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1. INTRODUCTION 36 

Oxidative stress is initiated by free radicals, which seek stability through electron pairing with biological 37 

macromolecules in healthy human cells and cause protein and DNA damage along with lipid per-38 

oxidation. It may be defined as an imbalance between free radicals and antioxidants in our body (Figure 39 

1). Free radicals are fundamental to any biochemical process and represent an essential part of aerobic 40 

life and metabolism [1]. In general, free radicals are very short lived, with half lives in milli, micro or 41 

nanoseconds. The most common reactive oxygen species (ROS) include superoxide (O2-) anion, 42 

hydrogen peroxide (H2O2), peroxyl (ROO-) radicals, and reactive hydroxyl (OH˙) radicals. The nitrogen 43 

derived free radicals are nitric oxide (NO˙) and peroxynitrite anion (ONOO-). Under physiological 44 

conditions, ROS formation and elimination are delicately balanced. However, enhanced activity of oxidant 45 

enzymes and/or reduced activity of antioxidant enzymes lead to oxidative stress. Majority of the 46 

diseases/disorders are mainly linked to oxidative stress produced due to free radicals [2, 3]. 47 

Free radicals pose a serious threat to tissues and vital organs, especially membrane lipids, 

proteins and nucleic acids of cells. Overproduction of reactive oxygen/ nitrogen species 

(ROS/RNS) and other related radicals lead to oxidative stress which has been implicated in 

aging and a number of diseases. Free radicals react with biomolecules and cause lipid 

peroxidation, loss of enzyme activity, mutation and carcinogenesis. A number of degenerative 

diseases including cardiovascular disease, diabetes, and adverse hepatic conditions have 

been attributed to accumulation of free radicals. Diseases resulting from radical overload 

might also lead to different types of cancers. However free radicals at low or moderate levels 

are vital to human health. ROS and RNS produced in a well regulated manner help maintain 

homeostasis at the cellular level in the normal healthy tissues and play an important role as 

signaling molecules. Cellular antioxidant enzyme systems including superoxide dismutase, 

catalase, glutathione peroxidases/reductase, peroxiredoxins along with non enzymatic 

antioxidants viz., tocopherols, vitamin C, and glutathione etc., apart from several dietary 

components protect cells and organisms from the lethal effects of excessive ROS production. 

Natural products of plant origin have been used in traditional medicine for the treatment of 

diseases resulting from radical overload. The diversity of phytochemicals such as 

polyphenols, flavonoids, carotenes and saponins etc. present in plants and dietary 

components provide drug leads for the development of novel therapeutic agents. This review 

deals with the components of free radical biology, their adverse consequences in humans and 

amelioration of diseases by botanical therapeutics. 



ROS have been implicated in over a hundreds of disease states which range from arthritis, connective 48 

tissue disorders to carcinogenesis, aging, physical injury, infection and acquired immunodeficiency 49 

syndrome [4, 5]. Pathological conditions that predispose to cardiovascular events, such as hypertension, 50 

hypercholesterolemia, and diabetes, are associated with oxidative stress. Antioxidant therapy has gained 51 

an immense importance in the treatment of these diseases. Antioxidants have been reported to prevent 52 

oxidative damage caused by free radicals and ROS, and may prevent the occurrence of diseases such as 53 

cancer and aging. They can interfere with the oxidation process by reacting with free radicals, chelating 54 

catalytic metals, and also acting as oxygen scavengers [6, 7, 8]. Many phytochemicals have been found 55 

to play as potential antioxidants. Present review summarizes the causes and consequences of free 56 

radical generation, antioxidants and use of plants derivatives in controlling diseases. 57 

 58 

 59 

2. FREE RADICALS  60 

 61 

Free radicals are atoms, molecules or ions with unpaired electrons that are highly unstable, short lived 62 

and active towards chemical reactions with other molecules. They may be derived from oxygen, nitrogen 63 

and sulfur [9, 10]. Internally, free radicals are produced as a normal part of metabolism within the 64 

mitochondria, through xanthine oxidase, peroxisomes, inflammation processes, phagocytosis, 65 

arachidonate pathways, ischemia, and physical exercise. External factors that help to promote the 66 

production of free radicals are smoking, environmental pollutants, radiation, drugs, pesticides, industrial 67 

solvents and ozone. It is paradox that these elements, essential to life (especially oxygen) have 68 

deleterious effects on the human body through these reactive species [9]. 69 

 70 

Fig. 1. Effect of imbalance between antioxidants and free radicals (Abbreviations: AO-antioxidant, ROS-71 

reactive oxygen species, RNS-reactive nitrogen species, RSS-reactive sulphur species, FR-free radicals, 72 

OS-oxidative stress). 73 

 74 

2.1 Reactive oxygen and nitrogen species (ROS and R NS) 75 

Free radicals derived from oxygen and nitrogen are known as reactive oxygen species (ROS) and 76 

reactive nitrogen species (RNS), respectively. Formation of ROS and RNS in the cells can occur by 77 

enzymatic and/or non-enzymatic reactions. Enzymatic reactions include those involved in the respiratory 78 

chain, the prostaglandin synthesis, the phagocytosis, and the cytochrome P450 system [11]. Some of 79 

ROS molecules are extremely reactive, such as the hydroxyl radical, while some are less reactive 80 

