- 1
- 2 3

<u>Original Research Article</u> Accuracy of Magnetic Resonance Imaging (MRI) in Detecting Breast Tumors

4 5

ABSTRACT

6

Aims: The aim of this study was to evaluate the accuracy of magnetic resonance imaging (MRI) in characterizing breast abnormalities and tumors, in comparing to other diagnostic modalities and histopathological findings.

Study Design: This prospective study included 254 patients (14 males and 240 females; ages range between 15-78 years) underwent breast MRI examination.

Place and Duration of Study: This study was conducted in different MRI medical centers in Khartoum, Sudan between June 2014 and July 2016.

Methodology: Patients were examined using two sequences of MRI; routine and dynamic contrast enhanced MRI (DCE-MRI). Signal intensities were evaluated from different MRI sequences in different tumors; the histopathology result was used as a reference for each case.

Results: The sensitivity and specificity of MRI were (82.6%) and (73.2%) respectively. In addition, the breast cancer was more enhanced with fat suppression images. DCE-MRI has been shown to be more sensitive than routine sequences in detecting ductal carcinoma in situ (DCIS). Image subtraction technique showed that breast cancer has heterogeneous features (89.9%), and ring enhancement was clearly seen on (8.7%). DCE-MRI has been used to evaluate focal breast lesions. Adding information derived from the kinetic curve type of architectural features of a lesion, improves the specificity of breast MRI. On the other hand, it revealed that most cases of cancer represented on type 111 curves or rapid wash out. However, quantitative measurements of kinetic curve type resulted in significantly higher diagnostic performance and increasing specificity of MRI.

Conclusion: The accuracy of MRI in this study was more than other imaging modalities in characterizing breast abnormalities and tumors. Therefore, it offers a new method to detect breast cancer in its early stage, and help improve the survival rate.

7 8

Keywords: Accuracy, breast tumors, histopathology, imaging, MRI, protocols.

9 10 **1. INTRODUCTION**

11

Breast cancers are the most common type of cancer among women in the industrialized world. A woman's average lifetime risk for developing breast cancer in the United States is 1 in 8 [1]. In Sudan breast cancer is about (29%-34.5%) of all women's cancers [2]. Breast cancer cannot be prevented at the present time; however, early detection of breast cancer provides the best chance of survival and early treatment options [2]. Because early breast cancer is asymptomatic, the only way to detect it is through screening [3].

18 Different methods have been used in the diagnosis of breast cancer, including self-examination and 19 clinical examination, mammography, ultrasound, magnetic resonance imaging (MRI) modality, follow up 20 methods and biopsy [2]. Regular breast self-exam (BSE), can be an important way to find a breast cancer 21 early, when it's more likely to be treated successfully. In spite of the fact that breast is superficial organ 22 which is amenable to clinical examination, may not reveal any pathological problems, so that clinical 23 examination would not easily detect sub centimeter lesions if they are deeply situated within the breast 24 and would not easily and confidently differentiate between benign and malignant breast lesion [4]. In 25 certain situation, clinical examination, mammography, and ultrasonography have some limitations, either 26 due to factors in the breast parenchyma such as dense breast in young females, post-operative changes 27 or effect of irradiation or factors in modality itself, such as the inability of mammography to demonstrate 28 deep part of the breast and operator dependency of ultrasound [5].

In diagnosing breast abnormalities and tumors, there is a need for a specific diagnostic modality to reach an accurate diagnosis of these abnormalities, such as mammography, which is an effective means of

detecting and diagnosing breast cancer. It decreases breast cancer mortality by 1/3 when used as 31 32 screening, however, reported high false negative from (4%-34%) [6]. Taking in mind that an abnormal 33 screening mammogram requires a diagnostic test to confirm whether cancer is present, many women 34 who do not have cancer will undergo these unnecessary diagnostic tests [3]. In these difficult situations, a 35 biopsy may be restored to as a diagnostic method. In the last few years, magnetic resonance (MR) 36 imaging has been introduced as a promising method for diagnosis of breast neoplasms particularly when dynamic contrast gadolinium (Gd) enhancement studies are used [7,8]. Several studies have explored a 37 multi-parametric approach to breast imaging that combines analysis of traditional contrast enhancement 38 patterns and lesion architecture with novel methods such as diffusion, perfusion, and spectroscopy to 39 increase the specificity of breast MRI studies [9]. The value of dynamic contrast enhanced MRI (DCE-40 41 MRI) is dependent on its ability to demonstrate intrinsic differences between varieties of issues that affect 42 contrast media behavior. Evidence is mounting that DCE-MRI measurements correlate with immune histochemical surrogates of tumor angiogenesis [9]. 43

