its major constituents and to evaluate its cytotoxic effects against human tumor cells.**Methodology:** Phytochemical analysis of the aerial parts of *E. laevigatum* detected the presence of flavonoids, saponins and coumarins. Nuclear magnetic resonance with carbon and hydrogen determined that coumarin to be scopoletin. The human cancer cell lines HT-29, NCI-H460, MCF-7 and RXF-393 were used to evaluate cytotoxicity through the sulforodamine B assay as well the evaluation of oxidative damage through the thiobarbituric acid reactive species assay.**Results:** Our study has shown that *E. laevigatum* crude extract and chloroform, ethyl acetate and butanol fractions are not cytotoxic in the concentrations used (up to 100 µg/mL), but the coumarin scopoletin isolated from the aerial parts of *E. laevigatum* presented a cytotoxic effect against NCI-H460 and RXF-393 cells (IC₅₀ value of 19.1 and 23.3 µg/mL, respectively). Scopoletin did not show any oxidative effect.**Conclusion:** The coumarin scopoletin can be found in *E. laevigatum* and this compound induces cytotoxicity in NCI-H460 and RXF-393 cell lines. Moreover, it is suggested that the cytotoxic effect of scopoletin is not related to oxidative damage.8
9
10 **Keywords:** *Eupatorium*, Antiproliferative, Coumarin, Oxidative damage11
12 **1. INTRODUCTION**13
14
15 Plants, fungus, insects, marine organisms and bacteria are important sources of biologically
16 active substances. In economic terms, biodiversity usually transcends the boundaries of conventional
17 industries, because it is a valuable source of biological data and very useful chemicals to discover
18 innovative drugs [1]. Until now, a significant portion of cytotoxic agents used in treatments of human
19 tumors is derived from natural products. The most successful examples are vinca alkaloids,
20 anthacyclines, taxoids and camptothecin derivatives [2].21
22
23
24 The *Eupatorium laevigatum* species of the genus *Eupatorium*, belonging to the Asteraceae family
[3] is characterized by being a perennial shrub, 3-9 feet high, native throughout the tropical and
subtropical America, from Mexico to the Northern Argentina [4]. This species is related to an economic
and social potential because of its therapeutic use related to various diseases [5,6].25
26
27
28
29 In South America (Argentina, Chile, Ecuador and Peru) *Eupatorium* species are commonly used
as anti-inflammatory [3], antiseptic and anti-rheumatic [7,8,9,]. In Brazil, *E. laevigatum* is traditionally used
to treat colds and ulcers. In the state of Rio Grande do Sul, southern Brazil, its popular use is related to
potent effects as an abortifacient, laxative, regulating the menstrual cycle, from disease of poor
prognosis, as well as colds and coughs [10].

30 Given the popular use of *E. laevigatum* related to its toxic effects, the purpose of this study was,
31 using the technique of bio-driven fractionation, to characterize the active fractions, isolate its major
32 constituents, and also to evaluate the cytotoxicity and oxidative damage against four types of human
33 tumor cells: HT-29 (colon carcinoma), MCF-7 (breast carcinoma), NCI-H460 (non-small cell lung cancer),
34 and RXF-393 (renal carcinoma).

35 **2. MATERIAL AND METHODS**

36 **2.1 Plant material**

37 The aerial parts of *Eupatorium laevigatum* (Asteraceae) were collected in the state of Rio Grande
38 do Sul, Brazil. Herbarium specimens were prepared for identification and registration of plant material in
39 the herbarium of the Botany Department of ULBRA by Professor Sergio A. L. Bordignon (HEREULBRA-
40 3061). The material immediately after collection was selected and dried in an airy atmosphere, under
41 direct light and then grounded in a knife mill.

42 **2.2 Preparation of plant extracts and fractions**

43 The air-dried and powdered aerial parts of *Eupatorium laevigatum* were first exhaustively
44 extracted with methanol (1:10; plant/solvent) in a Soxhlet apparatus (5 x 48 h). The crude methanolic
45 extract was evaporated to dryness in vacuum. Using the same method, a new amount *Eupatorium*
46 *laevigatum* was subsequently extracted with chloroform, ethyl acetate and butanol. After, all the fractions
47 were evaporated to dryness in vacuum at 50° C.

