

Original Research Article

Identification of Phenolic Compounds in *Hibiscus sabdariffa* Polyphenolic Rich Extract

(HPE) by Chromatography Techniques

ABSTRACT

6 The study was designed to determine the phenolic constituents of *Hibiscus sabdariffa*
7 polyphenolic rich extract (HPE), (a group of phenolic compounds occurring in the dried red
8 calyx of *Hibiscus sabdariffa*). While colorimetric analysis revealed that HPE contain high level
9 of total phenolic content (97.9 ± 1.31 mg/g in GAE/g dried weight) combination of results
10 obtained through several chromatographic analyses indicates that phenolic compounds such as
11 ferulic acid, chlorogenic acid, naringenin, rutin and quercetin may be present in HPE. These
12 phenolic compounds identified in HPE are known for possessing one pharmacological properties
13 or the other, therefore the presence of these antioxidants phenolic compounds in HPE along with
14 several other phenolics not identified in this study would explain the medicinal principle behind
15 the ethnomedical practices associated with *H. sabdariffa*.

17 **Key Words:** *Hibiscus sabdariffa*, Antioxidants, ethnomedical, phenolic compounds.

19 1. INTRODUCTION

20 There is compelling epidemiological evidence linking a greater consumption of diet rich in fruit
21 and vegetables with decrease risk of cancer and cardiovascular disease associated with oxidative
22 damage to biomolecules [1] [2]. These foods contain phytochemicals with inherent antioxidant
23 properties, such as Vitamin E, Vitamin C, Carotenoids and phenolic compounds [3] [4]. Phenolic

24 compounds are in particular presently gaining acceptance as responsible for the health benefits
25 offered by most fruit and vegetables [5]. Studies suggest that plant polyphenols such as the
26 flavonoids are potent antioxidant compounds both *in vitro* and *in vivo*. Their consumption has
27 been shown to help reduce the risk and prevent against cardiovascular diseases [6]. *H. sabdariffa*
28 is a rich source of phenolic compounds [7]. Numerous phenolic compounds such as quercetin,
29 luteolin, chlorogenic acid, protocatechuic acid, catechin, epigallocatechin,
30 epigallocatechingallate and caffeic acid have been identified in the plant extracts [8] [9]. In
31 addition, *H. sabdariffa* is particularly rich in anthocyanins which is **responsible for the deep red**
32 **colouration of the red variety.**

33

34 There is increasing need to know the phytochemical profiles of antioxidants in different plants,
35 however, conventional chromatographic techniques (i.e Paper Chromatography, Thin Layer
36 Chromatography and Column Chromatography) in general lack the sensitivity and resolution that
37 are often required for trace amount of antioxidant phytochemicals. Gas chromatography (GC)
38 meets these requirements, but its use is somewhat limited due to the non-volatility of many
39 antioxidants. High performance liquid chromatography (HPLC) is presently, perhaps the most
40 popular and reliable system among all chromatographic separation techniques for the separation
41 of antioxidant phytochemicals. Recently, a new hyphenated technique, liquid
42 chromatography/mass spectrometry (LC/MS) has proved to be a powerful and reliable analytical
43 approach for structural analysis of components in herbal extracts with high sensitivity and low
44 consumption of samples [10] [11] [12]. Although, LC/MS is very expensive and consequently
45 not widely used in routine laboratories, it is advantageous in that it provides high resolution and
46 rapid compound identification without the need to isolate individual compounds [13].

47 The aim of the study was to determine the chemical constituents of *Hibiscus sabdariffa*
48 polyphenolics rich extract (HPE) extracted from calyx of red variety of *H. sabdariffa*. Initial
49 study examined the total phenolic contents of HPE while subsequent studies examined the
50 phenolic nature of HPE using spectrophotometric assays, thin layer chromatography (TLC), high
51 pressure liquid chromatography (HPLC) and liquid chromatography – mass spectrophotometry
52 (LC-MS).

53

54 **1. MATERIALS AND METHODS**

55 **2.1. CHEMICALS**

56 All chemical used were of analytical grade. Special reagents were ABTS (2,2 -azino-bis-(3-
57 ethylbenzthiazoline 6-sulfonic acid), Folin - ciocalteu's Phenol reagent, Trolox (6-hydroxy - 2,
58 5, 7, 8, - tetramethyl-chroman -2-carboxylic acid) (C-stock -solution = 2.5mmol/L), Gallic acid
59 (C-stock-solution) = 0.568mmol/L), Catechin hydrate, Salicyclic acid; Ferulic acid; Potassium
60 Peroxodissulfate; Quercetin; p-Coumaric acid; Caffeic acid; Rutin hydrate; and all other
61 chemicals were purchased from Sigma -Aldrich Company Limited, Dorser, United Kingdom.