This study aimed to evaluate the accuracy of MRI in characterizing breast abnormalities and tumors, and to compare the findings with the other diagnostic modalities and histopathological findings. 46

48 2. MATERIAL AND METHODS

49 50

51

47

2.1 Patient samples

The study was conducted in 254 patients, 250 were female (98.4%) and 4 male (1.6%). The mean age of all patients was 47 years, age range between 15-78 years. All patients were examined by DCE-MRI. Clinical examination and full history were taken as well as written informed consent was obtained. Sudanese patients who were 15 years old or older, with proven breast cancer were eligible for recruitment. Exclusion criteria were absolute contraindications to MRI, pregnancy or breast feeding, severe renal failure, known hypersensitivity to gadolinium chelates, inclusion in other clinical trials during the month before enrollment, and clinical status that would limit data reliability.

59 60

2.2 Breast mammography, ultrasound and biopsy procedure

61

Mammography was performed with at least two views per breast (medio-lateral oblique and cranio-caudal
 views) using a low radiation dose digital mammography system (Mammomat, Siemens, Germany).
 Additional views or spot compression views were obtained where appropriate.

Breast ultrasound was performed using 7.5-13 MHz probes (high resolution General electric (GE) medical system, logic 5 expert, Sony Corporation, Japan); the entire breast was systematically examined by the physician who interpreted the study.

Breast fine needle aspiration biopsy under the guidance of ultrasound, was performed while the patient 68 69 lying on back on the examination bed in the ultrasound room. The patient's upper body undressed, with 70 one arm above the head on the pillow in a comfortable position. One physician applied ultrasound gel on 71 the breast and the ultrasound transducer (7.5-13 MHz) slowly moved across the breast to show and 72 identify the lesion. The needle passed through the skin and into the lesion guided by the ultrasound 73 images. Both local anesthetic and antiseptic liquids were used as the needle is inserted. Less than 1cm 74 forward and backward, gentle movements with the needle to collect cells or, if the lesion is a cystic in 75 nature, fluid may be collected. Two or three separate samples are usually taken in this way to ensure a 76 good sample has been obtained.

77

78 2.3 Breast MRI protocols

The breast MRI examination was performed using 1.5 Tesla (General Electric, Milwaukee, WIS, USA)
MRI scanner using phased-array breast surface coil, with patients lying in prone position. The MRI
protocol included an echo-planar DW sequence; for imaging with this sequence the phased-array breast
coil was converted to operate in a linear mode to accommodate the high acquisition speeds (~ 80 kHz).

MRI has emerged as an alternative, powerful tool for breast cancer screening as it does not require 84 exposure to ionizing radiation; it is thus safe to use routinely and more suitable than mammography for 85 86 assessing young women. The MRI protocol consisted of the following sequences: 1) Coronal T₁-weighted 87 spin echo sequence was carried out for localization purpose and followed by plain sequences using T₁-88 weighted fast spin echo sequence (TR=125msec, TE=5.3msec), in addition to T₂-weighted fast spin echo 89 sequence (TR=3740msec, TE=90msec) in axial orientation. A bolus of gadolinium (Gd-DTPA) (Magnevist, Schering AG Berlin, Germany) was injected manually and intravenously at a dose of (0.1 90 mmol/kg) followed by a saline flush to ensure that contrast enhanced images could be obtained 91 92 immediately after contrast agent injection, 2) Dynamic contrast T₁-weighted images, then performed using gradient echo T₁-weighted image with fat suppression at the following time point at 1 min, 2 min, 4 min, 93 94 and 7 min, 3) Post processing subtraction for the MRI image was obtained between the post contrast imaging showing maximum enhancement and pre-contrast images (in the same axial plane), using the 95 software subtraction function, and 4) Quantitative analysis was done by placing the region of interest 96 97 (ROI) at the most enhanced part with the lesion result in automatically created time/signal curve. The type 98 of curve (type 1, type 11, type 111), determine the type of tumors. Qualitative analysis of mammography, 99 ultrasound, and breast MRI was done by three radiologists who were blinded to the clinical, operational 100 and histopathological examination.