48

49 **2.3 Phytochemical analysis**

50 The plant material was submitted to qualitative phytochemical screening to identify the main
51 classes of active constituents. The phytochemical composition of *Eupatorium laevigatum* was determined
52 according to the method described previously [11]. These reactions consist of colorimetric methods for
53 the qualitative detection of flavonoids, tannins, anthraquinones, alkaloids, saponins, coumarins and
54 cardiac glycosides.

55 **2.4 Analysis and isolation of compounds**

56 The fractions obtained from the different samples were submitted to thin layer chromatography
57 using several eluent systems. Thus, it was possible to detect in the ethyl acetate fraction a major
58 compound. This product was designated as P1 and isolated by preparative chromatography on silica gel,
59 using as eluent chloroform-methanol (95/5; v/v). Subsequently, this product was isolated by preparative
60 chromatography on silica gel and submitted for analysis by nuclear magnetic resonance carbon
61 (RMN^{13}C) and hydrogen (RMN^1H).

62 **2.5 Cell culture and maintenance**

63 HT-29 human colon adenocarcinoma, NCI-H460 human non-small cell lung carcinoma, RXF-393
64 human renal cancer cell, MCF-7 human breast cancer were obtained from American Type Culture
65 Collection (Rockville, MD, USA). Cells were maintained in RPMI-1640 medium containing 10% (v/v) fetal
66 calf serum and 2% (w/v) L-glutamine, at 37° C in a humidified atmosphere with 5% CO_2 . Only the
67 exponentially growing cell cultures with viability > 95% (confirmed by trypan blue exclusion) were used for
68 experiments.

69 **2.6 Cytotoxic analysis**

72 Cells were seeded in microtiter plates consisting of 96 wells and stabilized for 24 hours. After they
73 were treated for 72 hours with serial concentrations ranging from 0 to 100 mg/mL of crude extract,
74 chloroform, ethyl acetate and butanol fractions or scopoletin. Cellular responses were determined using
75 the sulforodamine B (SRB) assay, involving fixing with trichloroacetic acid, staining with SRB and a
76 colorimetric evaluation at a wavelength of 540 nm [12]. Absorbance values were used to determine the
77 potential for cell growth inhibition by the IC₅₀ values (the minimum concentration required to inhibit 50% of
78 cell growth). The antineoplastic agent etoposide was used as a positive control.

79 **2.7 Evaluation of oxidative damage**

80 The NCI-H460 human non-small cell lung carcinoma (more sensitive to treatment with scopoletin)
81 was evaluated for the induction of oxidative damage by lipid peroxidation [13]. For this purpose, cells
82 were treated with the IC₅₀ dose of scopoletin (19.1 ± 2.4 µg/mL) for 72 hours. This experiment was
83 performed in triplicate. After the treatment, cells were washed with PBS (0.1 M, pH 7.4), scraped from
84 culture flasks in cold PBS and homogenized. The homogenates were immediately centrifuged (15,000 x
85 g, 30 min, 4°C) and the supernatants used for the evaluation of lipid peroxidation and protein
86 concentration determined by the Bradford method [14]. Oxidative damage by lipid peroxidation was
87 estimated by the formation of thiobarbituric acid reactive species (TBARS), using as a standard, a
88 solution of TMP (1,1,3,3-tetramethoxypropane). Briefly, each sample was added with trichloroacetic acid
89 (TCA) and 15% thiobarbituric acid (TBA) 0.67%. The mixture was stirred, heated to 100°C for 30 min and
90 cooled at room temperature. It was, then, centrifuged (3000 x g, 10 min) and the top fraction was
91 quantified on a spectrophotometer at a wavelength of 532 nm. The concentration of TBARS obtained was
92 expressed in nmol/mg of protein.

93 **2.8 Statistical analyses**

94 For the statistical analysis, paired Student's t-test was used. *p* < 0.05 was considered to be
95 statistically significant. All analysis were performed with GraphPad Instat (version 3.05; GraphPad
96 Software Inc.; San Diego, CA, USA)

97

98 **3. RESULTS**

99

100 **3.1 Phytochemistry Analysis**

101 Phytochemical analysis of aerial parts of *Eupatorium laevigatum* detected the presence of
102 flavonoids, saponins and coumarins. Anthraquinones, tannins, alkaloids, cardiotonic glycosides, however,
103 have not been found. Conducting the assay allowed us to determine the content of total flavonoids to be
104 2.74 g/dL of total phenolics and to be 5.52 g/dL of pyrogallol.

