1	Original Research Article
2	Medication errors and Root Cause <mark>s</mark> Analysis: emerging views and practices in King Saud
3	Medical City, Riyadh, Saudi Arabia
Л	Running Title-
-	Kuming Hite.
5	Medication Errors and Root Cause Analysis

6 Abstract

Background: Medication errors (MEs) are associated with significant morbidity and mortality, 7 and huge cost worldwide. Medication errors are multifactorial and present in different forms with 8 variable severity. Many tools are developed to analyze MEs for knowing the main etiological 9 10 factor and preventing their occurrence. **Objective:** This mini-review narratively describes the 11 emerging views and practices concerning MEs and root cause analysis (RCA) in King Saud Medical City (KSMC) supported by relevant international literature. Methods: Electronic 12 13 searches of PubMed and Google Scholar using keywords were made to identify relevant articles 14 published in English literature of the past 10 years. For illustrative purpose, three case scenarios of MEs with step-wise process of RCA were presented in this research. Results: A number of 15 programs, orientation sessions, policies and procedures, ME reporting system, guidelines and 16 17 action plan were developed to identify and prevent MEs, and RCA of MEs was the most important assessment tool to recognize the main causes underlying MEs in KSMC. Conclusion: 18 19 Several programs, developed and implemented in KSMC over the past few years match with international evidence-based data, and RCA is an effective tool to detect, analyze and prevent 20 21 MEs in this medical city. This mini-review calls for further research on MEs and root cause 22 analysis in other hospitals of Saudi Arabia.

Keywords: Medication errors, root cause analysis, prevention, medication error reporting
system.

25 Introduction

Medication errors (MEs) are an important cause of significant morbidity and mortality and financial burden on public health around the world. MEs are multifactorial, present in different forms and severity, and are observed in all age groups of people. The etiologies of MEs include unsafe management of medications, wrongly written prescriptions and dispensing of

incorrect medications, non-existence of medication safety and quality assurance programs, and 30 lack of health information technology (HIT) integration into the healthcare system [1-5]. Most 31 32 medication errors are preventable and electronic prescribing system [EPS], a powerful tool to prevent MEs, is in place in KSMC since 2006 [6-8]. Surprisingly, recent reports suggest that 33 electronic reporting systems may create some barriers against reporting medication errors 34 especially access problems to system and time constraints. This study suggested some steps 35 36 including training and education of concerned professionals, technology acceptance, feedback reports, supportive organizational structure, blame-free culture, and appropriate policies in place 37 in healthcare organizations [9]. Notably, handwritten prescription errors are prevented by 50% 38 using EPS [10]. 39

Medication errors are reported more in an integrated blame free culture compared to 40 blame supported culture, though the reporting rate between two cultures is marginal 41 [9]. Therefore, blame free culture needs to be fostered in the healthcare settings because early 42 reporting of medical incidents including medication error is associated with patient safety, 43 learning of causes and their remediation and prevention [11]. In fact, MEs and adverse events 44 45 using multimodal approach [12] can be reduced considerably leading to cost reduction and substantial decrease in morbidity, mortality, and disabilities around the world [11]. Multiple 46 47 factors lead to the occurrence of MEs [12, 13]. Healthcare providers need to know prohibited abbreviations and should never use them in their practice as these are frequently linked with 48 49 MEs, and avoidance of their use often lead to enhanced patient safety and quality of care [6,7,11,13]. Similarly, prescribers need to handle look-alike and sound-alike (LASA) and high 50 51 alert medications (HAM) drugs carefully, because they are the major cause of MEs [6-8,11-13]. Medication management system needs to be error free including processes and behaviours that 52 53 determine the way that medications are safely used or handled by patients [6-8,12,13]. Safe medication management, a critical component of healthcare system guarantees patient safety and 54 quality of life [14]. Notably, appropriate medication prescribing, dispensing, administration, and 55 proper use of prescribed medications by patients contribute substantially to an environment 56 57 associated with low incidence of MEs [14]. Furthermore, consideration of patients' perceptions 58 about safe medication management while planning annual action plan of medication safe use contribute considerably to enhance patient safety issues, quality of care and enhanced 59 60 satisfaction both of healthcare providers and users[11,14]. Medication errors are the major

concern of health professionals, patient and public and need to be prevented in healthcareorganizations using powerful tools such as root cause analysis.

The root causes analysis is one of the elements of risk management strategies [15]. Prior to 63 RCA, multidisciplinary team considers what criteria should be used to find out factors causing 64 ME (or performance variance) and the impact of their differential (or performance) reporting by 65 professionals. In addition, the team looks for reasons underlying variable reporting of MEs and 66 67 recommends remedial measures. In KSMC, the team forwards the recommendations to the hospital manager who decides about the best action to be taken against defaulters of ME 68 reporting and ME makers. RCA has several critical steps [Figure 1] and is an in-depth process 69 for identifying the most basic factor (s) underlying a variation in performance, such as detection 70 71 and reporting of medication errors, and the focus is on systems and processes but not on 72 individuals [15-18]. In other words, RCT reflects a process of determining the causes of active 73 and latent errors [19] that led to a nonconformance, event or undesirable condition. RCT identifies corrective actions to prevent recurrence of events which, when solved restores the 74 75 status quo or establishes a desired effect. The Joint Commission (JC) Root Cause Analysis and Action Plan tool has 24 analysis questions that facilitate RCA in finding the main cause of the 76 77 problem [20]. Furthermore, RCA is a retrospective, structured method and involves thorough review of the problem/error in order to identify and verify the underlying prime cause of ME or 78 79 symptoms [19, 21]. Thus, identified root causes are controlled by risk management team by specifying workable corrective measures, and allow for the generation of charts, 80 recommendations and their implementation. RCA is carried out in case of significant or 81 consequential events, occurrence of repetitive human errors and system failures during a specific 82 83 process, and low performance contrary to desired quality standards. RCA prevents problems from recurring, reduces possible injury to personnel, increases competitiveness and efficiency, 84 85 promotes customers safety and outcome, improves communication about patient care, team work and stability of profession, and reduces cost [22]. According to some researchers, a thorough 86 understanding of RCA is a key component in promoting safety within the healthcare setting, and 87 risk reduction strategies make RCA more meaningful and efficient that impact safety of 88 89 healthcare systems [23]. Several RCA-related tools useful in healthcare settings are identified and those are "five whys" approach, cause-and-effect diagrams (Ishikawa), causal tree mapping, 90 affinity diagrams, interrelationship diagram, and Pareto charts and other tools [16, 18]. 91