- 101
- 102

2.4 MRI image interpretation and criteria for evaluating the presence of breast lesions

103

104 Conventional T_1 and T_2 weighted images were first examined to detect the presence or absence of 105 benign lesions (e.g. cysts and fat containing lesions) then T_1 dynamic and subtraction images were 106 examined to detect the presence or absence of lesion enhancement.

In case of lesion enhancement the corresponding non subtracted pre-contrast and post contrast images
 in each time point was viewed together and lesions interpretation took place, whether it is a focus, mass
 or non-mass like enhancement.

In case of mass enhancement evaluation was carried out as follows: 1) Its shape (regular or irregular), 2)
Its border (well defined, ill defined, speculated), 3) Pattern of enhancement (homogenous, heterogeneous or ring enhancement), 4) The dynamic behavior of the mass with evaluation of the percentage of enhancement as well as the shape of time/signal intensity curve (type I, type II or type III) was studied, 5)
In case of non-mass like enhancement, its distribution and enhancement pattern were evaluated, and 6)
MRI findings were correlated with histopathological result.

117 **2.5 Statistical analysis**

118
119 Data were initially summarized in a form of comparison tables and graphs. All statistical calculations were
120 done using computer program of the standard Statistical Package for the Social Sciences (SPSS Inc.,
121 Chicago, IL, USA) version 20 for windows.

- 122
- 123

124 **3. RESULTS**

125

The results of this study were obtained from 254 patients; 14 (5.5%) males and 240 (94.5%) female, aged between 15-78 years old as presented in Figure 1 below. Table 1 demonstrates MRI findings and histopathological results cross tabulation.

129 130

131

Fig. 1. The distribution of females' age, according to tumors count.

132 Table 1. MRI findings and histopathology result cross-tabulation

Histopathology	Normal	Benign tumors	Irregular/Suspected Cancers	_ Total
Normal	30	11	0	41
Benign	1	62	19	82
Malignant	0	17	114	131
Total	31	90	<mark>133</mark>	254

133

134 The sensitivity of DCE-MRI in detecting breast lesions was (82.7%) and the accuracy was (81.1%), when 135 compared to other diagnostic modalities as mammography or ultrasonography as shown in Table 2.

136 137

Table 2. The sensitivity, specificity and accuracy of MRI compared with other imaging modalities

Modality	Specificity (%)	Sensitivity (%)		Accuracy (%)
		Benign	Malignant	
DCE-MRI	(73.2%)	(82.7%)	(82.6%)	(81.1%)
Ultrasound	(75.6%)	(68.0%)	(30.4%)	(48.8%)
Mammography	(73.2%)	(60.0%)	(37.7%)	(50.0%)

138

139 In Table 3, T_1 with contrast presented high signal in malignant breast lesions (97.8%). This signal 140 increased after contrast administration. In addition, there was an increase in the signal, when the images 141 that subtracted the tumors were isolated from normal tissues. Such findings were presented in Table 4, 142 and Figure 2. Also, it was found that T_2 has high signal in some benign tumors such as cyst, and duct 143 ectasia (95.1%).

144

145

146

147

148

Histopathology	T₁ with contrast			
	Hyper-signal	Hypo-signal	Iso-signal	
Normal	3	15	23	41
Benign	17	39	19	75
Cancer	115	16	7	138
Total	135	70	49	254

Table 3. T₁-weighted with contrast and histopathology result cross-tabulation

152 Table 4. Image subtraction result and histopathology cross-tabulation

Subtraction		Total		
	Normal	Benign	Malignant	
Normal	1	3	1	5
Homogeneous	40	42	12	94
Heterogeneous	0	26	113	139
Ring enhances	0	4	12	16
Total	41	75	138	254

Fig. 2. Signal intensity in fat suppression images.

Quantitative measurement of kinetic curve type resulted in significantly higher diagnostic performance
 when compared with the qualitative assessment, that rapid wash (86.0%) is highly suggested of cancer,
 plateau (26.7%) cancer and persistent cancer (1.6%) as depicted in Table 5.