105

106 **3.2 Structure Elucidation of *Eupatorium laevigatum* Major Compound**

107 From the analysis by thin layer chromatography of the fractions obtained it was possible to detect
108 in the ethyl acetate fraction a major compound. Subsequently, this product was isolated by preparative
109 chromatography on silica gel and submitted for analysis by nuclear magnetic resonance carbon
110 (RMN¹³C) and hydrogen (RMN¹H). The isolated compound was identified as a coumarin. Based on the
111 signals present in the spectra obtained from RMN¹³C and RMN¹H (Table 1) and data from the literature
112 [15] it is possible to identify the isolated compound (P1) as coumarin scopoletin.

113 **Table 1: Spectral data of RMN¹H e RMN¹³C of P1 and scopoletin.**

Nº of carbon atoms in the molecule	RMN ¹ H		RMN ¹³ C	
	P1	Scopoletin*	P1	Scopoletin*
2	-	-	161.0	161.5
3	6.2	6.3	112.9	113.4
4	7.4	7.6	142.8	143.3
5	6.8	6.9	106.9	107.4
6	-	-	143.5	144.0
7	-	-	150.3	150.2
7-OH	6.2	6.2	-	-
8	6.9	6.9	102.7	103.2
9	-	-	149.8	150.2
10	-	-	111.0	111.5
CH ₃ O	3.8	3.9	56.1	56.4

*Chemical data of the scopoletin (Vasconcelos et al., 1998) [17].

114

115 3.3 Cytotoxicity

116 The cytotoxic effects of the crude extract and the fraction from *E. laevigatum* was evaluated in
 117 four cancer cell lines (HT-29, NCI-H460, MCF-7, and RXF-393). The crude extract and the fractions did
 118 not demonstrate cytotoxicity in the cell lines tested (Table 2).

119

120 **Table 2: Cytotoxicity of the crude extract, fractions of *E. laevigatum* and scopoletin (IC₅₀ – µg/mL –
 121 average of three triplicates ± standard deviation).**

122

Extract/Fraction	Cell lines			
	NCI-H-460	HT-29	MCF-7	RXF-393
Crude extract	Inactive	Inactive	Inactive	Inactive
Fraction ethyl acetate	Inactive	Inactive	Inactive	Inactive
Fraction butanolic	Inactive	Inactive	Inactive	97.6 ± 12.1
Scopoletin	19.1 ± 2.4	Inactive	Inactive	23.3 ± 1.5
Etoposide	0.3 ± 0.02	1.2 ± 0.9	3.4 ± 1.0	13.8 ± 2.7

123 Nevertheless, the effect of isolated coumarin scopoletin varied among the cell lines tested (Table
 124 2). NCI-H460, was the most sensitive cell line (IC₅₀ value of 19.1 µg/mL), whereas, RXF-393
 125 demonstrated an IC₅₀ value of 23.3 µg/mL. These IC₅₀ values can be compared to the chemotherapeutic
 126 agent etoposide (Table 2).

127 3.4 Evaluation of the Oxidative Damage

128 The NCI-H460 human non-small cell lung carcinoma (more sensitive to treatment with scopoletin)
 129 was evaluated for the induction of oxidative damage by lipid peroxidation. TBARS assay did not show an
 130 increase in lipid peroxidation when compared to the control medium samples obtained from cells treated
 131 with IC₅₀ (19.1 ± 2.4 µg/mL) of scopoletin (Figure 1). In cell samples, it was obtained values for the lipid
 132 peroxidation of TBARS of 2.5 nmol/mg of protein in the untreated control and TBARS of 3.2 nmol/mg of
 133 protein in treated cells. However, this difference was not statistically significant (Figure 1).

