1	Original Research Article
2	Effect of acute placenta inflammatory changes on fetal outcome among
3	paturients in Nigeria.
4	Key words: acute inflammation, placenta, fetal outcome, Nigeria.
5	Abstract
6	Introduction
7	The placenta unit is significant for the survival of the fetus. Infections from the
8	mother can cause histologically identifiable inflammatory changes in the
9	placenta, which may adversely affect the fetus.
10	Aim: to identify the inflammatory changes in the placenta and its effect on fetal
11	outcome.
12	Study design: Cross sectional study
13	Place and duration of study: Department of obstetrics and Gynaecology and
14	Department of Anatomical pathology of the University of Port Harcourt Teaching
15	hospital, between 1 st September – 31 st of December, 2015.
16	Methods: Histological analysis of 192 placenta tissues of singleton birth
17	paturients was carried out. The sociodemographic characteristics of patients and
18	the fetal outcome was collated and analyzed. The information obtained was
19	processed using the SPSS version 20 software and Epi info software version 7.
20	Results were presented in tables; test of association was done using student's t-
21	test with P value < 0.05 set as significant.
22	Results: The mean age of patients was 30.1 ± 4.6 years with age range of 19-
23	48years. Acute placental inflammatory changes of varying grades were noted in
24	71.1%(129) of placenta with severe inflammatory changes constituting $8.3%$ of

- all examined placentae. Severely inflamed placenta was associated with birth
- asphyxia (P=0.0029) and fetal demise (P=0.0336)

Conclusion. Acute inflammatory changes are common among paturients in Port
Harcourt Nigeria. These changes in placenta are associated with birth asphyxia
and fetal demise especially when they are severe.

30

31 Introduction

- 32 The placenta is an integral part of the existance of the fetus, it serves as an
- 33 interface in the transmission of requisite nutrients and other metabolic
- 34 materials.[1,2] The placenta histology can be altered by intrauterine infections
- 35 which is usually acquired as a result of ascending infection from the genital tract,
- 36 gut or hematogenously resulting in chorioamnionitis which complicates about
- 37 10% of all pregnancies with up to 2% occurring during labour.[3,4]
- 38 Several organisms have been implicated in the causation of chorioamnionitis
- 39 inclusive of bacterial and viral organisms. Bacterial organisms linked to acute
- 40 inflammation while viral organisms were associated with chronic changes
- 41 [3,5,6]. Polymicrobial bacterial organisms contribute to these acute
- 42 inflammatory changes of which ureaplasma urealyticulum and gardnella
- 43 vaginitis are the two commonest organisms.[3]

44 The presence of infectious organisms in the chorioamnion engenders a maternal

- 45 and fetal inflammatory response characterized by pro-inflammatory and
- 46 inhibitory cytokines and chemokines in the maternal and fetal compartments;
- 47 with maternal inflammatory response preceding the fetal response.[7] The
- 48 placenta changes in the presence of infection can be categorized into acute,
- 49 subacute or chronic with acute chorioamnionitis with or without fetal

50 inflammatory response, villitis and decidualitis been the most common types of

51 placenta inflammations observed.[8]

52 Acute chorioamnionitis can be diagnosed clinically or histologically. Histological 53 chorioamnionitis is defined by the presence of acute histological changes on 54 examination of the amniotic membrane and chorion of the placenta.[9] 55 Sometimes subclinical infections can be missed but captured by histological 56 examination of placenta and histological diagnosis is the gold standard for 57 evaluation of antenatal inflammatory process that might influence fetal 58 development[10,11]. This modality of diagnosis of infection increases the rate of 59 identification of chorioamnionitis than clinically diagnosed chorioamnionitis 60 confirmed by amniotic fluid culture because of lack of detection of some 61 organisms cultured.[10] 62 Some series have identified that impairment of placental development as a result 63 of infection may have a profound impact in fetal development and pregnancy 64 outcome such as cerebral palsy and high rate of stillbirths.[12,13] It is on these 65 basis that this study seeks to determine the prevalence of acute inflammatory 66 placenta changes and its effect on the fetal outcome among paturients who 67 presented for delivery at the University Teaching Hospital in Port Harcourt, 68 Nigeria

69

70 Methodology

A cross sectional histological study of 192 placentae of women who had
singleton deliveries between 1st September to 30th December 2015 was
conducted. The women were recruited into the study as they presented to the
labour ward after due counseling on the scope of the study by the investigators.