(superoxide and hydrogen peroxide) [5, 12]. The superoxide anion created from molecular oxygen by the 81 

addition of an electron is, in spite of being a free radical, not highly reactive. It lacks the ability to 82 

penetrate lipid membranes and is therefore enclosed in the compartment where it was produced. The 83 

formation of superoxide takes place spontaneously, especially in the electron-rich aerobic environment in 84 



vicinity of the inner mitochondrial membrane with the respiratory chain. Superoxide (as well as hydrogen 85 

peroxide) is also produced endogenously by flavoenzymes, e.g., xanthine oxidase activated in ischemia-86 

reperfusion [13, 14]. Other superoxide-producing enzymes are lipoxygenase and cyclooxygenase [15, 87 

16]. Hydrogen peroxide plays a radical forming role as an intermediate in the production of more reactive 88 

ROS molecules including hypochlorous acid by the action of myeloperoxidase, an enzyme present in the 89 

phagosomes of neutrophils [17]. Most importantly, hydrogen peroxide forms hydroxyl radical in a reaction 90 

catalyzed by metal ions (Fe2+or Cu+), often bound in complex with different proteins or other molecules by 91 

a reaction known as the Fenton reaction [18, 19].  92 

 93 

Nitric oxide (NO) is formed from L-arginine by one of the three NO synthase (NOS) isoforms. The three 94 

isoforms are nNOS (identified constitutive in neuronal tissue), iNOS (inducible by cytokines in activated 95 

macrophages and liver) and eNOS (identified constitutive in vascular endothelial cells) [20]. NO is rapidly 96 

oxidized by oxyhemoglobin to form nitrate, the major end stable oxidation product of NO in the body. NO 97 

also reacts with glutathione to form nitrosothiol or with heme to yield heme-NO. Physiologically, 98 

nitrosothiol can serve as a vehicle to transport NO in plasma, thereby increasing the biological half-life of 99 

physiologic concentrations of NO [21, 22]. 100 

 101 

2.2 Physiological functions of free radicals 102 

ROS and RNS are involved in many physiological activities and function as cellular signaling agents. 103 

Activation of phagocytes produces ROS in amounts enough to kill intruding bacteria [23]. In this system 104 

ROS are produced by the NADPH oxidase complex that converts O2 to O2•- [24, 25]. Superoxide is then 105 

reduced in the phagosome by SOD to H2O2 that can be further converted to HOCl by myeloperoxidase 106 

[26]. Hypochlorous acid may then spontaneously form hydroxyl radical. The two highly reactive ROS 107 

molecules thereby formed in phagosomes (HOCl and •OH) are highly toxic to bacteria ingested by the 108 

phagocyte and carry the direct antimicrobial effects of ROS. The hypochlorous acid produced in the 109 

myeloperoxidase reaction is also an important part of the antimicrobial defense by destruction of the DNA 110 

anchoring at the bacterial membrane, resulting in cessation of DNA replication [27]. 111 

 112 

ROS can directly affect the conformation and/or activities of all sulfhydryl-containing molecules, such as 113 

proteins or GSH, by oxidation of their thiol moiety. This type of redox regulation affects many proteins 114 

important in signal transduction and carcinogenesis such as protein kinase C, Ca2+-ATPase, collagenase, 115 

and tyrosine kinases [28], among many other enzymes and membrane receptors [29]. For several 116 

transcription factors, ROS function as physiological mediators of transcription control. Well-known 117 

examples of redox-sensitive transcription factors are Nuclear Factor-кB (NF-кB) and Activator Protein-1 118 

(AP-1) [30]. Activator Protein-1, a dimer of gene products from the Jun and Fos proto-oncogene families, 119 

expression is induced by several pro-oxidant conditions, including different types of irradiation [31, 32]. 120 

Nitric oxide (NO) is one of the most important signaling molecules. Physiologic levels of NO produced by 121 

endothelial cells are essential for regulating the relaxation and proliferation of vascular smooth muscle 122 

cells, platelet aggregation, leukocyte adhesion, angiogenesis, vascular tone, thrombosis, and 123 

hemodynamics.  In addition, NO produced by neurons serves as a neurotransmitter, and NO generated 124 

by activated macrophages is an important mediator of the immune response [33, 34]. 125 



2.3 Molecular damage induced by free radicals 126 

All the biological molecules present in our body are at risk of being attacked by ROS. It is estimated that 127 

every day a human cell is targeted by the hydroxyl radical and other such species on an average of 105 128 

times inducing oxidative stress [33]. The main targets of ROS and other free radicals are proteins, DNA 129 

and RNA molecules, sugars and lipids [34-37]. Membrane lipids present in sub-cellular organelles are 130 

highly susceptible to free radical damage. During lipid per-oxidation a large number of toxic byproducts 131 

are also formed that can have effects at a site away from the area of generation, behaving as second 132 

messengers. The damage caused by lipid peroxidation is highly detrimental to the functioning of the cell 133 