62

63 **2.2. Plant Material**

64 The calyx of *Hibiscus sabdariffa* (Malvaceae) were bought at a market in Nigeria. The
65 identification and authentication of the plant was done by Prof A.J. Ogunkunle at Department of
66 Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, where a
67 specimen was deposited in the herbarium. The dried red calyx were further dried at room
68 temperature and blended to a coarse powder.

69 **2.3. Preparation of *Hibiscus sabdariffa* Polyphenol Rich Extract (HPE)**

70 HPE was prepared according to the method of Lin *et al.* [9]. Briefly, 100 g of *Hibiscus*
71 *sabdariffa calyx* were extracted three times with 300 ml of methanol at 50 °C for 3 hours. The
72 samples were filtered after each extraction and the solvent was removed from the combined
73 extracts with a vacuum rotary evaporator. The residue was then dissolved in 500 ml of water (50
74 °C) and extracted with 200 ml hexane to remove some of the pigments (i.e. chlorophyll,
75 carotenoids). The aqueous phase was extracted three times with 180 ml ethyl acetate, and the
76 ethyl acetate was evaporated under reduced pressure. The residue was re-dissolved in 250 ml
77 water and was lyophilized to obtain approximately 1.5 g of HPE and stored at -20 °C before use.

78 **2.4. Determination of Total Phenolic Compounds in HPE**

79 The content of total phenolic compounds in HPE was determined by Folin–Ciocalteu method as
80 described by Miliauskas *et al.* [14]. Briefly, 1 ml aliquots of 0.024, 0.075, 0.0105 and 0.3 mg/ml
81 ethanolic gallic acid solutions were mixed with 5 ml Folin-ciocalteu reagent (diluted ten-fold)
82 and 4 ml (75 g/L) sodium carbonate. The absorption was read after 30 min at 20 °C at 765 nm
83 and the calibration curve was drawn. One ml of HPE (1 mg/ml) was mixed with the same
84 reagents as described above, and after 1 hour the absorption was measured for the determination
85 of plant phenolics. All determinations were performed in triplicate. Total content of phenolic
86 compounds in plant methanol extracts in gallic acid equivalents (GAE) was calculated by the
87 following formula:

88
$$C = c \cdot V/m'$$

89 Where C = total content of phenolic compounds, mg/g plant extract, in GAE; c = the
90 concentration of gallic acid established from the calibration curve, mg/ml; V = the volume of
91 extract, ml; m' = the weight of pure plant methanolic extract, in g.

92 **2.5. Thin Layer Chromatography (TLC) Analysis of HPE**

93 HPE and standard compounds were dissolved in methanol to a concentration of 1 mg/ml. Diluted
94 10 μ l of HPE and standards were loaded onto silica gel 60 F₂₅₄ TLC plates and left to dry. The
95 plates were run for ~1h in an ethylacetate : methanol : water (10:2:1, v/v/v) solvent system. The
96 plates were dried for 15 minutes at 115 °C, left to cool, and then visualized using UV light,
97 iodine vapour and ferric chloride spray reagent (2.7% w/v in 2 M HCl). In all instances, the
98 distance moved by the sample/standard was divided by the distance moved by the solvent front
99 to obtain the R_f Value.

100 **2.6. HPLC Analysis of HPE**

101 The HPLC method employed a 5 μ RP-18 column. *Hibiscus sabdariffa* polyphenol rich extract
102 (HPE) and various polyphenolic standards were filtered through a 0.45 μ m filter disc and 20 μ l
103 were injected onto the column. The chromatography was monitored at 280 nm. The mobile phase
104 contained two solvents (A, 0.1 % formic acid; B, 100 % methanol) run by bi-gradient method at
105 room temperature as follows: 5 % B to 5 % B for the first 10 minutes, 5 % B to 50 % B for the
106 next 20 minutes and maintained at 50 % B for final 20 minutes. The flow rate was 1 ml/minute.

107 **2.7. Trolox Equivalent Antioxidant Capacity with Potassium Persulfate**

108 The assay was performed essentially as described by Re *et al.* [15]. ABTS radical cation was
109 produced by reacting 7 mM ABTS stock solution with 2.45 mM potassium persulphate and
110 allowing the mixture to stand in the dark at room temperature for 12–24 hours before use. The
111 ABTS^{•+} solution was diluted with water and adjusted to an absorbance of 0.700 \pm 0.020 at 734
112 nm. For the photometric assay, 1 ml of the ABTS^{•+} solution and eluent of peaks obtained during
113 HPLC analysis of HPE were mixed for 45 seconds and measured immediately after 1 minute at

114 734 nm. The antioxidant activity of each peak was calculated by determining the decrease in
115 absorbance by using the following equation:

116 % antioxidant activity = $((A_{(ABTS\bullet+)} - A_{(\text{Extracts})}) / (A_{(ABTS\bullet+)}) \times 100$.