162 Table 5. Shows curve type in dynamic contrast enhanced MRI (DCE-MRI)

Curve type	Histopathology			Total
	Normal	Benign	Malignant	
Persistent	2	17	1	20
Plateau	1	13	16	30
Rapid	0	7	43	50
Total	3	37	60	100

163 4. DISCUSSION

164

165 This study consisted of 254 patients with the aim to evaluate the accuracy of magnetic resonance 166 imaging (MRI) in characterizing breast abnormalities and tumors, in comparing to other diagnostic 167 modalities and histopathological findings. The result of this study revealed that the incidence of breast 168 cancer increased in all ages, but more so in women in the group (39-47) years (Figure 1). Risk factors for 169 incident include older age and family history. The sensitivity and specificity of MRI were (82.6%) and 170 (73.2%) respectively (Table 2). This result was in line with a previous study conducted in ductal 171 carcinoma, which also reveals the high sensitivity of MRI over mammography in detecting breast tumors 172 [10].

Fat suppression is commonly used in MR imaging to suppress the signal from adipose tissue or detect adipose tissue. However, this technique is not specific for fat, and the signal intensity of tissue with a long

- 175 T_1 and tissue with a short T_1 may be ambiguous. Opposed-phase imaging is a fast and readily available 176 technique [11]. The result of this study showed that breast cancer was more enhanced with fat 177 suppression images (Figure 2), because this method suppressed the fat signal more potently and 178 improved contrast and visibility of the breast lesions that embedded in fatty tissue [12].
- 179 In T_1 and T_2 relaxation times additively contribute to the contrast; therefore, also considering the inherent 180 fat suppression, contrast is extremely good, and tissue with long T_1 and long T_2 may appear very bright 181 [13].
- 182 Regarding signal intensity, the study showed that breast cancer has high signal intensity on T_1 image 183 (Table 3), while it has hypo or iso-signal intensity on T_2 images. On T_2 weighted images, fat has 184 intermediate signal intensity. The signal intensity of remaining tissue depends on their water contents, 185 and increases from the fibrous element which very low signal to glandular and ductal element to cystic
- 186 lesions which have a very high signal intensity [14].
- 187 CE-MRI has been shown to be more sensitive than mammography in detecting DCIS. The study showed 188 that most breast cancer cases have been enhanced, the result was in line with the study of Wiener et al, 189 2004 [15], it showed that the primary index lesions, the sensitivity of MRI was (100%) in predicting a 190 breast malignancy and the specificity was (73.7%) in predicting benign lesions. MRI detected an 191 additional 37 lesions, of which 23 were cancerous, beyond those suspected on mammography or 192 sonography [15].
- The image subtraction technique was performed it showed that the cancer has heterogeneous features (89.9%), and ring enhancement was clearly seen on (8.7%). This result in line with the previous studies as speculated or irregular margin is suspicious for carcinoma where a smooth margin is more suggestive of benign lesion [16].
- DCE-MRI has been used to evaluate focal breast lesions (Table 5). Adding information derived from the kinetic curve type of the architectural features of a lesion, improves the specificity of breast MRI [17]. By categorizing the type of the enhancement curve either as an absolute change in percentage enhancement, significantly greater values were seen compared with the qualitative method. In this study only 100 patients were selected for DCE-MRI, it revealed that most cases of cancer represented on type 111 curve or rapid wash out. However, quantitative measurements of kinetic curve type resulted in significantly higher diagnostic performance and increasing specificity of MRI.
- 204 It was stated that DCE-MRI imaging has high negative predictive value in excluding breast cancer, so it 205 plays a role in the evaluation of selected clinical and imaging findings of the breast, especially when 206 biopsy is not technically feasible. Case selection is very important in ensuring the efficacy of this use of 207 MR imaging because of potential false-positive and false-negative results [18]. In our study the overall sensitivity of DEC-MRI, ultrasound, and mammography was 82.7%; 82.6%, 68.0%; 30.4% and 60.0%; 208 209 37.7% for both benign and malignant breast lesions respectively (Table 2) .Their specificity was 73.2%, 210 75.6%, and 73.2% respectively (Table 2). DEC-MRI was the most sensitive imaging method for detection 211 of cancer but with limited specificity due to overlap in features of benign and malignant lesions.
- The main additional diagnostic value of DEC-MRI relies on detecting foci of multifocal, multicentric or contra-lateral disease unrecognized on conventional assessment (physical examination, mammography and ultrasound); recognition of invasive components in ductal carcinoma in situ (DCIS); assessing the response to neoadjuvant chemotherapy (NAC); detecting an occult primary breast cancer in patients presenting with metastatic cancer in axillary nodes; and detection of cancer in dense breast tissue [19].
- 217 DCE-MRI is an emerging imaging method to enable the depiction of physiologic alterations and to assess