[38]. Oxidation of proteins by ROS/RNS can generate a range of stable as well as reactive products such 134 

as protein hydroperoxides that can generate additional radicals particularly upon interaction with 135 

transition metal ions. Table 1 summarizes the mechanisms involved in free radical damage of 136 

biomolecules. Oxidative damage to DNA is a result of interaction of DNA with ROS or RNS. The C4-C5 137 

double bond of pyrimidine is particularly sensitive to attack by hydroxyl radical, generating a spectrum of 138 

oxidative pyrimidine damage products, including thymine glycol, uracil glycol, urea residue, 5-139 

hydroxydeoxyuridine, 5-hydroxydeoxycytidine, hydantoin and others. 8-Hydroxydeoxyguanidine (8-140 

OHdG) has been implicated in carcinogenesis and is considered a reliable marker for oxidative DNA 141 

damage [38]. 142 

 143 

 144 

Table 1. Mechanisms involved in free radical mediated damage to biomolecules 145 

Targets of 
free 

radicals  

Mode of damage  

Proteins Oxidative modification of a specific amino acid. 
Free radical-mediated peptide cleavage. 
Formation of protein cross -linkage due to reaction with lipid peroxidation 
products [9]. 

DNA and 
RNA 

Production of base-free sites. 
Deletions, modification of bases. 
Frame shifts. 
Strand breaks. 
DNA–protein crosslink and chromosomal arrangements. 
Oxidation of DNA by hydroxyl radicals [39, 40]. 

Sugars Formation  of  oxygen  free  radicals  during  early  glycation  could  contribute  
to glycoxidative damage [40]. 

Short sugar fermentation products (glycoaldehyde) due to autoxidation 
produce superoxide radical [40]. 

Lipids Lipid peroxidation takes place by the abstraction of hydrogen atom from a 
methylene carbon of fatty acid side chain resulting into free radical chain 
reaction producing peroxyl radicals [41].  

Another way to generate lipid peroxides is through the attack on 
polyunsaturated fatty acids (PUFA) or their side chain by the singlet oxygen 
which is a very reactive form of oxygen [41]. 

 146 

 147 



3. ANTIOXIDANTS 148 

Antioxidants are substances that neutralize free radicals or their actions [42]. The antioxidants acting in 149 

the defense systems act at different levels such as preventive, radical scavenging, repair and de novo, 150 

and the fourth line of defense, i.e., the adaptation. The first line of defense is the preventive antioxidants, 151 

which suppresses the formation of free radicals. The second line of defense is the antioxidants that 152 

scavenge the active radicals to suppress chain initiation and/or break the chain propagation reactions. 153 

The third line of defense is the repair and de novo antioxidants. The enzymes present in the cytosol and 154 

in the mitochondria of mammalian cells recognize, degrade, and remove oxidatively modified proteins and 155 

prevent the accumulation of oxidized proteins. There is another important function called adaptation 156 

where the signal for the production and reactions of free radicals induces formation and transport of the 157 

appropriate antioxidant to the right site [43]. Antioxidants can be classified into two major classes i.e., 158 

enzymatic and non-enzymatic. 159 

 160 

3.1 Enzymatic antioxidants 161 

Nature has endowed each cell with adequate protective mechanisms against harmful effects of free 162 

radicals. Cellular antioxidant enzyme systems serve to protect cells and organisms from the lethal effects 163 

of excessive ROS formation. Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase and 164 

glutathione reductase are examples of some antioxidant enzymes. 165 

 166 

In eukaryotic cells, O2•- can be metabolized to hydrogen peroxide by two metal containing SOD 167 

isoenzymes, tetrameric Mn-SOD present in mitochondria, and dimeric Cu/Zn-SOD present in the cytosol 168 

[43, 44]. In the reaction catalyzed by SOD, two molecules of superoxide form hydrogen peroxide and 169 

molecular oxygen and are thereby a source of cellular hydrogen peroxide. In mitochondria, superoxide is 170 

formed in relatively high concentrations due to the leakage of electrons from the respiratory chain. 171 

Expression of Mn-SOD is, in contrast to Cu/Zn-SOD, induced by oxidative stress [44]. Cytosolic Cu/Zn-172 

SOD seems less important than Mn-SOD, and transgenic animals lacking this enzyme are able to adapt 173 

so that the phenotype appears normal [45]. 174 

 175 

Catalases of many organisms are mainly heme-containing enzymes [46]. The predominant subcellular 176 

localization in mammalian cells is in peroxisomes, where catalase catalyzes the dismutation of hydrogen 177 

peroxide to water and molecular oxygen. Catalase also has functions in detoxifying different substrates, 178 

e.g., phenols and alcohols, via coupled reduction of hydrogen peroxide. One antioxidative role of catalase 179 

is to lower the risk of hydroxyl radical formation from H2O2 via the Fenton reaction catalyzed by Cu or Fe 180 

ions. Catalase binds NADPH, which protects the enzyme from inactivation and increases its efficiency 181 

[47]. 182 

 183 

Peroxiredoxins (Prx; thioredoxin peroxidases) are recently discovered enzymes capable of directly 184 

reducing peroxides, e.g., hydrogen peroxide and different alkyl hydroperoxides [48]. In mammalian cells, 185 

thioredoxin regenerate oxidized Prx formed in the catalytic cycle [49]. In the mitochondria of mammalian 186 

cells the mitochondrial thioredoxin system is probably a specific reductant of Prx [50]. Peroxiredoxins 187 

have been shown to inhibit apoptosis induced by p53 and by hydrogen peroxide on a level upstream of 188 

bcl-2 [51]. 189 

There are at least four different Glutathione peroxidases (GPx) in mammals (GPx1–4), all of them 190 



containing selenocysteine [52]. GPx1 and GPx4 both are cytosolic enzymes abundant in most tissues. 191 