117 **2.8. LC-MS Analysis of HPE**

118 The analyses of polyphenol in HPE were carried out on a Waters Alliance 2695 HPLC system
119 (Waters, Milford, MA), Micromass (Manchester, U.K.) LCT mass spectrometer equipped with
120 Z-spray ESI source and MassLynx Software version 4.0 (Micromass, Manchester, U.K.). The
121 separation was performed using a symmetry shield RP 18 column (80 Å, 5 µ). The mobile phase
122 for the HPLC analysis of HPE consisted of two solvents (A, 0.1 % formic acid; B, 100 %
123 methanol) run by bi-gradient method at room temperature as follows: 5 % B to 5 % B for the
124 first 10 minutes, 5 % B to 50 % B for the next 20 minutes and maintained at 50 % B for the final
125 20 minutes. The flow rate was 1 ml/minute while the UV-vis spectra were detected at 280 nm.
126 The MS detector operated at capillary voltage 3500 V, extractor voltage 1 V, source temperature
127 100 °C, desolvation temperature 150 °C, cone gas flow (N₂) 17 L/h, desolvation gas flow (N₂) at
128 600 L/h and mass acquisition between 100 and 1500 Da. The identification of HPE constituents
129 was carried out by comparison of retention times, UV-vis, and MS spectra with standards
130 protocatechuic acid, catechin, caffeic acid, rutin and literature data.

131

132 **Statistical analysis**

133 Results are expressed as means \pm SEM. One way analysis of variance followed by Tukey's test
134 was used to analyze the results with $p < 0.05$ considered significant.

135

136 **3. RESULTS**

137 **3.1. The Phenolic Content of HPE**

138 The total amount of phenolic compounds present in HPE was found to be 97.9 ± 1.31 mg/g.

139

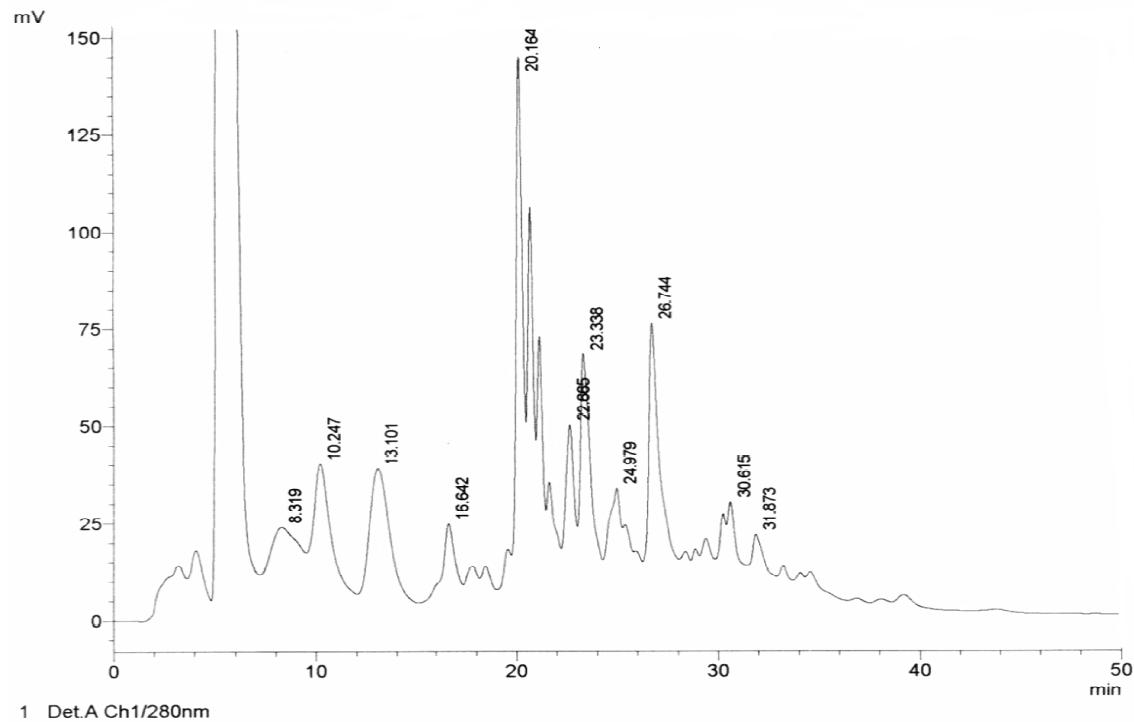
140 **3.2. Analysis of Phenolic Compounds in HPE by TLC**

141 HPE was well resolved and five bands were detected with ferric chloride and four well resolved
142 blue fluorescent bands detected with UV light (Table 1). The fluorescence bands obtained further
143 indicated that they were phenolic in nature. When iodine vapour was used to visualise the plates
144 twelve visible brown bands were observed (Table 1).