75	All patients who gave consent for the study were included. Exclusion criteria
76	included: multi-order pregnancies, women who had evidence of
77	immunosuppression like diabetes mellitus, on steroids or diagnosed with
78	retroviral disease, patients with preeclampsia, previous antenatal infections,
79	intrauterine growth restriction of known cause were also excluded. All other
80	patients who presented to the labour ward during the study period were
81	<mark>included in the study.</mark> The sociodemographic characteristics of patients, which
82	include: age, parity, educational status and booking status; birth weight,
83	presence or absence of birth asphyxia and fetal outcome (dead or alive) were
84	collated in a prestructured spread sheet and analyzed. The placenta immediately
85	after delivery was collected and blood stain removed from it using gentle
86	running water, preserved in 10% formaldehyde solution and transferred to the
87	anatomical pathology laboratory of the teaching hospital for processing.
88	Grossing of the placenta was done and representative sections were taken.
89	Tissues were processed in the automated tissue processor and later stained
90	using the hematoxylin and eosin methods.
91	Two independent pathologists reviewed processed slides and areas of disparity
92	were resolved following a consensus decision of the two pathologists. Histologic
93	grading of acute inflammation was assessed by the density of neutrophil
94	infiltrates and the relative distance migrated from the vessels of origin. <mark>Placental</mark>
95	inflammatory changes were scored and categorized as: (Nil)-no
96	chorioamnionitis; Grade 1(Mild) :presence of polymorphonuclear leucocytes at
97	the subchorionic plate and lower third of chorion; Grade 2(moderate): At least
98	two separate foci of leucocytes infiltrates in the chorion and Amnion, and Grade
99	3(severe)- extensive leucocyte infiltrates in the chorion/amnion[14].

- 100 The information obtained was processed using the SPSS version 20 software
- 101 (SPSS Inc; Chicago USA) and Epi info software version 7. Results were presented
- 102 in tables, test of association was done using student's t-test with P value < 0.05
- 103 set as significant.
- 104 **Results**
- 105 The mean age of patients was 30.1± 4.6 years with an age range of 19-48 years.
- 106 69.3(133) were in the age group 25-34 years and 73.4%(141) were nulliparous
- 107 patients, 75%(144) had tertiary education and 93.2%(179) of examined
- 108 placenta belonged to booked patients while 6.8%(13) were unbooked. Other
- sociodemographic variables are as shown in Table 1.
- 110 Table two showed the relationship of booking status to placenta inflammatory
- 111 changes. Acute placenta inflammatory changes were observed in 123(64.1%) of
- all patients studied with 16(8.3%) having severe inflammatory changes. Among
- the patients, 172(89.6%) were booked while 10.4% were unbooked. In patients
- 114 with severe inflammatory changes 14(87.5%) were booked while 2(12.5%)
- 115 were unbooked. Booking status was not significantly associated with placenta
- 116 inflammatory changes (P=0.0926). Among babies delivered 11(5.7%) had low
- birth weight while 94.3%(181) had normal birth weight. Among all babies born
- to mothers with severe placenta inflammatory changes, 2(12.5%) were low birth
- 119 weight while 16(87.5%) were not low birth weight. Other distributions are as
- 120 show<mark>n</mark> in Table 2. Patients with severe placenta inflammatory changes were not
- 121 significantly associated with low birth weight babies (P=0.3)
- 122 Table 3 showed the relationship between fetal outcome and placenta
- 123 inflammatory changes. 143(74.5%) had no birth asphyxia while 49(25.5%) had
- some form of birth asphyxia. Among those with severe placenta inflammatory