GPx4 has recently been found to have dual functions in sperm cells by being enzymatically active in 192 

spermatids but insoluble and working as a structural protein in mature spermatozoa [53]. GPx2 193 

(gastrointestinal GPx) and GPx3 (plasma GPx) are mainly expressed in the gastrointestinal tract and 194 

kidney, respectively [54]. All glutathione peroxidases may catalyze the reduction of H2O2 using 195 

glutathione as substrate. They can also reduce other peroxides (e.g., lipid peroxides in cell membranes) 196 

to alcohols. Some data has indicated that GPx should be of high antioxidant importance under 197 

physiological conditions while others place the enzymes as important only at events of oxidative stress 198 

[55]. The function of GPx isoenzymes in antioxidant defense is still unclear, but the kinetic properties and 199 

widespread distribution still imply that they constitute major contributors to the total protection against 200 

oxidative damage. 201 

3.2 Non enzymatic antioxidants 202 

The non-enzymatic antioxidants include tocopherols, carotenoids, ascorbic acid, flavonoids and 203 

polyphenols which are obtained from natural plant sources [56]. Some non enzymatic antioxidants are 204 

shown in Figure 2. Exposure to DNA by irradiation or hydroxyl radical may leads to the formation of 8-205 

hydroxydeoxyguanosine. On this basis Fischer-Nielsen et al. (1992) [57] found that vitamin C at 206 

physiological concentration exhibits a protective effect against free radical-induced oxidative damage. 207 

Vitamin E and tocotrienols (such as those from palm oil) are efficient lipid soluble antioxidants that 208 

function as a chain breaker during lipid peroxidation in cell membranes and various lipid particles 209 

including LDL [58, 59]. Animal studies have shown the antioxidant effect of dietary phytochemicals. 210 

Among them, phenolic compounds, such as flavonoids exhibit potent antioxidant activities. For example 211 

tea polyphenols have capability to enhance red blood cell resistance to oxidative stress; scavenge 212 

superoxide and hydroxyl radicals; and inhibition of oxidative modification of low density lipoprotein. 213 

Dietary supplementation of polyphenols is also reported to decrease serum concentrations of total 214 

cholesterol and malondialdehyde [21]. β-Carotene and other carotenoids (α-carotene, γ-carotene, and β-215 

cryptoxanthin) are potent antioxidants of plant origin.  They react with a peroxyl radical to form a 216 

resonance-stabilized carbon-centered radical within its conjugated alkyl structure, thereby inhibiting the 217 

chain propagation effect of ROS. Lycopene, lutein, canthaxanthin, and zeaxanthin also have their 218 

antioxidant actions similar to those of β –carotene [60].  A wide range of antioxidants from both natural 219 

and synthetic origin have been proposed for use in the treatment of various human diseases [61]. Some 220 

synthetic antioxidant compounds commonly used in processed foods have been shown to produce toxic 221 

effects like liver damage and mutagenesis [5, 62]. Hence, nowadays search for natural compounds 222 

antioxidant source is gaining much importance. 223 
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 225 

 226 

Antioxidant-based drugs/formulations for prevention and treatment of complex diseases like 227 

atherosclerosis, stroke, diabetes, Alzheimer’s disease (AD), Parkinson’s disease, cancer, etc. appeared 228 

over the past three decades. There are a number of epidemiological studies that have shown inverse 229 

correlation between the levels of established antioxidants/phytonutrients present in tissue/blood samples 230 

and occurrence of cardiovascular disease, cancer or mortality due to these diseases. 231 

 232 

4. FREE RADICALS AND HUMAN DISEASES  233 

Free radicals have different types of reaction mechanisms. They can react with surrounding molecules by 234 

(a) electron donation, reducing radicals, and electron acceptance, oxidizing radicals, (b) hydrogen 235 

abstraction, (c) addition reactions, (d) self-annihilation reactions, and (e) by disproportionation [63]. These 236 

reactions lead to the production of ROS, RNS and other radicals which have been linked to many severe 237 

diseases like cancer, cardiovascular diseases including atherosclerosis and stroke, neurological 238 

disorders, renal disorders, liver disorders, hypertension, rheumatoid arthritis, adult respiratory distress 239 

syndrome, auto-immune deficiency diseases, inflammation, degenerative disorders associated with 240 

aging, diabetes mellitus, diabetic complications, cataracts, obesity, autism, alzheimer’s, parkinson’s and 241 

huntington’s diseases, vasculitis, glomerulonephritis, lupus erythematous, gastric ulcers, 242 

hemochromatosis and preeclampsia, among others [64, 65]. Effects of free radicals on disease 243 

occurrence are shown below (Fig. 3). 244 

4.1 Cancer 245 

DNA is a major target of free radical damage. The types of damages induced include strand breaks 246 

(single or double strand breaks), various forms of base damage yielding products such as 8-247 

hydroxyguanosine, thymine glycol or abasic sites, damage to deoxyribose sugar as well as DNA protein 248 

cross links. These damages can result in mutations that are heritable change in the DNA that can yield 249 

cancer in somatic cells or foetal malformations in the germ cells. 250 

Table 2. Radical overload diseases leading to high cancer risk 251 

Disease  Cancer  



Crohn’s disease 
Ulcerative colitis 

Colon [67, 68] 