Root cause is a harmful factor that results in the production of problem/adverse outcome 94 in business organizations including health industry. Root cause is usually used to describe the 95 depth in the causal chain where an intervention could reasonably be implemented to improve 96 performance or prevent an undesirable outcome [24]. These adverse events/outcomes may result 97 98 from medication errors or near misses/close calls or medicinal incidents. Causes or causal factors determine a condition or event that results in an effect reflecting cause-effect relationship [25].In 99 RCA, one should always see beyond obvious [Figure 2] and the initial response is usually the 100 symptom, not the root cause of the problem [26]. To fix a problem, it must be clearly defined and 101 102 corrected by using RCA tools which are very useful and productive. Doggett (2004) compared three tools, the cause-and-effect diagram (CED), the interrelationship diagram (ID), and the 103 104 current reality tree (CRT) to find out the differences but could not find the best tool among them [24]. Most times root cause turns out to be much more than expected such as: process or program 105 106 failure, system or organization failure, poorly written work instructions including illegible prescriptions, and lack of training and others [27,28]. In an editorial, Vincent (2004) criticized 107 RCA based on its notion of single root cause and instead used the term system analysis [28]. 108

109

92

93

111 Figure 2 Root Cause Analysis – obvious and beyond obvious causes [26].

112 The rationale of this minireview is to familiarize health professionals with medication 113 errors, related programs, policies, procedures, action plan, and RCT. The RCA is routinely 114 115 conducted in King Saud Medical City; however, a discussion with local pharmacists revealed knowledge gap about RCT, which is not used in most other general hospitals in Saudi Arabia. 116 117 The significance of this study is that MEs are a major cause of morbidity and mortality, burden on public health, and are associated with a variety of adverse consequences around the world. 118 MEs are caused by multiple factors and RCT is a powerful tool to detect the prime cause of ME. 119 Based on identified factors in individual MEs, preventive strategies and action plan are 120 developed for implementation. The overall purpose is to prevent the occurrence of new and 121 recurrence of old MEs in healthcare settings. Other healthcare organizations may adopt the 122 process of conducting RCA in order to identify the root causes of ME and, accordingly, develop 123 preventive strategies and recommendations for implementation that could lead to reduction in 124 125 MEs [10, 14, 20]. The objective of this review narratively describes the medication errors and 126 steps of root causes analysis in light of emerging views and practices in KSMC, and supported 127 by international data. 128 **Methods and Results** 129 130 Search Method 131 The relevant literature published in English since the year 2007 was searched in PubMed

and Google Scholar databases. The Boolean operators and keywords used in multiple electronic

searches were medication errors in hospitals "AND" root cause analysis OR RCA tools, "AND"

167 Setting

King Saud Medical City is a tertiary care and referral hospital in Riyadh, Saudi Arabia. 168 169 This medical city has 1400 bed capacity and comprises of general, pediatric and maternity hospitals. It also has intensive care unit (ICU), artificial kidney unit (AKU), human 170 171 immunodeficiency virus (HIV) centre and dental clinics. The campaign for safe medication management and patient safety in KSMC was formally started in January 2012. Pharmaceutical 172 173 care staff carried out SWOT (strength, weaknesses, opportunities, and threats) [29] analysis of 174 pharmacy services in KSMC for suggesting some reforms. This exercise was designed to help 175 healthcare professionals to identify potential risks to medication safety, prevent medication errors, regularly conduct root cause analysis, ensure patient safety, and improving overall quality 176 of healthcare. Medication Safety Coordinators [MSCs] especially pharmacists from Pharmacy 177 Department and Drug Poisoning and Information Center (DPIC) used relevant materials and 178 179 tools to pinpoint specific system weaknesses in terms of lack of awareness campaigns about electronic prescribing system, barriers against error reporting, medication errors makers and 180 interceptors, and the role of health information technology (HIT) in the medication-use processes 181 in order to provide a starting platform for organizational improvements. The newly formed team 182 started initiatives to improve medication safety by collaborative approach [30] based on 183 multidisciplinary stakeholders including physicians, nurses, pharmacists, managers, and 184 healthcare users. Baseline assessment of pharmacy practices helped to safely manage medication 185 at KSMC [14].Notably, medication therapy management service model 2.0 have five core 186 187 elements in version 1.0 including medication therapy review, a personal medication record 188 [PMR], a medication-related action plan [MAP], intervention and referral, and documentation and follow-up with redesigning of the PMR and MAP to be more patient friendly, effective, and 189 efficient for patients to use in medication self-management [30]. The important thing about this 190 191 model is that it is equally applicable to all hospital pharmacies.

The pharmacy team, drug information and poisoning center workers and administrators developed a step-wise process for reporting trend of MEs and near misses (NMs) in KSMC [6-8,14]. The salient feature of this system includes voluntary reporting of MEs to medication safety unit (MSU) in a blame free culture that consequently leads to safe management of medications 196 [Figure 3]. For this purpose, a special medication error/near misses (ME/NMs) reporting 197 template was developed and available in all departments of KSMC. In addition, medication 198 safety unit regularly collect data related to MEs and NMs from pharmacy and inpatient care units [6,7,14]. The data are analyzed monthly with a focus on knowing the epidemiological pattern, 199 200 and stages and settings involved in MEs or NMs for further improving MEs scenario. Following root cause analysis of each medication error, an action plan is developed and executed to prevent 201 202 the occurrence of MEs, and NMs or close calls (CCs) across multiple stages of drug dispensing [14]. In addition, the concerned professionals collaboratively develop educational posters to 203 demonstrate the trend in MEs and NMs. This is to share important drug information among all 204 healthcare providers for further improving medication management, reduction in MEs and 205 enhancing patient safety. Every reported ME is investigated by a multidisciplinary team that uses 206 RCA for identifying main cause of ME. Furthermore, for dissemination purpose research team 207 from KSMC published a number of papers on MEs and NMs or Close Calls in open access 208 209 international journals [6-8, 10, 14].