134

135

136

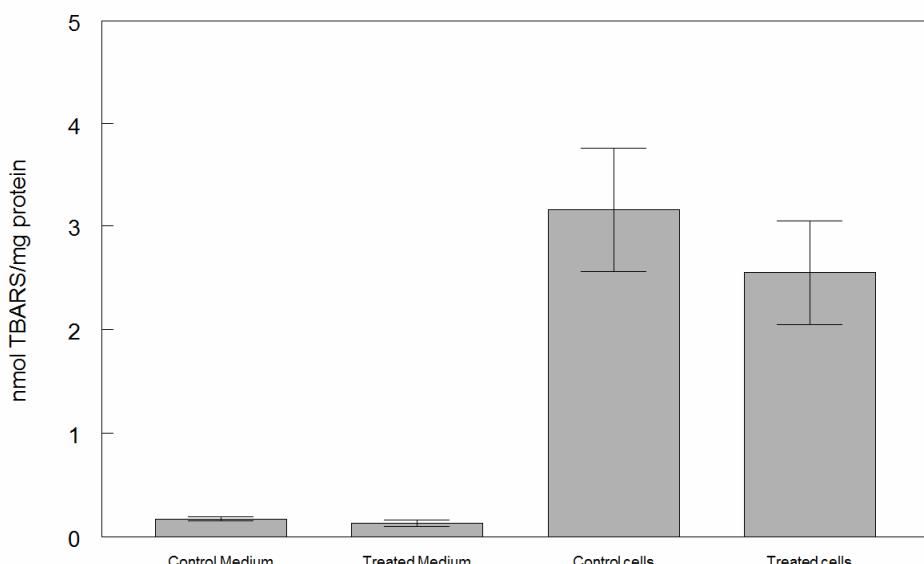


Figure 1: Average values of substances that react to thiobarbituric acid (TBARS) in the non-small cells lung carcinoma cellular lineage treated with H-460 scopoletin for 72 h. The results are expressed as average \pm standard deviation (n = 9).

4. DISCUSSION

It is well established that plants are a useful source of clinically relevant antitumor compounds [1,2]. Coumarin scopoletin is a pharmacologically active agent, which has been isolated from several plant species such as *Erycibe obtusifolia*, *Aster tataricus*, *Foeniculum vulgare*, *Artemisia capillaris*, among others [16,17,18] and have shown cytotoxic effect on tumor lymphocytes [19], in the lymphocytic leukemia P-388 cell line [20], capability of inhibiting the proliferation of cancer cells, apoptosis induction in cases of benign prostatic hyperplasia, and the ability to produce these effects in human cancer cell lines [21,22]. Therefore, we evaluated the antitumor activity and oxidative damage of scopoletin obtained of *E. laevigatum* against four types of human cancer cell lines. To our knowledge this is the first time that scopoletin was identified in *E. laevigatum*.

The antiproliferative activity of the crude extract, fractions of *E. laevigatum* and scopoletin was evaluated in this study in four tumor cell lines, HT-29, NCI-H460, MCF-7, and RXF-393. The crude extract and fractions showed no cytotoxic activity. This can occur because the crude extract and its fractions present a small concentration of coumarin scopoletin, which is probably less than the amount needed to induce cytotoxicity. Others species belonging to the genus *Eupatorium* that also presents scopoletin [23,24], might, however, present this compound in a concentration high enough to induce cytotoxicity. As for coumarin scopoletin, the antineoplastic agent etoposide, showed different patterns of cytotoxicity on the cell lines tested. The comparison of the IC₅₀ values demonstrated that the NCI-H-460 cells showed the highest sensitivity to scopoletin, when compared to the other cell lines. The cytotoxic activity observed in this study is consistent with a previous study, which reports that scopoletin showed different sensitivities in different tumor cell lines [21].

Coumarins have been described for several activities including anticancer, antioxidant, anti-inflammatory, analgesic and anticoagulant [25]. Recently this secondary metabolite has been reported to inhibit cell proliferation interfering with the function of microtubules, inhibiting the activity of metalloproteinases, blocking cell cycle, interfering with cell signaling and inducing oxidative damage [26].

176 Other studies shows that scopoletin may have antineoplastic effect by inducing apoptosis, such as the
177 work performed by Liu et al. (2001), which showed that scopoletin inhibits the proliferation of PC3
178 prostate cancer cell line by inducing apoptosis.

179 Lipid peroxidation is an evidence of injury caused by free radicals in biological systems [27,28].
180 The level of lipid peroxidation may be estimated by determination of TBARS. In this regard, we evaluated
181 the oxidative damage caused by scopoletin on NCI-H-460 cells (more sensitive), both in the culture
182 medium and cells, and compared to their respective untreated controls. Our data suggest that the
183 cytotoxic effect of scopoletin is not associated with oxidative damage. It has shown that at lower doses,
184 the scopoletin can even act as antioxidant [29]. In recent studies, the antioxidant properties were found
185 for some compounds of this chemical class of coumarins [30,31,32]. In the study conducted by Lin et al.
186 (2008) the results suggest that the number of hydroxyl groups in the ring structure of coumarins is
187 correlated with the effects of removal of reactive oxygen species.