Barrett’s oesophagus Oesophageal [69] 

Pancreatitis Pancreatic [70] 

Prostatitis Prostate [71] 

Human papilloma virus infection Cervix [72] 

Viral hepatitis B and C 
Haemochromatosis 

Liver    [73, 74] 

 252 

 253 

The involvement of free radicals with tumor suppressor genes and proto-oncogenes suggest their role in 254 

the development of different human cancers [66]. Cancer develops through an accumulation of genetic 255 

changes. Initiating agents can be tobacco smoking and chewing, UV rays of sunlight, radiation, viruses, 256 

chemical pollutants, etc. Promoting agents include hormones (androgens for prostate cancer, estrogens 257 

for breast cancer and ovarian cancer). Inflammation induces iNOS (inducible nitric oxide synthase) as 258 

well as COX and LOX. These can initiate carcinogenesis. Table 2 summarizes examples of radical over 259 

load diseases. These develop from condition of chronic inflammation and can have an etiology that is 260 

primarily inherited or acquired through viral, bacterial and parasitic infection, or acquired through chemical 261 

induction. Cancer proneness is frequently a pathological consequence of extensive and sustained free 262 

radical stress related damage in these diseases. 263 

 264 

 265 



Fig. 3. Consequences of free radical load 266 

 267 

Experimental as well as epidemiological data indicate that a variety of nutritional factors can act as 268 

antioxidants and inhibit the process of cancer development and reduce cancer risk. Some of these 269 

include vitamins A, C, E, beta-catotene, and micronutrients [75]. Chemopreventive phytochemicals can 270 

block initiation or reverse the promotion stage of multistep carcinogenesis. They can also halt or retard 271 

the progression of precancerous cells into the malignant ones. Many molecular alterations associated 272 

with carcinogenesis occur in cell-signalling pathways that regulate cell proliferation and differentiation. 273 

One of the central components of the intracellular signaling network that maintains homeostasis is the 274 

family of mitogen activated protein kinases (MAPKs), they are prime targets of diverse classes of 275 

chemopreventive phytochemicals [76]. A number of plants (Table 3) have been found to inhibit cancer 276 

progression.  277 

Table 3: Phytoconstituents and anti cancer activity 278 

Plant  Family  Compound  Mode of action  

Catharanthus 
roseus 

Apocynaceae Vindesine 
and 
Vinorelbine 

mitotic block  [77] 

Catharanthus 
roseus 

Apocynaceae Vinflunine mitotic block [78] 

Podophyllum 
peltatum 

Berberidaceae Etoposide mitotic block [79] 

Camptotheca 
acuminate 

 Nyssaceae Topotecan DNA  topoisomerase I inhibition 
[80] 

Berberis amarensis  Berberidaceae Berbamine Caspase-3- dependent apoptosis 
[81] 

Hvdrastis 
canadensis 

 Ranunculaceae Berberine Inhibit  bcr/abl gene fusion [82] 

Tabebuia 

avellanedae 
Bignoniaceae Betalapachon

e 
Inhibition of 

topoisomerase I and II [83] 

Betula alba Betulaceae Betulinic acid Triggers mitochondrial pathway of 
apoptosis [84] 

Colchicum 
autumnale 

 Colchicaceae Colchicine Anti-mitotic [85] 

Curcuma longa  Zingiberaceae Curcumin Exact mechanism of action is still 
unknown [86] 

Wikstroemia indica  Thymelaeaceae Daphnoretin suppression of protein and DNA 
synthesis [87] 

Psoralea corylifolia  Fabaceae Psoralidin enhanced TRAIL-induced (Tumor 
necrosis factor-related apoptosis-
inducing ligand) apoptosis [88] 

Vicia faba  Fabaceae Diadzein and 
Genistein 

Inhibits 3A 4- mediated 
metabolism and oxidative 
metabolism [89] 

Ochrosia borbonica  Apocynaceae Ellipticine DNA intercalation and inhibition of 
topoisomerase II [90] 



Amoora rohituka Meliaceae Flavopiridol Inhibits cell cycle progression at 
G1 or G2 phase [91] 

Cephalotaxus 
harrintonia 

Cephalotaxaceae Harringtonine Inhibition of protein synthesis and 
chain elongation during translation 
[92] 

Ipomoeca batatas  Convolvulaceae 4-Ipomeanol cytochrome P-450 mediated 
conversion into DNA-binding 
metabolites [93] 

Iridaceaelatea 
pallasii 

Iridaceae Irisquinone Acts as a chemosensitizer[94] 

Erythroxylum 
pervillei 

Erythroxylaceae Pervilleines Inhibitors of Pglycoprotein [95] 

Salvia prionitis  Lamiaceae Salvicine Inhibition of topoisomerase II [96] 

Aglaia foveolata Meliaceae Silvestrol apoptosome/ mitochondrial 
pathway is involved in triggering 
extrinsic pathway of programmed 
cell death of tumor cells [97] 

 279 

 280 
 281 

4.2 Cardiovascular disease 282 

Several established risk factors for cardiovascular disease have been linked to excessive generation of 283 