210 Conceptual Framework of MEs

211 Medication error reporting informs about epidemiological trend of MEs and helps in tailoring safe medication management plan. The development of conceptual framework for 212 213 identifying risk factors for medication error should consider the following; error producing 214 conditions; likelihood of error occurring; environment including setting and processes of care; 215 medication(s) involved; stage of medication process; patient characteristic(s); nature (seriousness) and type of error; contributing factors; mitigating and ameliorating factors; patient 216 217 outcome; and pharmacovigilance system [31, 32,33]. However, any or all characteristics of a 218 drug product can increase or decrease risk, and should be considered in risk assessment: generic name, brand name; dose, strength(s), dose form, packaging, labeling; route, frequency, 219 instructions; storage requirements; indications and patient's demographic; care environment and 220 others. Medication errors occur in predictable ways to allow risk assessment, risk reduction and 221 error prevention. Notably, the error prevention strategies include but are not limited to patient 222 education, prior authorization, electronic technology including bar coding, electronic prescription 223 224 record, e-prescribing, electronic drug utilization reviews, automated medication dispensing, and internal quality control procedures [34]. Similarly, drug product interacts with healthcare 225

226 environment and system processes in identifiable but often surprising and predictable fashion. These interactions are determined by specific characteristics of the product and specific 227 228 healthcare processes. Medication error reporting system is an important tool in a healthcare setting. Similarly, at the national level, healthcare providers, patients and public can report 229 medication errors to the pharmacovigilance system. ME reporting has the following steps; 1) 230 OVAR Flow chart [Figure 4], 2) reporting and documentation, 3) analysis of MEs, 4) Root 231 232 Cause analysis and 5) action plan. Root Cause analysis is an important tool of medication safety unit (MSU) in King Saud Medical City. 233

234

235

236

Figure 4 ME Reporting and RCA Flow Chart

237 Clinical Case Scenarios of MEs

One patient diagnosed with ischemic toe was prescribed Nexium (esomeprazole) 40 mg orally
 but transcribed and entered wrongly as Nexavar (sorafenib) 200 mg which is a chemotherapy
 drug. This was because of un-upgraded EP system, and medications are entered in formulary

alphabetically. It was sound-a-like error that happened last week. RCA is in progress withdocumentation and action plan.

243 2. One patient came to ER with bronchial asthma and physician entered wrongly prendopril 5 mg
244 tablet five times/day (antihypertensive drug) instead of prednisolone 20 mg tablet once. RCA
245 was carried out and documented and action plan was considered.

3. A female patient with acute coronary syndrome (ACS) in surgery department was on multiple beta blockers: Metoprolol 50 mg tab; Carvidelol 25 mg tab; and Bisoprolol 10 mg tab as found by pharmacist on ward round, attributed to non-implementation of related medication reconciliation (MR) form, the policy and procedure. RCA was done, cardiac consultant discontinued first two drugs with continuation of Carvidelol and action plan included regular orientation of this policy to concerned healthcare workers.

252

253 MSU and Orientation Programs (OPs)

254 Orientation programs address many pharmacy practice topics including MEs and RCAin KSMC. These programs have been conducted monthly by professionals of MSU for new 255 employees in collaboration with academic affairs since January 2012. MSU shares with DPIC in 256 giving lectures on awareness day. There are weekly sessions for pharmacy employees and first 257 258 line staff. Orientation sessions both for the HAM and LASA drugs policy for all medical sections are done by the members of MSU. Topics addressed by MSU during OP include but not limited 259 to unit dose system, prescribing privilege, verbal & telephone order, stat - Prn - routine orders, 260 261 administration time, prohibited abbreviations, high alert medications, drug recall, adverse drug reactions (ADRs), home brought medications, medication dispensing stage, and medication 262 reconciliation (MR) policy & procedures. Orientation about MSU to all newly employed staff is 263 264 a priority and an integral part of safe medication management, patient safety and quality of care. 265 Professionals of MSU, DPIC and quality assurance unit carry out quality rounds of all medical sections regularly to ensure full implementation of pharmaceutical policy & procedures. Notably, 266 the awareness of all staff of risks and medication errors through orientation programs in 267 medication system and other related perspectives such as system processes and medication 268

dispensing stages, and their ability to identify MEs and take appropriate action is vital inimproving patient safety and reducing harms [14,35].

271

272 MSU and Harm Reduction Policies

High alert and LASA medications (Table 1 & 2) have an increased risk of causing 273 274 medication errors and significant harm to a patient when prescribed, dispensed, prepared and administered wrongly. These medications are reported to cause most MEs, up to 15% to 29% 275 276 [36, 37, 38]. Notably, one of the most common causes of MEs is a failure to accurately identify LASA drug names [39].Institute for Safe Medication Practices maintains a list of confused drug 277 278 names and also suggested strategies to deal with such medications, which are using both the brand and generic names on prescriptions and labels, including the purpose of the medication on 279 the prescriptions, configuring computer selection screens to prevent look-alike names appearing 280 consecutively, and changing the appearance of look-alike product to draw the attention to their 281 dissimilarities [40]. LASA names are most commonly confused at drug storage, pharmacy, care 282 areas, automatic dispensing cabinets (ADC), floor stock, and packaging and labelling 283 [14]. Therefore, the policy followed in KSMC is that pharmacy personnel and nursing staff must 284 identify the potential HAM and outline appropriate steps to administer these medications for 285 preventing serious medication errors [14]. HAMs related MEs jeopardize the life of healthcare 286 287 consumers, and hence, healthcare providers should handle HAM properly. Notably, "PatientSafety First" is connected to five evidence-based interventions including reducing harm 288 from high risk medicines [41], and, hence, safe medication management strategies need to be in 289 place in high risk healthcare settings including intensive care units and emergency departments. 290

291 Table 1 Names of common LASA medications

LASA Medications	
Losec(Omeporazole)	Lasix (Frusemide)
Reminyl(Galantamine)	Amaryl(Glimepiride)
Diamox (Acetazolamide)	Zimox(Amoxicillin)
Lamisil (Terbeniafen)	Lamictal(Lamotrigine)
Taxol (Paclitaxel)	Taxotere (Docetaxel)
Celebrex(Celecoxib)	Celexa(citalopram)
Four most common LASA drugs involved in	n MEs
Sarafem® (fluoxetine hydrochloride)	Serophene®(clomiphene citrate tablets,

	USP)
Lantus® (insulin glargine [rDNA origin]	Lente® Iletin® II
inj.)	(insulin zinc suspension, USP purified pork)
Serzone® (nefazodone HCl)	Seroquel®(quetiapine fumarate)
Depakote® (Divalproex Sodium)	DEPAKOTE® ER(Divalproex Sodium)

Table 2 Names of common HAM 293

Common High Alert Medications	
Potassium chloride (20 meg/vial)	Concentrated Electrolytes
Potassium phosphate (3 mol/ml)	
Sodium chloride (>0.9%)	
DOPamine(200mg/vial)	Inotropic sympathomimetic
DOBUTamine (200mcg)	
EPInephrine [(1:1000) (1:10000)]	
NORepinephrine (2mg/ml)	
Heparin, Warfarin & low mol. wt heparin	Anticoagulants
(ENOxaparin, DALtaparin, TINzaparin)	
Atracurium (100mg/ml), Suxamethonium,	Neuromuscular blocking agents
Rocuronium, Propafol, and Pancuronium	