145

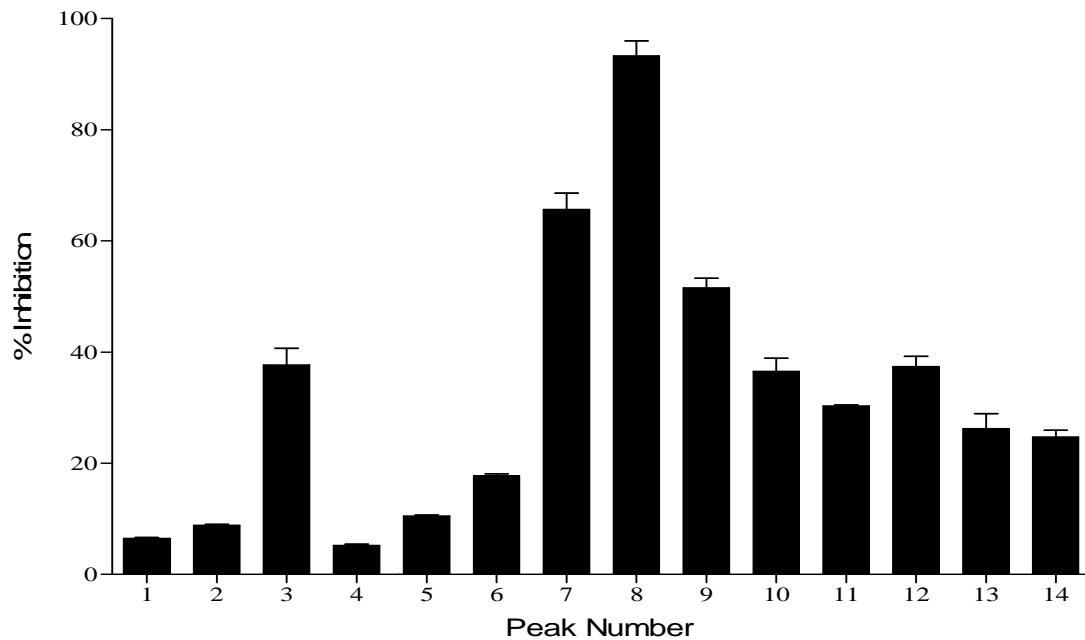
146 **Table 1.** The R_f values for standard phenolic compounds and HPE sample visualized with Ferric
147 Chloride, UV light and Iodine Vapour.

Phenolic standards	Ferric Chloride		UV Light		Iodine Vapour	
	Standards	HPE	Standards	HPE	Standards	HPE
Chlorogenic acid	0.13	0.13	0.12	0.13	0.13	0.13
Caffeic acid	0.67	0.65	0.68	0.67	0.66	0.67
Rutin	0.33	0.24	0.32	0.26	0.28	0.26
Epigallocatechingallate	0.58		0.55	0.58	0.56	0.58
Gallic acid	0.62	0.60	0.63		0.62	0.63
Salicyclic acid	0.42	0.37	0.42		0.45	0.44
Quercetin	0.76		0.75		0.75	0.73
Procatechuic acid	0.65		0.66		0.66	0.18
Ferulic acid	0.69		0.70		0.67	0.33
Coumaric acid	0.70		0.71		0.68	0.39
Catechin	0.71		0.72		0.69	0.47
Naringenin	0.84		0.80		0.81	0.53


148

149 **3.3. Analysis of phenolic compounds in HPE by HPLC.**

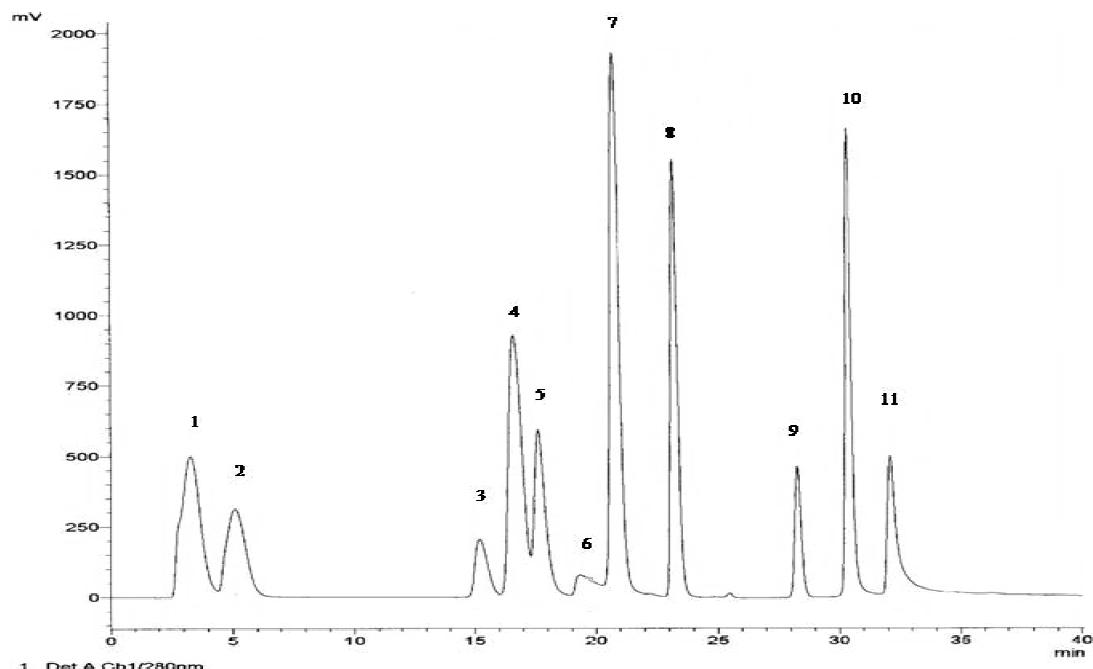
150 Fourteen main peaks were obtained when HPE was analysed with HPLC (Figure 1). The
151 fourteen peaks were grouped into three major fractions (Fraction 1 (peaks 1-6), fraction 2 (peaks