tumor angiogenesis [20]. This angiogenesis have been often too small to be proved by another imaging
 method [21]. Among the limitations of breast MRI are its higher cost, longer examination time, and lower
 availability compared with mammography and ultrasound [22].

222 **5. CONCLUSION** 223

In conclusion, the accuracy of MRI in this study was more than other imaging modalities in characterizing
 breast abnormalities and tumors. Therefore, it offers a new method to detect breast cancer in its early
 stage, and help improve the survival rate.

228 CONSENT

All authors declare that written informed consent was obtained from the patient (or other approved parties) for publication of this case report and accompanying images. A copy of the written consent is available for review by the Editorial office/Chief Editor/Editorial Board members of this journal.

233 234

221

235 ETHICAL APPROVAL

236

All authors hereby declare that all experiments have been examined and approved by the appropriate ethics committee and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki.

240 241

242 REFERENCES243

1. Morris EA, Schwartz LH, Dershaw DD, Van Zee KJ, Abramson AF, Liberman L. MR imaging of the
 breast in patients with occult primary breast carcinoma. Radiology. 1997;205(2):437-40.
 http://dx.doi.org/10.1148/radiology.205.2.9356625

- 247
 2. Elamin A1, Ibrahim ME, Abuidris D, Mohamed KE, Mohammed SI. Part I: cancer in Sudan-burden,
 248 distribution, and trends breast, gynecological, and prostate cancers. Cancer Med. 2015;4(3):447-56.
 249 <u>http://dx.doi.org/10.1002/cam4.378</u>
- 250 3. Lehman CD, Lee AY, Lee CI. Imaging management of palpable breast abnormalities. AJR Am J
 251 Roentgenol. 2014;203(5):1142-53. <u>http://dx.doi.org/10.2214/AJR.14.12725</u>
- 4. Hegenscheid K, Schmidt CO, Seipel R, Laqua R, Ohlinger R, Hosten N, et al. Contrast enhancement kinetics of normal breast parenchyma in dynamic MR mammography: effects of menopausal status, oral contraceptives, and postmenopausal hormone therapy. Eur Radiol. 2012;22(12):2633-40. <u>http://dx.doi.org/10.1007/s00330-012-2544-9</u>
- 5. Saslow D, Hannan J, Osuch J, Alciati MH, Baines C, Barton M, et al. Clinical breast examination:
 practical recommendations for optimizing performance and reporting. CA Cancer J Clin. 2004;54(6):32744. <u>http://dx.doi.org/10.3322/canjclin.54.6.327</u>
- 6. Harris R, Yeatts J, Kinsinger L. Breast cancer screening for women ages 50 to 69 years a systematic
 review of observational evidence. Prev Med. 2011;53(3):108-14.
 http://dx.doi.org/10.1016/j.ypmed.2011.07.004
- 262 7. Motomura K, Ishitobi M, Komoike Y, Koyama H, Noguchi A, Sumino H, et al. SPIO-enhanced magnetic 263 resonance imaging for the detection of metastases in sentinel nodes localized by computed tomography 264 lymphography in patients with breast cancer. Ann Surg Oncol. 2011;18(12):3422-9. 265 http://dx.doi.org/10.1245/s10434-011-1710-7
- 266 8. Yeung DK, Cheung HS, Tse GM. Human breast lesions: characterization with contrast-enhanced in
 267 vivo proton MR spectroscopy--initial results. Radiology 2001; 220(1):40-6.
 268 <u>http://dx.doi.org/10.1148/radiology.220.1.r01jl0240</u>
- 9. Padhani AR, Husband JE. Dynamic contrast-enhanced MRI studies in oncology with an emphasis on quantification, validation and human studies. Clin Radiol. 2001;56(8):607-20.
- 271 <u>http://dx.doi.org/10.1053/crad.2001.0762</u>