294

295

296 **Root Cause Analysis Done in KSMC**

297

In KSMC, root cause analysis is carried out in all cases with serious to fatal injuries 298 299 caused by prescribed medications and this technical step is supported by other studies [15-19]. 300 RCA provides multiple leads: knowledge gain; help in knowing main cause underlying fault or 301 problem or event or error; finding the best solution for not repeating the same mistake or 302 occurrence of new errors; about health system failure; trends in serious MEs, and guiding health 303 authorities and committees for taking legal actions against those who make medication errors [15-21]. 304

Purpose of RCA 305

The purpose of RCA is to analyze and record index 2 and 3 medication errors, which 306 307 reached the patient and required monitoring. So this step can be taken to prevent re-occurrence of such errors that would eventually lead to a medical incident. Such medication errors usually 308 happen at prescribing, dispensing and administration stage, and choice of dose [42,43].A 309

balanced prescribing can mitigate MEs to a greater extent [42,43]. The several steps of RCA done
in KSMC are briefly described.

312 **1. Incident Report Investigation**

313 **1.0 Incident Description**

Three incidents were reported in KSMC at different times in year 2015. Two of them were index 3 errors, one was index 2 error, and dispensing and administration stages were involved. These are briefly described below:

Case 1: This patient, a case of malaria was on Artesunate. The prescribed dose to be given was 120mg twice daily but the patient received only 2 Amps of Artesunate but not the same as recommended by physician. The pharmacist who received the order prepared and dispensed only 2 amps. Also the nurse who rechecked the trolley did not ask the pharmacist about the missing dose. This compromised the patient because she is suffering from Malaria and was febrile till next day to receive the missing dose of Artesunate.

Case 2: A female patient with psychogenic seizures was admitted to Medical Section 4 floor 323 324 right wing. She was on Levetracetam 500mg tab, Carbamazepine 400mg tab., Topiramate 100mg tab., Quetiapine 300mg tab., Esomeprazole 20mg tab and Cholecalciferol 5000 unit/cap. The 325 326 treating physician prescribed all these medications. When the prescription sent to pharmacy for 327 dispense, the medications entered as usual by pharmacist as per policy then prepared by assistant pharmacist. During the preparation process, Quetiapine 300mg prepared wrongly as Quinine 328 329 Sulfate 300mg. It was dispensed without double check by assistant pharmacist and the nurse. This event happened in the afternoon duty when one pharmacist and one assistant pharmacist 330 331 were there for the entire shift. The wrong medicine dispensed to the patient by the Nurse on the 332 day the patient was discharged. Two days later, the patient came to ER of KSMC, with complains of vomiting, diarrhea, screaming and overwhelming anxiety. The patient was treated 333 and referred for followup at Al-Amal Mental Health Complex, because she followed up 334 335 psychiatric medications there.

Case 3: The third incident is about a patient for whom the physician recommended potassium chloride 40meq in 500cc of normal saline/6hrs. Instead the nurse gave potassium chloride 10ml, one vial IV push at once without dilution. The treating team directly reported the error. This procedure compromised the patient who developed cardiac arrest, urgent ECG was done together with cardiopulmonary resuscitation (CPR) and intravenous fluids were given. The patient was successfully revived; however this incident entailed a series of other investigations and procedures. Patient was kept in the hospital for close monitoring for 24 hours.

343 **1.1 Person Directly Involved**

The following persons were involved in MEs; 1) physician who prescribed the order and enter it, 2) pharmacist who assigned and prepared the trolley, 3) nurse who checked the trolley, [Malaria drug] 4) patient, 5) pharmacist and assistant pharmacist, 6) nurse who picked up medications [Quetiapine medication], 7) two collaborating nurses, physician, and CPR team [Potassium chloride HAM medication].

349 **1.2 Root Cause Analysis Team**

RCA multidisciplinary team comprises of the following; 1) medication safety unit officer, pharmacist who involved in the incident, 3) assistant pharmacist, 4) nurse, and 5) quality representative. The team remained same in both types of errors, i.e., index 2 and index 3.

353 **1.3 Sources of Evidence**

The sources of information were as follows; 1) physician original order, 2) entered orderprint out-MediSystem, 3) patient medication chart, 4) OVAR form, 5) medication error form, 6)related policies and procedure and additional discharge summary (discharged patients in index 3 error).

358 **2. Type of Investigations Regularly Done**

359 **2.0 Method Used During the Investigation**

The following methods are used while conducting enquiry; 1) contributing factors diagram, 2) cause and effect diagram, and 3) affinity diagram.

362 2.1 Special Tools and Techniques Used in Root Cause Analysis

363 1) Brainstorming- it helps generate radical solutions to medication errors, and encourages
 364 participating members, six to nine in numbers, to commit to solutions, because they have
 365 provided input and played a role in developing them. The best approach combines individual and

366 group brainstorming. During the process, committee members ensure no criticism of ideas, and 367 creativity is encouraged, 2) 5 whys - this technique does not involve data segmentation, 368 hypothesis testing, and regression or other advanced statistical tools. The 5 whys approach can 369 be completed without a data collection plan. Its benefits include help identify the root cause of a 370 problem, determine the relationship between different root causes of a problem, and easy to 371 complete without statistical analysis, 3) Sequence Analysis [Table 3], 4) Flow Chart [Figure 5]

372 Table 3 Sequence Analysis

Date & time	Event or Activity	Variation	What should have happened	Recommendation
9/2/2015 7:45am	Physician prescribed Artesunate 120mg/twice	As per policy		
	Entered by physician using computer.	As per policy		
	Ordered sent to pharmacy by the Nurse who also to collect the Medication	As per policy		
	Pharmacist dispensed 2 amps. Instead of 4 amps.	Pharmacist should compare the original order with the entered one.	As per policy independent double check should be done by the pharmacist, assistant pharmacist and the nurse who collected the medicine.	Recommendation to adhere to policy and procedure regarding dispensing process. For pharmacist and nurses.
4/2/2015 5:15pm	Physician prescribed the medicine (Quetiapine 300mg tab)	As per policy		
	Entered by physician via computer.	As per policy		
	Order sent to pharmacy by Nurse to collect the medicines.	As per policy		
	Pharmacist entered the order via computer.	As per policy		
	Assistant pharmacist prepared the order.	As per policy		
	Assistant pharmacist dispensed the prepared order.	Pharmacist did not make double check with the nurse who picked up medications.		
28.01.215 9.20pm	Physician ordered KCl 40 meq as infusion and given wrongly as IV push.		Physicians should have written complete order with infusion time.	Physicians should write complete order with infusion timewith entry in the computer system
	Order sent to pharmacy to be entered and dispensed.	As per policy	As per policy	As per policy
	The order dispensed by pharmacist as per policy of HAM	As per policy KCl vials not to be kept in the unit. Labeled as HAM	As per policy	The KCl order should be prepared as IV by the IV unit pharmacy.