152 7-9) and fraction 3 (peaks 10-14) base on result obtained from the plot of antioxidant activity
153 against the peak number, for ease of measurement (Figure 2). When retention times of HPE
154 peaks were compared with the retention times of standard plant phenolic compounds: (1) Gallic
155 acid, 4.02 (2) Protocatechuic acid, 4.82 (3) Chlorogenic acid, 17.66 (4) Catechin hydrate, 18.28
156 (5) Caffeic acid, 19.31 (6) EGCG, 22.15 (7) *p*-Coumaric, 23.02 (8) Ferulic acid, 25.04 (9)
157 Naringenin, 29.65 (10) Rutin, 30.22 (11) Quercetin, 34.24; the result suggest possible presence
158 of Protocatechuic acid, *p*-Coumaric acid, Naringenin and Rutin in HPE (Figures 1 & 3).

159

161 **Figure 1.** A typical HPLC analysis of HPE diluted with methanol.

162



163

164 **Figure 2.** Antioxidant activity of HPE peaks obtained in HPLC analysis

165

166

167

168 **Figure 3.** A typical HPLC chromatogram of standard phenolic compounds.

169 **3.4. Analysis of phenolic compounds in HPE by LC-MS**

170 Positive ESI-MS was used to identify the major compounds in Fraction 1, 2 and 3 collected from
171 HPLC analysis of HPE. Authentic caffeic acid, catechin and rutin were analyzed first to
172 determine their retention times and positive mass spectra values. At reasonable experimental
173 conditions, m/z 611, 291 and 181 [M + 1]⁺ were always observed in the positive mode for rutin,
174 catechin and caffeic acid respectively (Table 2). Compounds in HPE were identified on the basis
175 of their chromatographic retention times and positive mass spectra by comparison with reference
176 standards or with literature data. Fraction 2 gave a retention time 18.6 minutes and MS peak at
177 m/z 355 [M + 1]⁺ value characteristic of chlorogenic acid, the same fraction 2 also gave a
178 retention time 21.3 minutes and MS peak at m/z 195 [M + 1]⁺ value characteristic of ferulic acid,
179 while fraction 3 gave retention times 24.5, 26.6 and 31.3 minutes with corresponding MS peak at
180 m/z 273, 611, and 303 [M + 1]⁺ values characteristic of naringenin, rutin and quercetin
181 respectively (Table 3).

182

183 **Table 2.** The m/z positive values and retention time of standard phenolic compounds.

Standards Phenolic Compounds	Retention time	M + 1 Values
Caffeic acid	17.5	181.0
Catechin	16.4	291.0
Rutin	26.1	611.0

184

185 **Table 3.** Spectra properties of HPE constituents.

Fraction Number	RT (min)	λ_{max} (nm)	m/z ($M+1$) ⁺	Compound
2	18.6	235, 325	355	Chlorogenic acid
2	21.3	235, 325	195	Ferulic Acid
3	24.5	290, 330	273	Nanringenin
3	26.6	290, 330	611	Rutin
3	31.3	290, 330	303	Quercetin

186

187 **1. DISCUSSION**

188 The results presented here identified the presence of different types of polyphenolics in HPE
 189 after several analyses with different analytic techniques. It is likely that Chlorogenic acid, Ferulic
 190 acid, Naringenin, Rutin and Quercetin are present in HPE. Although, the presence of flavan-3-ols
 191 compounds (catechin, epigallocatechin, epigallocatechingallate) earlier identified to be present in
 192 HPE by Lin *et al.* [9] cannot be completely inferred from this study, their presence however, in
 193 HPE cannot be totally excluded as peaks and elution volume corresponding to the standards of
 194 these phenolic compounds and that of protocatechuic acids, caffeic acid and *p*-coumaric were
 195 obtained in the HPLC study. Although many other studies have identified phenolic compounds
 196 in *H. sabdariffa*, it is noteworthy to state that most of the compounds previously detected were
 197 identified by reverse phase-HPLC based only on retention values and UV spectra [8] [9]. The
 198 present report makes use of HPLC-MS for the peak identification.