- 125 changes 12(75%) had some form of asphyxia while 4(25%) had no birth
- 126 asphyxia. Placenta inflammatory changes are significantly associated with birth
- 127 asphyxia (P =0.0029). Severe inflammatory changes are significantly associated
- 128 with severe birth asphyxia (P= 0.0008989).
- 129 Among the placenta examined, 189(98.4%) belong to babies that were alive
- 130 while 3(1.6%) were dead. Among the dead babies 2(66.7%) had severe
- 131 inflammatory changes while one had moderate inflammatory changes (33.3%)
- 132 Fetal demise was not significantly associated with general placenta
- 133 inflammatory changes (P= 0.2605), however severe placenta changes was
- 134 significantly associated with fetal demise (P=0.0336)
- 135 Tables
- 136

137 Table 1:Sociodemographic characteristics of patients

138

Variables	Frequency	Percentage
Age		
15-24	16	8.3
25-34	133	69.3
35-44	42	21.9
45-54	1	0.5
Parity		
	141	73.4
1	21	10.9
2	21	10.9
3	6	3.1
4	3	1.6
Educational status		
-Primary	2	1.0
-Secondary	46	24.0
-Tertiary	144	75.0
Booking status		
-booked	179	93.2
-unbooked	13	6.8

139 140

141 Table 2: Relation of placenta inflammatory changes to booking status and birth

142 weight.

	Placenta inflammatory changes				
				0	Total
	Mild	Moderate	Severe	Nil	n(%)
Booking status					
-booked	58	40	14	67	179(89.6)
-unbooked	5	4	2	2	13 (10.4)
Total	63	44	16	69	192(100)
Fetal weight (kg)			•		
1.5-2.4	<mark>3</mark>	2	2	4	11(5.7)
2.5-3.4	<mark>38</mark>	30	8	42	118(61.5)
3.5-4.4	22	11	6	22	61(31.8)
4.5-5.4	-	1	0	1	2(1.0)
Total	<mark>63</mark>	44	16	69	192(100)

145 Table 3: Placenta histology and fetal outcome

	Placenta inflammatory changes				
					Total
	Nil	Mild	Moderate	Severe	n(%)
Birth Asphyxia					
Nil	60	49	30	4	143(74.5)
Mild	6	11	5	1	23(12.0)
Moderate	3	3	8	7	21(10.9)
Severe	0	0	1	4	5(2.6)
Total	69	63	44	16	192(100)
Fetal outcome					
Alive	69	63	43	14	189(98.4)
Dead	0	0	1	2	3(1.6)
Total	69	63	44	16	192

154 Discussion

155	The average age of paturients was similar to what was observed in other areas in
156	Nigeria [15,16], which <mark>was</mark> the peak of the sexual and reproductive ages of the
157	patients studied. This study also noted that a large proportion of women with
158	inflammatory placenta changes <mark>were</mark> nulliparous which <mark>was</mark> in conformity with
159	what was observed by Baker et al, who identified that acute placenta infections
160	decrease with increasing parity [17]. The reason as postulated by Lagadari et al
161	[18] is the development of protective layer of macrophages between decidua and
162	trophoblastic layers as parity increased as demonstrated in rat models.
163	Acute placenta inflammatory changes of varying degree were observed in more
164	than half of all patients' placentae examined, with similar distribution of placenta
165	changes observed by Rhone et al [19], where about 50% of placenta studied by
166	his group identified changes consistent with inflammatory changes. Variations in
167	the prevalence rate of acute inflammatory changes are related to the differences
167 168	the prevalence rate of acute inflammatory changes are related to the differences in tissue sampling techniques and diagnostic criteria.
168	in tissue sampling techniques and diagnostic criteria.
168 169	in tissue sampling techniques and diagnostic criteria. Acute placenta inflammatory changes have a direct correlation to clinical
168 169 170	in tissue sampling techniques and diagnostic criteria. Acute placenta inflammatory changes have a direct correlation to clinical chorioamnionitis, which is linked to poor fetal outcome [20]. These observations
168 169 170 171	in tissue sampling techniques and diagnostic criteria. Acute placenta inflammatory changes have a direct correlation to clinical chorioamnionitis, which is linked to poor fetal outcome [20]. These observations brings to the front burner the need to screen paturients for possible organisms
168 169 170 171 172	in tissue sampling techniques and diagnostic criteria. Acute placenta inflammatory changes have a direct correlation to clinical chorioamnionitis, which is linked to poor fetal outcome [20]. These observations brings to the front burner the need to screen paturients for possible organisms that are linked to acute infections such as bacterial vaginosis which is a known
168 169 170 171 172 173	in tissue sampling techniques and diagnostic criteria. Acute placenta inflammatory changes have a direct correlation to clinical chorioamnionitis, which is linked to poor fetal outcome [20]. These observations brings to the front burner the need to screen paturients for possible organisms that are linked to acute infections such as bacterial vaginosis which is a known etiological factor for chorioamnionitis and preterm membrane rupture.
168 169 170 171 172 173 174	in tissue sampling techniques and diagnostic criteria. Acute placenta inflammatory changes have a direct correlation to clinical chorioamnionitis, which is linked to poor fetal outcome [20]. These observations brings to the front burner the need to screen paturients for possible organisms that are linked to acute infections such as bacterial vaginosis which is a known etiological factor for chorioamnionitis and preterm membrane rupture. The unskilled supervised deliveries (unbooked) have been associated with