		when it is dispensed to the Nurse.		
Nurse gave the wrong dose wi	e medicine as thout dilution	Given the KCl without dilution	Dilution for the KCl 40meq as per the order	Nurse should coordinate with other nurse to double check HAM for preventing errors regardless of availability of barcode or smart infusion pump

helps understand complex processes, bring together perspectives across units or departments, 374 identify breakdowns and redundancies, highlight possible interventions, and shape further 375 questioning during the root cause analysis, 5) Common Factors Check List - includes 376 dependent/outcome variable related to medication error occurred during any dispensing stage, 377 378 independent/exposure variables - socio-demographic characteristics of the ME maker including age, educational level, year of working experience, idea of workload, shift of medication 379 administration, i.e., night time or working time, route of medication administration, time of drug 380 administration, interruption of the involved professional during medication administration such 381 as like talking phone, other staffs, attendants, and patients and age of the patient [44]., 6) Cause 382 383 and Effect Diagram/Fishbone Diagram/Ishikawa -the fishbone diagram helps explore all potential or real causes that result in a single defect or failure or ME, and once all inputs are 384 established on the fishbone, the 5 Whys technique could be used to drill down to the root causes. 385 One drawback to the fishbone diagram is that this tool cannot tell researcher how important or 386 387 common a particular issue is, and problem ranking matrix solve this weakness of fishbone diagram, 7) Contributing Factors Diagram – these are the modified versions of cause and effect 388 diagrams and take into account several factors related to environment (high noise level), 389 390 equipment and system (unavailability of automated dispensing cabinets), leadership (financial 391 constraints), communication (transcription error), people (staff working overtime) and policy and procedures (double check not done by pharmacists before dispensing) and others [45]., and 8) 392 393 RCA Report Form Template.

Another RCA tool not used in KSMC is a Pareto chart/histogram used for quantifying the frequency of common causes of the problem such as MEs. By quantifying the frequency, the RCA team focuses on the biggest issues first. Pareto charts include specific categories along the x-axis. Histograms are like Pareto charts, but instead use continuous variables along the x-axis. 398 Histogram and Pareto analysis provides a useful representation of data that allows team members to prioritize the causes of medication errors. This analysis also helps generate alternative 399 400 approaches and provides a tool for showing progress. Notably, RCA is not without problems. Peerally and colleagues (2016) have discussed many pros and cons of RCA including the 401 questionable quality of many RCAs, their tendency to produce poor risk controls, poorly 402 functioning feedback loops, and failure to aggregate learning across incidents and confusion 403 about blame and responsibility [46]. The researchers recommended implementation and 404 evaluation of risk 405

406

407

408

Figure 5: Flow Chart of MEs

controls to eliminate or minimize identified hazards need to become a more visible feature of the 409 RCA process, and to maximize learning, lessons learnt from incidents, descriptions of 410 implemented risk controls and their effectiveness need to be shared within and across 411 organizations [46]. We will further describe briefly how brainstorming is done, common factors 412 checklist is prepared, contributing factors are identified, cause-effect exercise is completed, 413 414 training and education is conducted, implementations recommended, and harm reduction plan is prepared annually in KSMC. Overall, our steps of conducting RCA are supported by other 415 416 researchers [44-46].

417 **Brainstorming**

The open frank discussion among RCA committee members identifies most probable factors that contribute to the error, and recommended the following steps: 1) Implementation of and compliance with administrative rules, regulation, policies and procedures [14], 2) electronic prescribing system should be updated and all health care providers especially physicians, nurses and pharmacists should be trained continuingly as how to operate medication prescribing system [6-8], 3) Implementation of independent double check of ordered medication by pharmacist and nurse at the time of collecting medications form the pharmacy [6,7].

425 **Common Factors Checklist**

426 This list is for identifying critical causes and contributory factors related to professionals, system and medication dispensing processes. Professionals should adhere to the practice of 427 independent double check, and if they do not ME is likely to occur. It is mandatory for the 428 pharmacist to re-check all doses ordered by the physician. Pharmacist and nurse should co-429 signed Check list form. Patient medication chart should be followed by the endorsed nurse (for 430 inpatients). Concerning process and system, lack of implementation of double check and update 431 of electronic prescribing and dispensing of medications tend to result in MEs. Regarding policies 432 and procedure, all health care providers especially who are closely in contact with the patient 433 should double check physicians' orders and medications [6-8, 14]. 434

435 **Contributing Factors**

Ideally, common factors checklist include most contributing factors related to professionals involved in making MEs, process and system failures, patients, policies and procedures, medications, and leadership [44-46]. In tandem with international data, contributing factors to MEs are regularly identified during the process of RCA in KSMC, and these factors concern staff, patients, process and system, education and training [ET], and policy and procedures. However, more focus is on system and processes rather than individual, and blame free culture is strongly promoted in KSMC.

443 Fish bone Diagram

It is a tool to represent the relationship between an effect (problem) and its potential causes by category type and is carried out when a root cause needs to be determined. It helps ensure that a balanced list of ideas have been generated during brainstorming. Fish bone diagram
[Figure 6] determines the real cause of the problem versus a symptom and refines brainstormed
ideas into more detailed causes. Cautionary note about cause and effect analysis is that it cannot
get past existing knowledge - must have either observed or considered that the cause produced
the effect in the past. So this is a retrospective exercise.

451

452

453

Figure 6 Fish Bone Diagram equally applies to both index 2 and 3 errors.

454 Education and Training [ET]

455 All concerned staffs should have regular training in safe medication management especially about LASA and HAM in order to prevent medication errors, because these are the 456 457 medications involved in most of MEs [47,], a comprehensive lists of LASA and high alert medications is available here [38,40]. It was observed that majority of the staff especially 458 459 pharmacist and assistant pharmacist are not present during the orientation sessions conducted by MSU. This was attributed to work load and busy schedule. Similar findings were reported in a 460 461 review, and accordingly workload issues impact nurses' ability to attend continuing professional development with multiple adverse consequences including competence to practice and job 462

463 satisfaction [48]. Organizational leadership plays an important role in supporting attendance at 464 continuing professional development as an investment for the future. We suggested that the 465 pharmacy administrators should arrange their release for attending orientation programs on RCA, 466 MEs, and their prevention. In addition, training of patients in safe management of medications, 467 i.e., how to use prescribed medication at home contributes to the reduction in MEs across 468 healthcare settings [49].