199

200 All the phenolic compounds identified in HPE are known for possessing one pharmacological
 201 properties or the other, for example Ferulic acid is a well known natural protector against

202 ultraviolet radiation known to cause skin disorder such as cancer and aging of the skin [19], and
203 its antidiabetic, anticarcinogenic, hepatoprotective and hypotensive properties have also been
204 demonstrated in many previous studies [20] [21]. It is believed these therapeutic effects of ferulic
205 acids are due to its antioxidants and anti-inflammatory activity [22]. Chlorogenic acid has been
206 reported to possess anxiolytic, antibacterial, antimutagenic, anti-inflammatory, antitumor and
207 antiviral properties, as well as acting as an antioxidant by radical-scavenging and metal chelation
208 [23] [24] [25], while naringenin has been shown to protect against doxorubicin-induced
209 apoptosis, and doxorubicin-induced cardial toxicity in rats [26] effects which could underlie its
210 use as therapeutic agent for treating or preventing cardiomyopathy associated with doxorubicin
211 [27]. It has also been demonstrated to protect against cisplatin induced nephrotoxicity in rat [28]
212 and inhibit tumor growth in various cancer cell lines and sarcoma S-180-implanted mice [29].
213 Recently, naringenin has been shown to protect against UVB-induce apoptosis, making it a
214 promising natural flavonoid in preventing against skin aging and carcinogenesis [30].

215

216 Both quercetin and rutin have been demonstrated to have neuroprotective effects against spatial
217 memory impairment and neuronal death induced by repeated cerebral ischemia in rats [31]. They
218 have also been demonstrated to have anti-inflammatory, antioxidant and antidepressant activities
219 in many studies [32] [33]. Therefore, it can be inferred that the presence of these antioxidants
220 phenolic compounds (ferulic acid, chlorogenic acid, naringenin, rutin and quercetin) in HPE
221 would explain the medicinal principle behind the ethnomedical practice associated with *H.*
222 *sabdariffa*. Nevertheless, other phenolic constituents not identified in this study could be
223 working synergistically with these phenolic compounds giving a larger antioxidant effect.

224

225 Based on the results obtained in this study polyphenols are by far the major antioxidant
226 constituents of *H. sabdariffa*, therefore this class of compounds appears to be of major relevance
227 for the observed preventive effects of this plant. Ascorbic acid, due to its high bioavailability and
228 concentration (141.09mg/100g) [34], might also contribute, although its contribution to the
229 observed effects may not be of major relevance. All attempts to determine β -carotene and
230 lycopene in **crude methanolic extract of *H. sabdariffa* used** for this work did not achieve the
231 desired goals despite using several techniques. These lipid soluble dietary antioxidants have been
232 shown to be present in low concentrations in *H. sabdariffa*, i.e. β -carotene (1.88mg/100g) and
233 lycopene (164.34 μ g/100 g) [34]. The inability to find any lycopene and β -carotene in this study
234 could be due to several factors which could include, sensitivity of techniques used for
235 determination, use of **dried calyx**, instead of **fresh calyx** as well as use of lower quantity of *H.*
236 *sabdariffa*, i.e 2 g as against 100 g used by the previous workers [34]. Therefore, medicinal
237 values of *H. sabdariffa* cannot be ascribed to β -carotene and lycopene.

238

239 Many bioavailability studies on polyphenols have indicated a rather poor absorption from the
240 gastrointestinal tract on the basis of measuring parent compound concentrations in plasma and
241 urine [35]. In addition, polyphenols are subject to phase II metabolism after absorption, yielding
242 methoxylated, glucuronidated, and sulfated compounds [36]. This may greatly influence their
243 bioactivity, but only a few studies have examined this to date. Therefore further studies would be
244 needed to know if the amount of polyphenols absorbed through consumption of *H. sabdariffa* is
245 sufficient to exert significant antioxidant effects.

246

247

248 **5. CONCLUSION**

249 The results of phytochemical analysis in HPE through several chromatographic analyses
250 indicates that phenolic compounds such as ferulic acid, chlorogenic acid, naringenin, rutin and
251 quercetin may be present in HPE. The presences of these antioxidants phenolic compounds in
252 HPE gives an insight into understanding the mechanism of antioxidant activities of *H. sabdariffa*
253 and explain the medicinal principle behind the ethnomedical practices associated with the plant.

254

255 **CONSENT**

256 Not applicable.

257
258 **COMPETING INTERESTS**
259

260 Authors have declared that no competing interests exist

261
262 **REFERENCES**

- 263 1. Genkinger JM, Plantz EA, Hoffman SC, Comstock, GW and Helzlsouer KJ. Fruit, vegetable
264 and antioxidant intake and all-cause, cancer and cardiovascular disease monthly in a
265 community dwelling population in Washington county, Maryland, Am J Epidemiol. 2004;
266 160: 1223-1233.
- 267 2. Lin, H.H., Chan, K.C., Sheu, J.Y., Hsuan,S.W., Wang, C.J., Chen, J.H. *H. sabdariffa* leaf
268 induces apoptosis of human prostate cancer cells in vitro and in vivo. Food Chemistry. 2012;
269 132: 880–891
- 270 3. Astley SB, Hughes DA, Wright AJ, Elliott RM, Southon S. DNA damage and susceptibility
271 to oxidative damage in lymphocytes: effects of carotenoids *in vitro* and *in vivo*. Br J Nutr
272 2004; 91: 53-61.

