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Abstract

Empirical forecasting is the science of using past data to predict the future, without

physical modeling. For these, probability functions are used, normally bell-shaped Gaussian

or Gaussian-like. Taleb in his book the Black Swan introduces for this purpose the concept of

scalable functions. Here it is shown that the only scalable functions are power-law functions

and they can be treated as one and the same. Moreover, the analytical problems of these

functions are discussed. Scalable functions are inadequate for empirical forecasting.
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1 Introduction

It has always been popular to analyze past events and make some kind of ’statistical analysis’ of

them to allow for making statements about the future of the system under study. This, actually,

is common practice in many areas, such as the stock markets, the climate, finance, epidemics,

etc. Society needs predictions as a base for implementing measures. The current handling of the

economic crisis is a good example, where past financial data is used to do stress-testing of financial

institutions. Yet, this kind of approaches has its own problems and we have to be careful, even if

it satisfies our inherent need to ’do something’.

The idea of empirical forecasting became a science in 1693 when Edmond Halley published his

article on life annuities. By looking at the death tables of Breslau (now Wroc law), without any

attempt of explaining these data, he calculated how much people in a community should set aside

for allowing them to have a pension and receive a yearly ’annuity’ until death. A research area

was born, Actuary, the mother of all empirical forecasting. By looking at past data – ’tables’ –

probabilities are determined and the future is planned. The (economical) success of this science

ensured a wide dissemination of the ideas. In 2014 most events are seen as probabilistic whose

distribution parameters can be found in past data. This ranges from the weather to the stock

markets to sports events, etc. The concept of empirical forecasting has been successfully applied

to various disciplines such as supply chain management [1], marketing [2], finance [3], sports [4],

currency trade [5], etc., with these examples of a vast collection of works, where entire journals are

dedicated to the subject.

Relevant for forecasting are extreme events, ’outliers’. They have tiny occurrence, but they

will happen every now and then. Nassim Taleb calls these outliers Black Swans[6]. In his words,

Black Swans are 1) Outliers, 2) Carry extreme impact, 3) Humans concoct explanations after the
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fact, making them explainable and predictable (a posteriori). The name derives from the fact

that scientific theories were constructed that swans necessarily have to be white . . . until a black

swan was encountered, an event considered impossible, but happening nonetheless. These unlikely

events happen in many systems and are not well described by common analytical techniques and

forecasting models. (Empirical) forecasters, doing forecasting based solely on past events, go for

proven useful models. ”Forecasting is based on history. Many supply chain and financial forecasting

models are based on bell curves, with the tails of the curve representing highly unlikely events that

can be ’safely’ ignored, at least for forecasting purposes.”[7].

While the book of Taleb is a milestone in empirical forecasting – basically holding a mirror in

front of us, showing how we are often fooling ourselves into thinking we have everything under

control – he introduces some concepts in a non-scientific way. In particular, he introduces the

concept of ’scalable functions’ and scalability in general to explain some phenomena.

These functions are compared to the more often used non-scalable functions, that are men-

tioned to be ’Gauss’, ’normal’, or ’bell-curve’, which are all synonyms and very well studied and

documented (See Ref. [8] for a historical overview). The bell curve is given by

f(x) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
, (1)

with σ and µ parameters. Generally, they are from the family of exponential functions like f(x) =

a−xb
(with the bell curve having a = e, and b = 2). The most important aspect, in view of

empirical analysis and forecasting is that they have ’short tails’, meaning that ’outliers’ – values

far away from the median µ – have a very tiny probability of occurrence. That makes them

docile and the favorite tool of analysts/forecasters. Contrasting them are the ’long tail’ functions,

where the outliers also have a small frequency of occurring, but not small enough to keep us on

safe grounds. For these distributions every now and then an outlier will occur that will mess up
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everything, like the collapse of the financial system. This according to Taleb, who summarizes

his strong criticism on (financial) forecasters’ use of bell curves by the phrase ”fooled by the

reductionist need for simple functions”. Fendler and Muzaffar make a similar statement in their

aforementioned historical overview, ”Our purpose is to criticize [...] the belief that a normal-

curve distribution is a representation of real things in nature”[8]. A viewpoint that is shared by

many people, for instance Dudley-Marning[9], Goertzel and Fashing[10]. The latter cite Bradley’s

informative phrase ”.. the experimenters fancy that [the bell curve] is a theorem in mathematics

and the mathematicians that it is an experimental fact”. Basically, most forecasting is done using

docile functions like the Gauss curve and its derivatives that are based on the assumption that

the system under study is a (multiple)-random-events process, i.e., has probability character, like

flipping coins or throwing dice. Assumptions of Gauss (normally-distributed) and Markov (history-

independent)[11] processes are used everywhere (Ex. risk evaluation[12], chaotic algorithms[13],

(physical or data) traffic[14, 15], Etc.). (Indeed, often Monte-Carlo simulations are made of the

system). This not because of having theoretically proven that it is correct, but because it is

a simple and very powerful analytical tool. Even if not always 100% correct, it is better than

applying unusable tools. Most literature in forecasting journals is based on this. (For sheer

abundance, no references supplied here). (Empirical) forecasting is based on past events that are

assumed to be the results of random, probabilistic processes.