469 **Results**

470

472

471 Recommendation by RCA Committee

The concerned staff must adherence fully to the policy of independent double check [50] and formulary selection in order to prevent medication errors attributed mostly to LASA and HAM [47]. Adherence to dug formularies tends to improve medication safety and efficiency [51]. Motivate the concerned staffs to attend the orientation sessions conducted by MSU to learn more about independent double check and policy and procedures.

478 **Risk Reduction Plan**

The risk reduction plan is prepared by Medication Safety Unit on 4-2-2015 [Table 4]. This plan mainly focusses on education and training, independent check by two trained individuals, adherence to hospital drug formulary (HDF), regular update of pharmacy policy and procedures, preparation of HAM carefully, update of electronic prescribing system, electronic reporting of MEs and pharmacy leaders need to give time space to their staff for attending orientation education and training programs in safe medication management.

485 **Table 4 Risk reduction plan**

Risk Reduction Strategies	Measures of effectiveness	Targeted staff	Responsible persons	Date of implementation
Training orientation as how to handle independent double check for preventing MEs	Regular presentation of the orientation program	Physicians, nurses and pharmacists	Medication Safety Unit staff	Currently
Orientation concerning implementation of independent double check	Do	Do	Do	Done on Jan. 2015
Recommendation for drug formulary selection to decrease MEs related to LASA and HAM.	Decrease in HAM & LASA MEs	Do	Pharmacy & Therapeutic Committee members	Done on Feb. 2015
Medication Error policy and procedure updating	Increase in ME reporting	Do	Medication Safety Unit staff	Done on March 2015

Preparation of potassium chloride doses	Ongoing	Nurses and pharmacists	IV room pharmacists	Ongoing
Regular system upgrading for reporting of MEs.	Increase in ME reporting	Professionals	IT staff	Done
Absenteeism (non-attendance)	Under recording	Legal Affairs persons	Administrative persons	Ongoing process

487 Discussion

This mini-review briefly highlighted the salient features of medication errors, presented 488 clinical scenarios of medication errors and incidents, training programs and steps of conducting 489 root cause analysis in King Saud Medical City, and these perspectives were supplemented by 490 international data. Despite most MEs are preventable [6-8], they cause a significant morbidity 491 492 and mortality, huge cost and disabilities around the world [11, 12]. As majority of MEs are preventable, healthcare providers using preventive strategies including patient education [49] 493 need to make concerted efforts to minimize their occurrence and recurrence to an acceptable, 494 minimum rate, which is about less than 7% [14]. MSU contribute largely to safe medication 495 496 management which is associated with enhanced patient safety and good quality healthcare [14]. Medication safety unit follow and implement recommendations of RCA multidisciplinary team 497 498 concerning MEs, and also update strategic medication action plan every year in KSMC [14]. Medication safety unit with the help of interdisciplinary team also develop medication safety 499 500 program yearly which relate to the prevention of harm from HAM, LASA and abbreviation 501 related MEs and ADE, control and monitor of concentrated electrolytes, develop guidelines or 502 implementation toolkits for individual program including reporting of MEs [template available upon request from DSAD], develop mechanisms for clarification and variation of orders, and 503 504 develop educational and training programs for concerned staff. Overall, medication safety unit supported by state of the art of EPS with clinical decision support system and electronic 505 medical/health record system streamlines safe medication management using its programs [8, 10, 506 14]. Furthermore, annual action plan with implementation of its recommendations across all 507 508 settings in KSMC also enhances patients' safety, minimize the costs, patient outcomes, and help deliver better quality of care - noble goals of healthcare system across the world. 509 510 Interprofessional collaboration and cooperation is a key and so crucial to achieve these goals including specifically educational and training of healthcare professionals [52]. Another policy is 511 that electronic prescribing system needs to be updated regularly in order to reduce medication 512

errors. It is reported that about 50 % of hand-written prescription errors [like 14%] especially
illegible hand writing are reduced to [7%] by electronic prescribing [10].

Root cause analysis of index 2 and 3 medication errors as done in KSMC and supported 515 516 by international data helps healthcare providers to identify the causes and also help prevent MEs and ultimately assist them in reducing various MEs related adverse consequences including 517 morbidity, mortality, cost burden on public health, and indirect costs in healthcare settings [15-518 519 21,24]. Every medication error needs to be reported to pharmacovigilance system at national level or internally to medication safety unit in hospitals. This will necessitate healthcare provider 520 change attitudes towards reporting MEs and, hence, help in their prevention [49]. Similarly, 521 every ME needs evaluation and RCA for identifying their underlying primary causes including 522 523 institutional, system and process factors [15-19, 49, 53]. Correction of contributing causes of MEs [44-46] prevents its recurrence as well as occurrence of new MEs [49]. Overall, RCA gives 524 525 several important leads to healthcare professionals and administrators for the prevention of medication errors in healthcare system [15-21]. 526

527 Some of them need special focus; patient education, the collection of error data and analysis in the healthcare delivery process [49] as done regularly in KSMC [6-8], creation of 528 blame free culture [14], defaulters of error reporting require proper, disciplinary action, and 529 healthcare system and processes need regular update. All these preventive strategies will lead to 530 patient safety, public confidence building in healthcare organizations, reduction in MEs, good 531 outcomes, and delivery of good quality care to patient population [49]. In the words of Albert 532 Einstein, "It's impossible to solve significant problems using the same level of knowledge that 533 created them!". Therefore, we suggest that continuous education and training of healthcare 534 535 professionals concerning medication errors and root cause analysis need to be in place in all hospitals of Saudi Arabia and other Gulf countries. 536

In conclusion, medication errors are preventable, associated with significant morbidity and mortality, burden on public health, and caused by system processes, human factors and medications. Every medication error needs comprehensive analysis using several tools of root cause analysis in order to identify their root causes and develop preventive strategies, medication-related plan and educational programs for the prevention of medication errors in

- 542 healthcare organizations. This narrative mini-review calls for adoption of root cause analysis by
- other public and private hospitals in Saudi Arabia.