273 4. Kerio, L.C., Wachira, F.N., Wanyoko, J.K., Rotich, M.K. Total polyphenols, catechin
274 profiles and antioxidant activity of tea products from purple leaf coloured tea cultivars Food
275 Chemistry. 2013; 136: 1405–1413

276 5. Fraga CG. (2007) Plant Polyphenols, How to Translate their *in vitro* Antioxidant Actions to
277 *in vivo* Conditions. IUBMB Life. 2007; 59 (4 – 5): 308 – 315

278 6. Mennen, LI., Sapinho, D., Bree, AD., Arnault, N., Bertrais, S., Galan, P., Hercberg, S.
279 Consumption of Foods Rich in Flavonoids Is Related to a Decreased Cardiovascular Risk in
280 Apparently Healthy French Women. Journal of Nutrition. 2004; 134: 923–926.

281 7. Ali BH, Naser AW, Gerald B. Phytochemical, Pharmacological and Toxicological Aspect of
282 *H. sabdariffa* L. Phytother Res. 2005; 19: 369-375.

283 8. Salah AM, Gathumbi J, Vierling W. Inhibition of intestinal motility by methanolic extracts of
284 *H. sabdariffa* L. (Malvaceae) in rats. Phytother Res. 2002; 16: 283–5.

285 9. Lin, HH., Huang, HP., Huang, CC., Chen, JUH., and Wang, CJ. Hibiscus polyphenol-rich
286 extract induces apoptosis in human gastric cancer cells via p53 phosphorylation and p38
287 MAPK/FasL cascade pathway. Molecular carcinogenesis. 2005; 43: 86-99.

288 10. Ye, M., Guo, DA. Analysis of bufadienolides in the Chinese drug ChanSu by high-
289 performance liquid chromatography with atmospheric pressure chemical ionization tandem
290 mass spectrometry. Rapid Communications in Mass Spectrometry. 2005; 19: 1881-1892.

291 11. Ye, M., Yan, YN., Guo, DA. Characterization of phenolic compounds in the Chinese herbal
292 drug Tu-Si-Zi by liquid chromatography coupled to electrospray ionization mass
293 spectrometry. Rapid Communications in Mass Spectrometry. 2005; 19: 1469-1484.

294 12. Yang, M., Liu, AH., Guan, SH., Sun, JH., Xu, M., Guo, DA. Characterization of tanshinones
295 in the roots of *Salvia miltiorrhiza* (Dan-shen) by high-performance liquid chromatography

296 with electrospray ionization tandem mass spectrometry Rapid Communications in Mass
297 Spectrometry. 2006; 20: 1266-1280.

298 13. Xian-Guo. Online identification of phytochemical constituents in botanical extracts by
299 combined High performance liquid chromatography p-diode array detection-mass
300 spectrometric technique. Journal of Chromatography A, 2000; 880: 203-232.

301 14. Miliauskas, G., Venskutonis, PR., van Beek, TA. Screening of radical scavenging activity of
302 some medicinal and aromatic plant extracts. Food Chemistry, 2004; 85: 231–237.

303 15. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, CA.
304 Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free
305 Radical Biology and Medicine. 1999; 26: 1231–1237.

306 16. Riboli, E., Norat, T. Epidemiologic evidence of the protective effect of fruit and vegetables
307 on cancer risk 1,2,3,4. American Journal of Clinical Nutrition. 2003; 78 (3): 559S-569S.

308 17. Ramirez-Rodrigues MM, Plaza ML, Azeredo A, Balaban OM, Marshall MR.
309 Physicochemical and phytochemical properties of cold and hot water extraction from *H.*
310 *sabdariffa*. Journal of Food Science. 2011; 76 (3):C428–C435.

311 18. Adetutu, A and Owoade, A.O (2013) Hepatoprotective and Antioxidant Effect of Hibiscus
312 Polyphenol Rich Extract (HPE) Against Carbon Tetrachloride (CCL4) –Induced Damage in
313 Rats British Journal of Medicine & Medical Research. 2013; 3 (4): 1574-1586

314 19. van der Watt, E., Pretorius, JC. Purification and identification of active antibacterial
315 components in *Carpobrotus edulis* L. Journal of Ethnopharmacology, 2001; 76: 87–91.

316 20. Ohnishi, M., Matuo, T., Tsuno, T., Hosoda, A., Nomura, E., Taniguchi, H., Sasaki, H.,
317 Morishita, H. (2004) Antioxidant activity and hypoglycemic effect of ferulic acid in STZ-
318 induced diabetic mice and KK-A^y mice. BioFactors, 2004; 21: 1-4.