10. Virnig BA, Tuttle TM, Shamliyan T, Kane RL. Ductal carcinoma in situ of the breast: a systematic
review of incidence, treatment, and outcomes. J Natl Cancer Inst. 2010;102(3): 170-8.
http://dx.doi.org/10.1093/jnci/djp482

275 11. Delfaut EM, Beltran J, Johnson G, Rousseau J, Marchandise X, Cotten A. Fat suppression in MR
276 imaging: techniques and pitfalls. Radiographics. 1999;19(2):373-82.
277 http://dx.doi.org/10.1148/radiographics.19.2.g99mr03373

12. Kul S, Cansu A, Alhan E, Dinc H, Reis A, Çan G. Contrast-enhanced MR angiography of the breast:
Evaluation of ipsilateral increased vascularity and adjacent vessel sign in the characterization of breast
lesions. AJR Am J Roentgenol. 2010;195(5):1250-4. <u>http://dx.doi.org/10.2214/AJR.10.4368</u>

- 13. Nazarpoor M. The effect of inversion times on the minimum signal intensity of the contrast agent
 concentration using inversion recovery t1-weighted fast imaging sequence. Med J Islam Repub Iran.
 2014;28:128.
- 14. Kuhl CK, Klaschik S, Mielcarek P, Gieseke J, Wardelmann E, Schild HH. Do T2-weighted pulse
 sequences help with the differential diagnosis of enhancing lesions in dynamic breast MRI? J Magn
 Reson Imaging. 1999;9(2):187-96. <u>http://dx.doi.org/10.1002/(SICI)1522-2586(199902)9:2<187::AID-</u>
 JMRI6>3.3.CO;2-U
- 15. Wiener JI, Schilling KJ, Adami C, Obuchowski NA. Assessment of suspected breast cancer by MRI: a
 prospective clinical trial using a combined kinetic and morphologic analysis. AJR Am J Roentgenol.
 2005;184(3):878-86. http://dx.doi.org/10.2214/ajr.184.3.01840878
- 16. Deurloo EE, Peterse JL, Rutgers EJ, Besnard AP, Muller SH, Gilhuijs KG. Additional breast lesions in patients eligible for breast-conserving therapy by MRI: impact on preoperative management and potential benefit of computerised analysis. Eur J Cancer. 2005;41(10):1393-401.
 http://dx.doi.org/10.1016/j.ejca.2005.03.017
- 295 17. Cheng L, Li X. Breast magnetic resonance imaging: kinetic curve assessment. Gland Surg.
 2013;2(1):50-3.
- 18. Leung J. MR Imaging in the evaluation of equivocal clinical and imaging findings of the breast. MRI
 Clin N Am. 2010;18(2):295-308. <u>http://dx.doi.org/10.1016/j.mric.2010.02.012</u>
- 19. Menezes GL, Bosch VD, Postma EL, El Sharouni MA, Verkooijen HM, Diest JV, et al. Invasive
 ductolobular carcinoma of the breast:spectrum of mammographic, ultrasound and magnetic resonance
 imaging findings correlated with proportion of the lobular component. Springerplus, 2013;2;621.

302 http://dx.doi.org/10.1186/2193-1801-2-621

303 20. Türkbey B, Thomasson D, Pang Y, Bernardo M, Choyke PL. The role of dynamic contrast-enhanced
 304 MRI in cancer diagnosis and treatment. Diagn Interv Radiol. 2010;16(3):186-192.

- 305 21. Houserkova D, Prasad SN, Svach I, Kucerova L, Duskova M, Bucil J, et al. The value of dynamic
 306 contrast enhanced breast MRI in mammographically detected BI-RADS 5 microcalcifications. Biomed Pap
 307 Med Fac Univ Palacky Olomouc. 2008;152(1):107-115. <u>http://dx.doi.org/10.5507/bp.2008.017</u>
- 308 22. DeMartini W, Lehman C, Partridge S. Breast MRI for Cancer Detection and Characterization: A
- 309 Review of Evidence-Based Clinical Applications. Acad Radiol. 2008;15(4):408-416. 310 http://dx.doi.org/10.1016/j.acra.2007.11.006