544 545	Consent
545	Verbal consents were given by six cases included in this work
540	verbal consents were given by six cases included in this work.
547	
548	Ethical Approval
549	
550	This mini review does not involve human participation and, hence, no risk of any injury.
551	

552 Abbreviation List

ADRs – Adverse Drug reactions, AKU- Artificial Kidney Unit, ADC - Automatic Dispensing 553 Cabinet, CPR-Cardiopulmonary resuscitation, CC - Close calls, ET - Education & Training, 554 EPS - Electronic Prescribing System, HIT- health Information Technology, *HAM - High Alert 555 Medications, HIV- Human Immunodeficiency virus, HDP - Hospital Drug Formulary, ICU -556 557 Intensive care unit, *ISMP - Institute of Safe Medication Practice, *JC - Joint Commission, KSMC - King Saud Medical City, *LASA - Look alike and Sound alike, MAP - Medication-558 related Action Plan, MEs - Medication errors, MR - Medication Reconciliation, MSU -559 Medication Safety Unit, MSC - Medication Safety Committee, MSCs - Medication Safety 560 Coordinators, MUS - Medication Use System, NMs - Near misses, PMR - Personal Medication 561 562 Record, P&TC - Pharmacy and Therapeutic Committee, RCA - Root Cause Analysis,

563 **Reference**

564	1.	Aljadhey H, Mahmoud MA, Hassali MA, Alrasheedy A, Alahmad A, Saleem F et al.
565		Challenges to and the future of medication safety in Saudi Arabia: A qualitative study.
566		Saudi Pharm J. 2014; 22: 326–32.
567	2.	Al-Dhawailie AA. Inpatient prescribing errors and pharmacist intervention at a teaching
568		hospital in Saudi Arabia. Saudi Pharm J. 2011; 19: 193–6.
569	3.	Al-Jeraisy MI, Alanazi MQ, Abolfotouh MA. Medication prescribing errors in a pediatric
570		inpatient tertiary care setting in Saudi Arabia. BMC Res Notes. 2011; 4:294. doi:
571		10.1186/1756-0500-4-294.
572	4.	Alkhani S, Ahmed Y, Bin-Sabbar N, Almogirah H, Alturki A, Albanyan H et al. Current
573		practices for labeling medications in hospitals in Riyadh, Saudi Arabia. Saudi Pharm J.
574		2013: 21: 345–9.

575	5. Aljadhey H, Alhossan A, Alburikan K, Adam M, Murray MD, Bates DW. Medication
576	safety practices in hospitals: A national survey in Saudi Arabia. Saudi Pharm J. 2013;
577	21:159–64.
578	6. Al-Zaagi IA, Al-Dhwaihi KA, Al-Dossari DS, Salem SO, Qureshi NA. Analysis of
579	reported e-prescribing near misses in King Saud Medical City, Riyadh. Integrated Pharm
580	Res Pract. 2013:217–24.
581	7. Al-Dossari DS, Al-Zaagi IA, Al-Saud SD, Al-Bedah AM, Qureshi NA. A Comparative
582	Analysis of Electronic Prescribing Near Misses in King Saud Medical City, Riyadh,
583	Saudi Arabia. Brit J Pharm Res. 2014; 4(9):1088-104.
584	8. Qureshi NA, Al-Dossari DS, Al-Zaagi IA, Al-Bedah AM, Abdualli A, Koenig H.
585	Electronic Health records, electronic prescribing and medication errors: A systematic
586	review of literature, 2000-2014. Brit J Med Medical Res 2015; 5: 672-704.
587	9. Lederman R, Dreyfus S, Matchan J, Knott JC, Milton SK. Electronic error-reporting
588	systems: A case study into the impact on nurse reporting of medical errors. Nurs Outlook.
589	2013; 61(6), 417-426 e5.
590	10. Qureshi NA, Al-Bedah A, Koenig HG. Handwritten to Electronic prescribing: emerging
591	views and practices. Brit J Med Medical Res. 2014; 4: 4607-26.
592	11. Larizgoitia I, Bouesseau M-C, Kelley E. WHO Efforts to Promote Reporting of Adverse
593	Events and Global Learning. J Public Health Res. 2013; 2(3):e29. doi:10.4081/jphr.2013
594	.e29.
595	12. Kruer RM, Jarrell AS, Latif A. Reducing medication errors in critical care: a multimodal
596	approach. Clin Pharmacol. 2014; 6:117-26.
597	13. Alsulami Z, Conroy S, Choonara I. Medication errors in the Middle East countries: A
598	systematic review of the literature. Eur J Clin Pharmacol. 2013; 69: 995-1008.
599	14. Al-Zaagi IA, Al-Dossari DS, Salem SO, Qureshi NA. Medication Safety Unit Programs
600	in King Saud Medical City, 2012 – 2013: Safe Medication Management and Use with a
601	Focus on Patient Safety 2015. Brit J Med Medical Res. 2015; 8: 384-407.
602	15. Garcia-Hejl C, Chianéa D, Dedome E, Sanmartin N, Bugier S, Linard C et al.
603	Internal audit in medical laboratory: what means of control for an effective audit process?
604	Ann Biol Clin (Paris). 2013; 71 (5): 615-24.

605	16. Brook OR, Kruskal JB, Eisenberg RL, Larson DB. Root Cause Analysis: Learning from
606	Adverse Safety Events. Radiographics. 2015; 35(6): 1655-67.
607	17. Quraishi SA, Kimatian SJ, Murray WB, Sinz EH. High-Fidelity Simulation as an
608	Experiential Model for Teaching Root Cause Analysis. J Grad Med Educ. 2011; 3(4):
609	529-34.
610	18. Williams PM. Techniques for root cause analysis. Proceedings (Baylor University
611	Medical Center). 2001; 14(2): 154-57.
612	19. AHRQ Patient Safety Network. Available at https://psnet.ahrq.gov/primers/primer/10/
613	root-cause-analysis. Accessed on December 12, 2015.
614	20. The Joint Commission. Framework for conducting a root cause analysis and action plan.
615	http://www.jointcommission.org/Framework_for_Conducting_a_Root_Cause_Analysis_
616	and_Action_Plan/. Retrieved on October 8, 2015.
617	21. Hellebek A, Skjoet P. Aggregated review of route cause analyses related to medication.
618	Stud Health Technol Inform. 2010; 157: 15-7.
619	22. Braithwaite J, Westbrook MT, Mallock NA, Travaglia JF. Experiences of health
620	professionals who conducted root cause analyses after undergoing a safety improvement
621	programme. Qual Safe Health Care. 2006; 15(6): 393-99.
622	23. Boyer MM. Root cause analysis in perinatal care: health care professionals creating safer
623	health care systems. J Perinat Neonatal Nurs. 2001; 15(1): 40-54.
624	24. Doggett AM. A Statistical Comparison of Three Root Cause Analysis Tools. J Indust
625	Technol. 2004; 20(2): pp9. Available at: http://c.ymcdn.com/sites/www. atmae.org/
626	resource/resmgr/JIT/doggett010504.pdf. Retrieved on October 12, 2015.
627	25. Saferpak.com. Basic tools for process improvement. Available at: http://saferpak.com/
628	cause_ effect_articles/howto_cause_effect.pdf. Retrieved on November 17, 2015.
629	26. Chung KC, Kotsis SV. Complications in Surgery: Root Cause Analysis and Preventive
630	Measures. Plast Reconstr Surg. 2012; 129(6):1421-27.
631	27. Uberoi RS, Gupta U, Sibal A. Root Cause Analysis in Healthcare. Apollo Med. 2004; 1
632	(1): 60–63.
633	28. Vincent CA. Analysis of clinical incidents: a window on the system not a search for root
634	causes. Qual Saf Health Care. 2004; 13: 242-43.