319 21. Sudheer, AR., Chandran, K., Marimuthu, S., Menon, VP. Ferulic Acid Modulates Altered
320 Lipid Profiles and Prooxidant/Antioxidant Status in Circulation During Nicotine-Induced
321 Toxicity: A Dose-Dependent Study. *Toxicology Mechanisms and Methods*. 2005; 15: 375–
322 381.

323 22. Srinivasan, M., Sudheer, AR., Menon, VP. Recent advances in Indian herbal drug research.
324 *Journal of Clinical Biochemistry and Nutrition*. 2007; 40: 92–100.

325 23. Marzouk, MS., Moharram, FA., Haggag, EG., Ibrahim, MT and Badary, OA. Antioxidant
326 Flavonol Glycosides from *Schinus molle*. *Phytotherapy Research*. 2006; 20: 200–205.

327 24. Bouayed, J., Rammal, H., Dicko, A., Younos, C., Soulimani, R. Chlorogenic acid, a
328 polyphenol from *Prunus domestica* (Mirabelle), with coupled anxiolytic and antioxidant
329 effects. *Journal of the Neurological Sciences*. 2007; 262: 77–84.

330 25. Lan, WU. Effect of chlorogenic acid on antioxidant activity of *Flos Lonicerae* extracts.
331 *Journal of Zhejiang University Science B*. 2007; 8 (9): 673–679.

332 26. Arafa, H. M; Mohamed F. Abd-Ellah, M. F and Hafez, H. F Abatement by naringenin of
333 doxorubicin-induced cardiac toxicity in rats. *Journal of the Egyptian nat. cancer inst.* 2005;
334 17 (4): 291–300

335 27. Han, X., Ren, D., Fan, P., Shen, T., Lou, H. Protective effects of naringenin-7-O-glucoside
336 on doxorubicin-induced apoptosis in H9C2 cells. *European Journal of Pharmacology*. 2008;
337 581: 47–53.

338 28. Badary, OA., Abdel-Maksoud, S., Ahmed, WA., Owieda, GH. Naringenin attenuates
339 cisplatin nephrotoxicity in rats. *Life Science*. 2005; 76 (18), 2125–2135.

340 29. Kanno, S., Tomizawa, A., Hiura, T., Osanai, Y., Shouji, A., Ujibe, M., Ohtake, T., Kimura,
341 K., Ishikawa, M. Inhibitory effects of naringenin on tumor growth in human cancer cell lines

342 and sarcoma S-180-implanted mice. Biological & pharmaceutical bulletin. 2005; 28 (3): 527-
343 530.

344 30. El-Mahdy, MA., Zhu, Q., Wang, Q., Wani, G., Patnaik, S., Zhao, Q., Arafa, E., Barakat, B.,
345 Mir, SN., Wani, AA. Naringenin Protects HaCaT Human Keratinocytes Against UVB-
346 induced Apoptosis and Enhances the Removal of Cyclobutane Pyrimidine Dimers from the
347 Genome. Photochemistry and Photobiology. 2008; 84 (2): 307–316.

348 31. Pu, F., Mishima, K., Irie, K., Motohashi, K., Tanaka, Y., Orito, K., Egawa, T., Kitamura, Y.,
349 Egashira, N., Iwasaki, K., Fujiwara, M. Neuroprotective Effects of Quercetin and Rutin on
350 Spatial Memory Impairment in an 8-Arm Radial Maze Task and Neuronal Death Induced by
351 Repeated Cerebral Ischemia in Rats. Journal of Pharmacological Sciences. 2007; 104: 329 –
352 334.

353 32. Selloum, L., Bouriche, H., Tigrine, C., Boudoukha, C. Anti-inflammatory effect of rutin on
354 rat paw oedema, and on neutrophils chemotaxis and degranulation. Experimental and
355 Toxicologic Pathology. 2003; 54 (4): 313-318.

356 33. Kampkotter, A., Nkwonkam, CG., Zurawski, RF., Timpel, C., Chovolou, Y., Watjen, W.,
357 Kahl, R. Investigations of protective effects of the flavonoids quercetin and rutin on stress
358 resistance in the model organism *Caenorhabditis elegans*. Toxicology. 2007; 234: 113–123.

359 34. Wong, P., Yusof, S., Ghazal, HM., Chen-Man, YB. Physico-chemical characteristics of
360 roselle (*H. sabdariffa* L.) Nutrition and Food Science. 2002; 32 (2): 68-73.

361 35. Manach, C., Williamson, G., Morand, C., Scalbert, A., Remesy, C. Bioavailability and
362 bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. The American
363 journal of clinical nutrition. 2005; 81: 230S–242S.

364 36. Hollman, PCH., Arts, ICW. (2000) Flavonols, flavones and flavanols: nature, occurrence and
365 dietary burden. *Journal of Agricultural and food chemistry*. 2000; 80: 1081–1093.

366