some other confounding factors which are not related to the booking status ofthe patient that need to be unearthed.

Daniele et al and Gracia[20, 22] demonstrated the association between fetal
placenta inflammation and poor neonatal growth, which is as result of distortion
of placenta function. This observation did not agree with the authors' findings,
which showed no relationship between low birth weight and the presence of
placenta inflammatory changes..

185 It was observed that, as in this study, severe placenta inflammatory changes are 186 associated with poor fetal outcome such as asphyxia and even stillbirths [23,24]. 187 The mechanism by which this is made possible is via placenta damage with loss 188 of function, preterm labour, release of inflammatory mediators, which result in 189 fetal organ damage and transplacental infection [5]. The fetal inflammatory 190 response syndrome which is related to placenta infections had also be linked 191 with the development of cerebral palsy and the development of neurological 192 deficits in the babies that survive the infectious onslaught [25]. 193 Conclusion, 194 Based on the above it is pertinent to know that placental inflammatory changes

195 being the hallmark of fetal infection is associated with poor fetal outcome in Port

- 196 Harcourt Nigeria. Hence it is imperative that steps be instituted to reduce the
- 197 risk of placenta infection among paturients by creating protocols for screening of
- 198 bacterial pathogens, reduce the factors that increase risk and possibly
- 199 prophylaxis therapy of all at risk patients. Also a protocol of histological
- 200 examination of placentae of stillborns and babies with severe birth asphyxia is
- 201 also recommended to eliminate the long-term complications of infections related
- 202 morbidities.

203 Conflict of interest: Nil

204	Acknowledgement: The authors thank the staff of the labour ward of the UPTH
205	for their dedication for assisting in the collection of the paturients placenta and
206	also Dr Bassey Goddy for his contribution towards part of the analysis of the
207	data.
208	Ethical clearance was obtained from the ethics committee of the University of
209	Port Harcourt Teaching hospital before the commencement of the study.
210	
211	References
212	1. Gude NM, Roberts CT, Kalionis B, King RG. Growth and function of the
213	normal human placenta. Thromb Res. 2004.114(5-6): 397-407
214	2. Guttmacher AE, Maddox YT, Spong CY. The human placenta project:
215	placenta structure, development and functions in real
216	time.Placenta.2014.35: 303-304
217	3. Hiller SL, Martins J, krohn M, Kiviat N, Holmes K, Eschenbach DA. A Case
218	Control study of Chorioamnionic infections and histological
219	chorioamnionitis in prematurity. N Engl J Med. 1988.319:972-78.
220	4. Fahey JO. Clinical management of intramniotic infection and
221	chorioamnionitis: A review of the literature. J Midwifery women Health.
222	2008.53(3): 227-35.
223	5. Redline RW. Placenta inflammation. Semin Neonatal. 2004.9(4): 265-74
224	6. Benirscheke K, Ceon R, Patterson B, Key T. Villitis of known origin:
225	varicella and toxoplasma. Placenta. 1999.20(5-6): 395-99
226	7. Alan TNT, Williams WA. Diagnosis and treatment of clinical
227	chorioamnionitis. Clin Perinatal. 2010.37(2): 339-54.