635	29. Helms MM, Moore R, Ahmadi M. Information Technology (IT) and the Healthcare
636	Industry: A SWOT Analysis. Int J Healthc Inf Syst Inform. 2008; 3(1): 75-92.
637	30. American Pharmacists Association; National Association of Chain Drug Stores
638	Foundation. Medication therapy management in pharmacy practice: core elements of an
639	MTM service model (version 2.0). J Am Pharm Assoc. 2008; 48(3): 341-53.
640	31. World Health Organization. Reporting and learning systems for medication errors: the
641	role of pharmacovigilance centres. Available at: http://apps.who.int/iris/bitstream/10665/
642	137036/1/9789241507943_eng.pdf. Retrieved on July 25, 2016.
643	32. Solberg LI. Improving Medical Practice: A Conceptual Framework. Ann Fam Med
644	2007; 5(3): 251-56.
645	33. European Medicines Agency. Good practice guide on recording, coding, reporting and
646	assessment of medication errors. Available at :http://www.ema.europa.eu/ docs/en_GB/
647	document_library/Regulatory_and_procedural_guideline/2015/11/WC500196979.pdf.
648	Retrieved on June 20, 2016.
649	34. Academy of Managed Care Pharmacy. AMCP's Framework for Quality Drug Therapy.
650	Available at: http://www.fmcpnet.org/index.cfm?p=132D8447.Retrieved on June 20,
651	2016.
652	35. Coombes ID, Heel ACY, Stowasser DA, Reid CM, Henderson A, Mitchell CA.
653	Identification of medication errors by nurses during a simulated ward, medication safety
654	orientation program. J Pharm Pract Res. 2005; 35: 190-94.
655	36. Chadwick M. Look-alike sound-alike health product names. Health Canada Workshop,
656	2003, October 20.
657	37. The Joint Commission on Accreditation of Healthcare Organizations. The Joint
658	Commission Announces the 2007 National Patient Safety Goals and Requirements. Joint
659	Commission Perspective 2006; 26: 1-31.
660	38. The Institute of Safe Medical Practices. ISMP's List of High Alert Medications. 2012.
661	Available at: www.ismp.org/tools/highalertmedications.pdf. Retrieved on May 21.
662	39. Leape LL. Preventing adverse drug events. Am J Health Syst Pharm. 1995; 52: 379–82.
663	40. Institute for Safe Medication Practice. ISMP's List of Confused Drug Names. Available
664	at: http://www.ismp.org/Tools/confuseddrugnames.pdf. Retrieved on June 10, 2016.

665	41. Patient Safety First. Available at: http://www.institute.nhs.uk/safer_care/general/ patient_
666	safety_first.html. Retrieved on May 30, 2016.
667	42. Aronson JK. Medication errors: definitionsand classification. Brit J Clin Pharmacol.
668	2009; 67 (6): 599–604.
669	43. Aronson JK. Medication errors: what they are, how they happen, and how to avoid them.
670	Qual J Med. 2009; 102: 513–21.
671	44. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The
672	Strengthening the Reporting of Observational Studies in Epidemiology (STROBE)
673	Statement: guidelines for reporting observational studies. Bull World Health Organ.
674	2007; 85: 867–72.
675	45. Reason J. Beyond the organisational accident: the need for "error wisdom" on the
676	frontline. Qual Saf Health Care. 2004; 13(Suppl II): ii28-33.
677	46. Peerally MF, Carr S, Waring J, Dixon-Woods M. The problem with root cause analysis.
678	BMJ Qual Saf. 2016. pii: bmjqs-2016-005511.doi: 10.1136/bmjqs-2016-005511.
679	47. Ciociano N, Bagnasco L. Look alike/sound alike drugs: a literature review on causes and
680	solutions. Int J Clin Pharm. 2014; 36 (2): 233-42.
681	48. Coventry TH, Maslin-Prothero SE, Smith G. Organizational impact of nurse supply and
682	workload on nurses continuing professional development opportunities: an integrative
683	review. J Adv Nurs. 2015; 71(12): 2715–27.
684	49. Academy of Managed Care Pharmacy. The Academy of Managed Care Pharmacy's
685	Concepts in Managed Care Pharmacy. Academy of Managed Care Pharmacy Medication
686	errors.pdf. Retrieved on June 12, 2016.
687	50. White R, Cassano-Piché A, Fields A, Cheng R, Easty A. intravenous chemotherapy
688	preparation errors: Patient safety risks identified in a pan-Canadian exploratory study. J
689	Oncol Pharm Pract. 2014; 20(1): 40–46.
690	51. Helmons PJ, Coates CR, Kosterink JGW, Daniels CE. Decision support at the point of
691	prescribing increases formulary adherence. Available at: http://www.rug.nl/research/
692	portal/files/3668356/Helmons_thesis.pdf!null#page =78. Retrieved on July 17, 2016.
693	52. Bridges DR, Davidson RA, Odegard PS, Maki IV, Tomkowiak J. Interprofessional
694	collaboration: three best practice models of interprofessional education. Med Educ
695	Online. 2011; 16: 10.3402/meo.v16i0.6035. doi:10.3402/meo.v16i0.6035.

696	53. Clifford SP, Mick PB, Derhake BM. A Case of transfusion error in a trauma
697	patient with subsequent root cause analysis leading to institutional change. J Investig
698	Med High Impact Case Rep. 2016: 1–4. DOI: 10.1177/2324709616647746.
699	