ROS. For instance, in animal models of hiperlipidemia, hypertension, and diabetes, the elevated levels of 284 

vascular superoxide anion production have been found [98, 99]. The studies strongly suggest that 285 

increased oxidative stress is involved in the pathophysiology of cardiovascular disease. Several 286 

mechanisms have been proposed to explain how excessive production of ROS leads to vascular 287 

pathology. First, ROS are able to promote the oxidation of low-density lipoprotein (LDL) [100]. Uptake of 288 

oxidatively modified lipoproteins by macrophages transforms these cells into foam cells, which are a key 289 

component of atherosclerotic plaques [101]. Second, superoxide anion rapidly inactivates endothelium 290 

derived nitric oxide (NO), a molecule with intrinsic antiatherogenic properties, leading to endothelial 291 

dysfunction, which is a hallmark of early atherosclerosis [102]. Moreover, the reaction between 292 

superoxide anion and NO generates peroxynitrite (ONOO-), which has been found to be cytotoxic to 293 

endothelial and vascular smooth muscle cells through a broad range of biological actions, such as lipid 294 

oxidation and mitochondrial DNA damage. Third, ROS have been shown to be involved in increased 295 

expression of certain vascular pro-inflammatory genes that are pertinent to atherogenesis, such as 296 

monocyte chemoattractant protein-1 (MCP-1), vascular cell adhesion molecule-1 (VCAM-1), and 297 

intercellular adhesion molecule-1 (ICAM-1) [103, 104]. 298 

 299 

Phytochemicals prevent endothelial dysfunction and reduce blood pressure, oxidative stress, and end 300 

organ damage in hypertensive animals. Moreover, some clinical studies have shown that phytochemicals 301 

can improve endothelial function in patients with hypertension and ischemic heart disease [105]. The 302 

effects of individual plant products on the relaxation of isolated arteries from rats have been investigated 303 

in many studies. Tetracyclic triterpene saponins, the ginsenosides are often attributed to the effects of 304 

Panax ginseng (Araliaceae) on the cardiovascular system. Studies show that phytosterols also have 305 



effect on the cardiovascular system by lowering cholesterol levels [106]. 306 

 307 

4.3 Diabetes 308 

Diabetes mellitus is a metabolic disorder characterized by hyperglycemia and insufficiency of secretion or 309 

action of endogenous insulin. Although the etiology of this disease is not well defined, viral infection, 310 

autoimmune disease, and environmental factors have been implicated [107]. Increased oxidative stress is 311 

a widely accepted participant in the development and progression of diabetes and its complications [108]. 312 

People suffering from diabetes are not able to produce or properly use insulin in the body and therefore 313 

chronic hyperglycemia occurs. Hyperglycemia is also found to promote lipid peroxidation of low density 314 

lipoprotein (LDL) by a superoxide-dependent pathway resulting in the generation of free radicals [109]. 315 

Auto-oxidation of glucose involves spontaneous reduction of molecular oxygen to superoxide and 316 

hydroxyl radicals, which are highly reactive and interact with all biomolecules. They also accelerate 317 

formation of advanced glycation end products (AGEs). AGEs such as pyrroles and imidazoles tend to 318 

accumulate in the tissue. Crosslinking AGE-protein with other macromolecules in tissues results in 319 

abnormalities in the cell and tissue function. Due to protein glycation capacity of antioxidant enzymes is 320 

also reduced. Free radicals generated also react with nitric oxide in endothelial cells leading to loss of 321 

vasodilation activity. Long lived structural proteins, collagen and elastin, undergo continual non-enzymatic 322 

crosslinking during ageing and in diabetic individuals [110]. This abnormal protein crosslinking is 323 

mediated by AGEs generated by nonenzymatic glycosylation of proteins by glucose. 324 

 325 

Up to now, many kinds of antidiabetic medicines have been developed for the patients and most of them 326 

are chemical or biochemical agents aiming at controlling or/and lowering blood glucose to a normal level. 327 

Despite the impressive advances in health sciences and medical care, there are many patients who are 328 

using alternative therapies alone or complementary to the prescribed medication. Traditional plant 329 

remedies or herbal formulations exist from ancient times and are still widely used, despite all the 330 

controversy concerning their efficacy and safety to treat hypoglycemic and hyperglycemic conditions all 331 

over the world. To date, metformin (a biguanide) is the only drug approved for treatment of type II 332 

diabetes mellitus [111]. It is a derivative of an active natural product, galegine, isolated from the plant 333 

Galega officinalis L. [112]. Table 4 summarizes the herbs with active components having anti diabetic 334 

property. 335 

 336 

Table 4: Anti diabetic activity of plant products 337 

Plant  Family  Active 
compounds  

Mode of action  

Abelmoschus 
moschatus 

Malvaceae Myricetin enhances glucose utilization to 
lower plasma glucose with 
deficient insulin levels. [113] 

Achyrocline 
satureioides 

Asteraceae Dibenzofuran 
Achyrofuran 

lowers blood glucose levels[114] 

Psacalium Asteraceae Maturine lowers blood glucose levels [115] 



decompositum 

Acourtia thurberi Asteraceae benzoquinone 
perezone 

lowers blood glucose levels [116] 