While not going into that controversial discussion of applicability here, an important question

arises: What are scalable functions exactly? It would be nice to know what are the limitations to

the class of scalable functions. Are there scalable functions that do not have a long tail, or vice

versa? Scalable functions that will not mess up our analysis? Why do scalable functions mess up

our analysis? In this short communication we address this issue.
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2 Results and discussion

Scalability is defined by Taleb as the fractal property of a function f(x) that any multiplication of

the argument x to ax introduces a constant factor in the function value, independent of x[6];, i.e.,

they ’look’ the same everywhere. In an equation,

f(ax)

f(x)
=

f(ax′)

f(x′)
= C(a). (2)

For instance, an earthquake of Richter (logarithmic) magnitude m (amplitude x = 10m) has 103.04

times more occurrence than a ten-times stronger earthquake of magnitude m + 1, independent

of m; C(a) = a−3.04. It is easy to show that the Gaussian is not scalable. (The ratio above is

C(x, a) = exp[−x2(a2 − 1)], not independent of x). Which functions are? The above equation can

be solved to find the set of functions that are scalable. In the first step, noting that the fraction is

constant, we take the logarithm on both sides, divide it by ln(a) and letting this factor go to zero,

lim
ln(a)→0

ln[f(ax)] − ln[f(x)]

ln(a)
= c. (3)

(c = ln(C)/ln(a)). The left side here is the definition of a derivative of the function on a log-log

scale (ln(ax) − ln(x) = ln(a)). Therefore, the function in a log-log plot is a line, with constant

derivative,

d ln[f(x)]

d ln(x)
= c,

d ln[f(x)]/dx

d ln(x)/dx
= c,

d ln[f(x)]
d(f(x))

· d(f(x))
dx

1/x
= c,

1
f(x)

· df(x)
dx

1/x
= c,

df(x)

dx
= c

f(x)

x
. (4)
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Fig. 1: Two types of functions (half shown, only positive x), non-scalable (like Gaussian, or the

similar 2−x2
shown with solid line), and scalable, power-law (like the shown 1/

√
x, dashed line). The

former is docile and integratable, the latter not (the shown example because of the long tail, not

going fast enough to zero; for other exponents, problems can occur at x = 0)

This is a differential equation which has as unique solutions the power-law functions,

f(x) = f1x
−α, (5)

with f1 a constant being the function value at x = 1 and α a constant (α = −c) denoting the

power (for instance, earthquakes follow power α = 3.04[16]) – the lower the number, the more the

system is pestered by outliers[6]. (See Figure 1 for an example with α = 0.5). Thus, we conclude

that ’scalable’, ’fractal’ and ’power-law’ are all one and the same thing; the only functions that

are scalable are power-law functions.

Here the work of Newman should be mentioned who made an excellent summary of the power-

law functions[16]. Basically, power-law functions are very difficult to work with; they can behave

like Gaussian functions (thus sometimes making us believe the data are following the bell curve),

especially for small numbers of samples, but they lack the parameter σ and drawing conclusions

on basis of this parameter can thus not be done.

Why are the scalable functions so difficult to work with? The function of probabilities, for
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instance for the lottery, is by definition integrable (and integrated to unity; somebody has to win).

Not so for the frequency-of-occurrence (empirical analysis) functions of many natural phenomena.

A power-law function (Eq. 5) cannot be integrated over all possible values of x (zero to infinity),

since it results in infinity, for any value of α, either on the zero-side or on the infinite tail of x.

(Often, the function is ’truncated’ by setting arbitrary lower or higher limits to x, for instance

the strongest earthquake ever measured, until now, to force it to be usable – integrable – because

that is so much needed. Yet, in some cases the truncation is natural, like setting the minimal

word length to 1 letter, where word-length and frequency-of-use follow a power 2.20 [16]). It can

thus also not be scaled to result in unity when integrated (Interestingly, or confusingly, scalable

functions cannot be scaled), and these functions cannot represent probability-density functions.

’Probabilities’ are not defined; only real-events statistics remain. As such, the average expected

magnitude of a future event,

<x>=

∫∞
0

xf(x)dx∫∞
0

f(x)dx
(6)

cannot be calculated on basis of empirically-found parameters (f1 and α). In other words, the

average magnitude is not defined for such phenomena, for example earthquakes; One cannot make

a statement about the predicted average earthquake next year. The past has an average, the future

not (yet). There are some once-in-a-while-occurring high-magnitude outliers – Black Swans – that

mess-up the analysis.

Finally, interesting to point out, the scalability can also be defined as the property that the

derivative, normalized by the scaled function, is constant

df(x)/dx

f(x)/x
= c. (7)

This is just saying the same as Taleb with other words, and was part of the demonstration of Eq.

(4).
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3 Conclusions

In conclusion, we have shown here that the only functions that are ’scalable’ (’fractal’) as defined

by Taleb are power-law functions of Eq. (5). Moreover, we have shown why it is that they give

problems in the analysis, which basically stems from the fact that they are not-integratable (Eq.

(6)) and thus they are not normalizable into a probability function. Scalable functions cannot be

used for empirical forecasting.
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