188 The study performed by Tyagi et al. (2005) showed that the amino group is an effective substitute
189 for the hydroxyl group to produce antioxidant and a dramatic inhibition of lipid peroxidation. It is
190 demonstrated that orthodihydroxy and orthohydroxy-amino coumarins have higher antioxidant activity.
191 When evaluating the ability of these coumarins protective against oxidative damage in a simple model
192 membrane Morabito et al. (2010) describe 4-methylcoumarins can be considered as potential candidates
193 for therapeutics for pathological conditions characterized by excessive production of free radicals.

194
195 **5. CONCLUSION**
196

197 In summary, the results of the current study detected the presence of scopoletin in *E. laevigatum*
198 and that this compound induces cytotoxicity in NCI-H460 and RXF-393 cell lines. Although the findings of
199 this study cannot provide a mechanistic explanation for this phenomenon, it is suggested that the
200 cytotoxic effect of scopoletin is no related to oxidative damage. Further studies are needed to better
201 understand the role that coumarin scopoletin plays as an anticancer drug.

202
203 **REFERENCES**
204

- 205 1. da Rocha AB, Lopes RM, Schwartsmann G. Natural products in anticancer therapy. *Curr. Opin. Pharmacol.* 2001;1:364-369.
- 206
- 207 2. Mans DRA, da Rocha AB, Schwartsmann G. Anti-cancer drug discovery and development in Brazil: Targeted plant collection as a rational strategy to acquire candidate anticancer compounds. *The Oncologist.* 2000;5:185-198.
- 208
- 209
- 210 3. Schmidt JG, Schilling EE. Phylogeny and biogeography of *Eupatorium* (Asteraceae: Eupatorieae) based on nuclear ITS sequence data. *Am. J. Bot.* 2000;87:716-726.
- 211
- 212 4. Paulo Filho W, Ribeiro JE, Pinto DS. Safety and efficacy of *Eupatorium laevigatum* paste as therapy for buccal aphthae: randomized, double-blind comparison with triamcinolone 0.1% orabase. *Adv. Ther.* 2000;6:272-281.
- 213
- 214
- 215 5. Monks NR, Ferraz A, Bordignon SAL, Machado KR, Lima MFS, da Rocha AB, Schwartsmann G. In vitro Cytotoxicity of Extracts from Brazilian Asteraceae. *Pharm. Biol.* 2002;40:494-500.
- 216
- 217 6. Schossler P, Schneider GL, Wunsch D, Soares GLG, Zini CA. Volatile compounds of *Baccharis punctulata*, *Baccharis dracunculifolia* and *Eupatorium laevigatum* obtained using solid phase microextraction and hydrodistillation. *J. Braz. Chem. Soc.* 2009;20:277-287.
- 218
- 219

220 7. Urzua A, Caroli M, Vasquez L, Mendoza L, Wilkens M, Tojo E. Antimicrobial study of the resinous
221 exudate and of diterpenoids isolated from *Eupatorium salvia* (Asteraceae). *J. Ethnopharmacol.*
222 1998;62:251-254.

223 8. El-Seedi HR, Ohara T, Sata N, Nishiyama S. Antimicrobial diterpenoids from *Eupatorium glutinosum*
224 (Asteraceae). *J. Ethnopharmacol.* 2002;81:293-296.

225 9. Miño J, Muschietti L, Ferraro G, Martino V, Acevedo C. Antinociceptive activity of *Eupatorium*
226 *buniifolium* aqueous extract. *Fitoterapia.* 2005;76:100-103.

227 10. Schmidt C, Fronza M, Goetttert M, Geller F, Luik S, Flores EM, et al. Biological studies on Brazilian
228 plants used in wound healing. *J. Ethnopharmacol.* 2009;122:523-532.

230 11. Harborne JB. *Phytochemical Methods. A Guide to Modern Techniques of Plant Analysis.* Chapman
231 and Hall, London, 1984.

232 12. Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, et al. New colorimetric cytotoxicity assay for
233 anticancer-drug screening. *J. Natl. Cancer Inst.* 1990;82:1107-1112.

235 13. Esterbauer H, Cheeseman KH. Determination of aldehydic lipid peroxidation products:
236 malonaldehyde and 4-hydroxynonenal. *Methods Enzymol.* 1990;186:407-421.