Allium sativum Liliaceae Allicin decreases the concentration of 
serum lipids,  blood glucose and 
activities of serum enzymes [117] 

Allium cepa Liliaceae S-methyl cysteine 
sulfoxide 

stimulation of insulin secretions  
and  partly  due  to  its antioxidant 
activity [118] 

Bauhinia 
forficata 

Leguminosae Kaempferitrin decreases lipid peroxidation in 
liver cells [119] 

Bryonia alba Curcubiaceae Trihydroxy 
octadecadienoic 
acid 

restores the disordered lipid 
metabolism [120] 

Caesalpinia 
ferrea 

Leguminosae Ellagic acid ALR2 inhibitor [121] 

Dioscorea 
dumetorum 

Dioscoreaceae Dioscoretine Lowers glucose level [122] 

Eucalyptus 
macrocarpa 

Myrtaceae Macrocarpals (A, 
B, C and D) 

inhibitory activity against porcine 
lenses ALR2 [123] 

Ficus 
bengalensis 

Moraceae Leucopelargonidin serum insulin raising [124] 

Galega 
officinalis 

Leguminosae Guanidine blood glucose-lowering 
activity[125] 

Gentiana olivieri Gentianaceae Isoorientin Antihyperlipidemic [126] 

Hydnocarpus 
wightiana 

Arcariaceae Hydnocarpin alpha-glucosidase  and  
moderate N-acetyl-beta- D-
glucosaminidase inhibitory 
activities [127] 

 338 

 339 

4.4 Oxidative stress and metabolic changes in the l iver 340 

Hepatocyte plays a central role in the metabolism of alcohol or drugs which may enhance the ROS 341 

production [128]. Under some consequences a large amount of free fatty acids (FFAs) from the 342 

visceral fat tissue, as well as from dietary glucose and fat, flows directly into the liver [129]. Due to 343 

these mitochondria, peroxisomes, and endoplasmic reticulum metabolize the excessive amount of fatty 344 

acid, resulting in overproduction of ROS and oxidative stress in the hepatocytes. Excessively high 345 

levels of iron are stored in the hepatocytes of patients with fatty liver, alcoholic hepatitis, or hepatitis 346 

type C. Such over accumulation of iron also causes oxidative stress in the hepatocytes [8]. The reason 347 

hepatocytes have the highest antioxidant function as compared with the cells of other organs is 348 

probably that oxidative stress is easily induced in the hepatocytes. 349 

 350 

Herbal medicines have been used in the treatment of liver diseases for a long time. A number of herbal 351 

preparations are available in the market. Some commonly used herbal preparations are Phyllanthus, 352 



Silybum marianum (milk thistle), glycyrrhizin (licorice root extract), and Liv52 (mixture of herbs). 353 

Phyllanthus appears to be promising in patients with chronic hepatitis B virus (HBV) infection [130]. Liu et 354 

al. (2001) [131] published a meta-analysis of the effect on and safety of genus Phyllanthus for chronic 355 

HBV infection. None of the trials reported mortality or incidence of liver cirrhosis and/or hepatocellular 356 

carcinoma. Phyllanthus has a positive effect on clearance of HBV markers. There are no major adverse 357 

effects. Though the active compound remains to be identified, significant progress has already taken 358 

place in standardization of the extract to ensure the bioefficacy of P. amarus [132]. 359 

 360 

Silybum marianum is the most well researched plant in the treatment of liver disease. In Roman times, 361 

Pliny the El-der (A.D. 77), a noted naturalist, reported that milk thistle was excellent for carrying off bile. 362 

Culpeper (1650) described its effectiveness in removing obstruction of the liver and spleen [133]. The 363 

active complex in mile thistle is a lipophilic extract from the seeds of the plant and is composed of three 364 

isomer flavonolignans-silybin, silydianin, and silychrstine collectively known as silymarin [134]. Silymarin 365 

acts as an antioxidant by reducing free radical production and lipid peroxidation, has antifibrotic activity, 366 

and may act as a toxin blockade agent by inhibiting binding of toxins to heptocyte cell membrane 367 

receptors [135]. In animals, silymarin reduces liver injury caused by acetaminophen, carbon tetrachloride, 368 

radiation, iron overload, phenylhydrazine, alcohol, cold ischemia, and Amanita phalloides [136]. 369 

 370 

Glycyrrhizin is an aqueous extract of the licorice root, Glycyrrhizin glabra. Its major constituents are 371 

glycyrrhetic acid, multiple flavonoids, isoflavonoids, hydroxycoumarins and sterols, including β-sitosteroid, 372 

which may have glucocorticoid and mineralocorticoid activities [137]. Glycyrrhizin prevents several forms 373 

of experimental liver injury in animals [138]. This compound has anti-inflammatory and antioxidant 374 

activities. 375 

 376 

Liv52 is considered to be an Ayurvedic hepatoprotective medicine that contains the Capparis spinosa 377 

(Himsara), Cichorium intybus (Kasani), Mandur bhasma, Solanum nigrum (Kakamachi), Terminalia arjuna 378 

(Arjuna), Cassia occidentalis (Kasamarda), Achillea millefolium (Biranjasipha), and Tamarix gallica 379 

(Jhavaka). Liv52 has been on the market for over 50 years and has been claimed to be useful in the 380 

prevention and treatment a variety of conditions such as viral hepatitis, alcoholic liver disease, protein 381 

energy malnutrition, loss of appetite, and radiation and chemotherapy induced liver damage [139]. 382 