228	8. Sasha T, Funsun G, Edward KC, Silvia D, Sumona S. Placental
229	inflammation is not increased in inflammatory bowel disease. Ann
230	gastroenterol.2015.28: 456-63
231	9. Yoon BH, Romero R, Moon JB, Shim SS, Kim M, Kim G et al. Clinical
232	significance of intramniotic inflammation in patients with preterm labour
233	and intact membranes. Am J Obstet Gynaecol.2001.185 (5): 1130-6
234	10. Dong Y, St clair PJ, Ramsy I, Kagan-Hallet KS, Gibbs RS. A microbiologic
235	and clinical study of placenta inflammation at term. Obstet
236	Gynaecol.1987. 70(2): 175-82.
237	11. Redline RW. Inflammatory response in the placenta and umbilical cord.
238	Semin Fetal Neonatal Med. 2006.11(5): 296-301.
239	12. Goldenberg RL, Thompson C. The infection origin of stillbirth. Am J Obstet
240	Gynaecol.2003. 189(3): 861-73.
241	13. Rajeer M, Shakuntala N, Susan S, Ann P. Neonatal morbidity and placenta
242	pathology. India J Paediatrics. 2006.73:25-28.
243	14. Rindsjo E, Hulthen V, Ofori MF, Lundquist M, Holmlund U,
244	Papadogiannakis N et al. Presence of IgE ⁺ cells in human placenta is
245	independent of malaria infection and Chorioamnionitis. Clinical
246	Experimental immunology.2006.144 (2): 204-211.
247	15. Fawowe AA, Durowade KA. Pregnancy outcome among women who
248	delivered in a secondary care hospital in Ondo Nigeria. Niger J Gen Pract.
249	2012.10(1): 29-33
250	16. Ugwe EA. Maternal anthropometric characteristics as determinants of
250 251	16. Ugwe EA. Maternal anthropometric characteristics as determinants of birth weight in North- West Nigeria: A prospective study. Niger J Basic

253	17. Baker AM, Braun JM, Salafia CM, Herrig AH. Uteroplacental vascular
254	compromise and inflammation.Am J Obstet Gynaecol.2008. 199(3):
255	255.e1-25e9.dio: 10.1016/J.ajog.2008.06.055 last accessed 22 nd February
256	2016.
257	18. Lagadari M, Blois S, Margni R, Miranda S. Analysis of macrophage
258	presence in murine placenta influence on age and parity status. AJRI.
259	2004. 51:49-55
260	19. Rhone SA, Magee F, Remple V, Miney D. The association of placenta
261	abnormalities with maternal and neonatal clinical findings: a
262	retrospective cohort study. J Obstet Gynaecol Can. 2003.25(2): 123-8.
263	20. Daniele T, Caria P, Francesco C, Stefanic V, Erich C, Silva et al. Fetal
264	placenta inflammation is associated with poor neonatal growth of
265	preterm infants: a case -control study. J Maternal fetal neonatal Med.2013.
266	26(15) doi 10.3109/14767058.2013.789849.last accessed 21 st February
267	2016.
268	21. Ononuju CN, Nyengidiki TK, Ugboma HAA, Bassey G. Risk factors and
269	antibiogram of organisms causing puerperal sepsis in a tertiary health
270	facility in Nigeria. Trop J Obstet Gynaecol. 2015.32(2): 73-82
271	22. Gracia AG. Placenta morphology of low birth weight infants at term.
272	Contrib Gynaecol Obstet. 1982.9:100-12.
273	23. Beebe LA, Cowan LD, Attshuler G. The epidermiology of placenta features
274	associated with gestational age and neonatal outcome. Obstet Gynaecol.
275	1996.87(5pt1): 771-8.

- 24. Pinar B, Goldenberg RL, Koch MA, Heim –Hall J, Hawkins HK, Shahata B.
 Placenta findings in singleton stillbirths. Obstet Gynaecol.2014.123
 (2p+1): 321-26.
 25. Bashiri A, Burstein E, Mazor M. Cerebral palsy and fetal inflammatory
- 280 response syndrome: a review. J Perinat Med.2006.34 (1): 5-12.

281