238 14. Bradford MM. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein
239 Utilizing the Principle of Protein-Dye Binding. *Ann. Biochem.* 1976;72:248-254

240 15. Vasconcelos JMJ, Silva MAS, Cavaleiro JAS. Chromones and flavanones from *Artemisia campestris*
241 Subsp. *Maritima*. *Phytochemistry.* 1998;49:1421-1424.

243 16. Ding Z, Dai Y, Wang Z. Hypouricemic action of scopoletin arising from xanthine oxidase nhibition and
244 uricosuric activity. *Planta Med.* 2005;71:183-185.

246 17. Jung HA, Park JJ, Islam MN, Jin SE, Min BS, Lee JH, et al. Inhibitory activity of coumarins from
247 *Artemisia capillaris* against advanced glycation endproduct formation. *Arch. Pharm. Res.* 2012;35:1021-
248 1035.

249 18. Cai X, Yang J, Zhou J, Lu W, Hu C, et al. Synthesis and biological evaluation of scopoletin
250 derivatives. *Bioorg. Med. Chem.* 2013;21:84-92.

252 19. Manuele MG, Ferraro G, Barreiro Arcos ML, López P, Cremaschi G, et al. Comparative
253 immunomodulatory effect of scopoletin on tumoral and normal lymphocytes. *Life Sci.* 2006;79:2043-2048.

255 20. Cassady JM, Ojima N, Chang C, McLaughlin JL. An investigation of the antitumor activity of
257 *Micromelum integrerrimum* (Rutaceae). *J. Nat. Prod.* 1979;42:274-278.

258 21. Liu XL, Zhang L, Fu XL, Chen K, Qian BC. Effect of scopoletin on PC3 proliferation and apoptosis.
259 *Acta Pharmacol. Sin.* 2001;22:929-933.

261 22. Khuda-Bukhsh AR, Bhattacharya SS, Paul S, Boujedaini N. Polymeric nanoparticle encapsulation of a
262 naturally occurring plant scopoletin and its effects on human melanoma cell A375. *J. Chin. Integ. Med.*
263 2010;8:853-862.

265 23. Muschietti L, Gorzalczany S, Ferraro G, Acevedo C, Martino V. Phenolic Compounds with Anti-
267 Inflammatory Activity from *Eupatorium buniifolium*. *Planta Med.* 2001;67:743-744.

268 24. Zhang ML, Wu M, Zhang JJ, Irwin D, Gu YC, Shi QW. Chemical constituents of plants from the genus
269 *Eupatorium*. *Chem. Biodivers.* 2008;5:40-55.

271
272 25. Prachayasittikul S, Worachartcheewan A, Lawung R, Ruchirawat S, Prachayasittikul V. Bioactive
273 metabolites from *Spilanthes acmella* Murr. *Molecules*. 2009;14:850-867.
274
275 26. Wu L, Wang X, Xu W, Farzaneh F, Xu R. The structure and pharmacological functions of coumarins
276 and their derivatives. *Curr. Med. Chem.* 2009;16:4236-4260.
277
278 27. de Zwart LL, Meerman JH, Commandeur JN, Vermeulen NP. Biomarkers of free radical damage
279 applications in experimental animals and in humans. *Free Radic. Biol. Med.* 1999;26:202-226.
280
281 28. Höhn A, Jung T, Grune T. Pathophysiological importance of aggregated damaged proteins. *Free
282 Radic. Biol. Med.* 2014;71:70-89
283
284 29. Witaicenis A, Seito LN, da Silveira Chagas A, de Almeida Jr LD, Luchini AC, Rodrigues-Orsi P, et al.
285 Antioxidant and intestinal anti-inflammatory effects of plant-derived coumarin derivatives. *Phytomedicine*.
286 2014;21:240-246.
287
288 30. Tyagi YK, Kumar A, Raj HG, Vohra P, Gupta G, Kumari R, et al. Synthesis of novel amino and acetyl-
289 amino-4-methylcoumarins and evaluation of their antioxidant activity. *Eur. J. Med. Chem.* 2005;40:413-
290 420.
291
292 31. Lin HC, Tsai SH, Chen CS, Chang YC, Lee CM, Lai ZY, et al. Structure-activity relationship of
293 coumarin derivatives on xanthine oxidase-inhibiting and free radical-scavenging activities. *Biochem.
294 Pharmacol.* 2008;75:1416-1425.
295
296
297
298
299
300
301
302
303