Experimental data suggest that Liv52 inhibits lipid peroxidation, may have a protective effect on alcohol 383 

induced fetotoxicity, and inhibits TNF activity. Liv52 has been claimed to be useful as an adjuvant to 384 

hepatotoxic drugs [140-142]. 385 

 386 

4.5 Free radical and aging 387 

The aging process has been shown to result in an accelerated functional decline. The exact mechanisms 388 

that cause this functional decline are unclear. The free radical theory of aging, however, has gained 389 

strong support because it is able to explain some of the processes that occur with aging and the 390 

degenerative diseases of aging. This theory proposes that an increase in oxygen radical production with 391 

age by mitochondria produce an increase in cellular damage [143-145]. Aerobic organisms are well-392 

protected against oxidative challenges by sophisticated antioxidant defense systems. However, it appears 393 



that during the aging process an imbalance between oxidants and antioxidants balance may occur. 394 

Oxidative damage of biomolecules increases with age and is postulated to be a major causal factor of 395 

cellular biochemical senescence [146-148]. Resveratrol, a phytoalexin, is synthesized in the leaf 396 

epidermis and the skin (pericarp) of grape berries and has potential antioxidant and anti-aging property 397 

[149]. Some plants and their parts having anti aging activity are given in Table 5. 398 

 399 

Table 5: Some of the plants and their part used for anti aging activity 400 

Part used Plant Family 

Leaves Adansonia digitata Bombacaceae 
[150] 

Alstonia boonei Apocynaceae 
[151] 

Bambusa vulgaris Poaceae [152] 

Elaeis guineensis Palmae [153] 

Ficus capensis Moraceae [154] 

Harungana 
madagascariensis 

Harungaceae 
[80] 

Spondias mombin Anacardiaceae  
[155] 

Tectona grandis Verbanaceae 
[156] 

Zea mays Poaceae [157] 

Seed Aframomum melegueta Zingiberaceae 
[158] 

Garcinia kola Gutiferae [159] 

Whole plant Baphia nitida Papilinionaceae 
[160] 

Lophira alata Ochnaceae [161] 

Root Montandra guineensis Apocynaceae 
[162] 

Cocos nucifera Palmae [163] 

Stem bark Cordia millenii Boraginaceae 
[164] 

Khaya ivorensis Meliaceae [165] 

Fruits Milicia excels Moraceae [166] 

 401 

The main function of mitochondria is energy production. During oxidative phosphorylation, however, 402 

highly reactive oxygen radicals are generated. One major site of oxidant production occurs in the 403 

mitochondrial electron transport chain in which O2 is reduced to H2O. Several studies have investigated 404 

age associated increase in the generation of oxidants by mitochondria [167, 168]. Experiments using 405 



intact muscle mitochondria from house flies have shown that the rate of H2O2 generation progressively 406 

increases 2-fold as the house fly ages [169]. The enhanced generation of oxidants by older 407 

mitochondria may itself be caused by oxidative damage to mitochondrial membranes and proteins [170]. 408 

Miquel and his colleagues have widely promulgated the mitochondrial mutation theory of aging [170]. In 409 

this theory, senescence is linked to mutations of mitochondrial DNA (mtDNA) in differentiated cells. 410 

Mitochondrial DNA lacks excision and recombination repair mechanisms, it has been postulated that 411 

these mutations would lead to problems in replication, leading to a decline in physiological performance 412 

and the pathogenesis of many age-related diseases [169, 170]. In addition, mtDNA is not protected by 413 

histones or DNA-binding proteins and, therefore, is directly exposed to a high steady state level of 414 

reactive oxygen and nitrogen species. Thus, oxidative modification and mutation of mtDNA may occur 415 

with great ease. During the aging process, protein oxidation is increased in a wide variety of human and 416 

animal tissues. The exact pathways for oxidative cellular damage are poorly understood because the 417 

reactive metabolites are very short-lived and difficult to detect directly in vivo. The quantification of 418 

oxidative damage to proteins has been studied almost exclusively by assessing the total carbonyl 419 

content [171]. The oxidants responsible for carbonyl formation within the proteins in vivo are believed to 420 

be radicals, such as, hydroxyl radicals. Indeed, hydroxyl radicals can be generated by metal-catalyzed 421 

oxidation systems, and different metal catalyzed oxidation systems convert several amino acid residues 422 

to carbonyl derivatives [169-171]. 423 

 424 

5. CONCLUSION AND FUTURE PROSPECTS  425 

Free radicals are known to play a definite role in a wide variety of pathological manifestations. 426 

Antioxidants fight free radicals and protect us from various diseases. They exert their action either by 427 

scavenging the reactive oxygen species or protecting the antioxidant defense mechanisms. They can 428 

greatly reduce the damage due to oxidants by neutralizing the free radicals before they can attack the 429 

cells and prevent damage to lipids, proteins, enzymes, carbohydrates and DNA. Phytochemicals 430 

including polyphenols, flavonoids and others have potential to provide defense against oxidative damage. 431 

Newer approaches are further required for identification and characterization the specific 432 

phytoconstituents from diverse flora for providing protection against oxidative stress. 433 

 434 
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