
Scalable functions used for empirical forecasting

Abstract

Taleb in his book the Black Swan introduces a concept of scalable functions. Here it is

shown that the only scalable functions are power-law functions and they can be treated as

one and the same. Moreover, the analytical problems of these functions are discussed.
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Extreme events, ’outliers’, have tiny occurrence, but they will happen every now and then.

Nassim Taleb calls these outliers Black Swans[1]. In his words, Black Swans are 1) Outliers, 2)

Carry extreme impact, 3) Humans concoct explanations after the fact, making them explainable

and predictable (a posteriori). The name derives from the fact that scientific theories were con-

structed that swans necessarily have to be white ... until a black swan was encountered, an unlikely

event, but happening nonetheless. These unlikely events happen in many systems and are not well

described by common analytical techniques and forecasting models. (Empirical) forecasters, the

primary readers of this journal, doing forecasting based solely on past events, go for proven useful

models. ”Forecasting is based on history. Many supply chain and financial forecasting models are

based on bell curves, with the tails of the curve representing highly unlikely events that can be

’safely’ ignored, at least for forecasting purposes.”[2].

While the book of Taleb is a milestone in empirical forecasting – basically holding a mirror in

front of us, showing how we are often fooling ourselves into thinking we have everything under

control – he introduces some concepts in a non-scientific way. In particular, he introduces the

concept of ’scalable functions’ and scalability in general to explain some phenomena.

These functions are compared to the more often used non-scalable functions, that are men-

tioned to be ’Gauss’, ’normal’, or ’bell-curve’, which are all synonyms and very well studied and

documented (See Ref. [3] for a historical overview). The bell curve is given by

f(x) =
1

σ
√

2π
exp

(

−
(x− µ)2

2σ2

)

, (1)

with σ and µ parameters. Generally, they are form the family of exponential functions like f(x) =

a−xb

(with the bell curve having a = e, and b = 2). The most important aspect, in view of empirical

analysis and forecasting is that they have ’short tails’, meaning that ’outliers’ – values far away from

the median µ – have a very tiny probability of occurrence. That makes them docile and the favorite
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tool of analysts/forecasters. Contrasting them are the ’long tail’ functions, where the outliers also

have a small frequency of occurring, but not small enough to keep you on safe grounds. For these

distributions every now and then an outlier will occur that will mess up everything, like the collapse

of the financial system. This according to Taleb, who summarizes his strong criticism on (financial)

forecaster’s use of bell curves by the phrase ”fooled by the reductionist need for simple functions”.

Fendler and Muzaffar make a similar statement in their aforementioned historical overview, ”Our

purpose is to criticize [...] the belief that a normal-curve distribution is a representation of real

things in nature”[3]. A viewpoint that is shared by many people, for instance Dudley-Marning[4],

Goertzel and Fashing[5]. The latter cite Bradley’s informative phrase ”.. the experimenters fancy

that [the bell curve] is a theorem in mathematics and the mathematicians that it is an experimental

fact”. Basically, most forecasting is done using docile functions like the Gauss curve and its

derivatives that are based on the assumption that the system under study is a (multiple)-random-

events process, i.e., has probability character, like flipping coins or throwing dice. Assumptions of

Gauss (normally-distributed) and Markov (history-independent)[6] processes are used everywhere

(Ex. risk evaluation[7], chaotic algorithms[8], (physical or data) traffic[9, 10], Etc.). (Indeed, often

Monte-Carlo simulations are made of the system). This not because of having theoretically proven

that it is correct, but because it is a simple and very powerful analytical tool. Even if not always

100% correct, it is better than using unusable tools. Most literature in forecasting journals is based

on this. (For sheer abundance, no references supplied here). (Empirical) forecasting is often based

on past events that are assumed to be the results of random, probabilistic processes.

While not going into that controversial discussion here, an important question arises: What

are scalable functions exactly? It would be nice to know what are the limitations to the class of

scalable functions. Are there scalable functions that do not have a long tail, or vice versa? Scalable
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functions that will not mess up our analysis? Why do scalable functions mess up our analysis? In

this short communication we address this issue.

Scalability is defined by Taleb as the fractal property of a function f(x) that any multiplication

of x to ax introduces a constant factor in the function value, independent of x[1];, i.e., they ’look’

the same everywhere. In an equation,

f(ax)

f(x)
=

f(ax′)

f(x′)
= C(a). (2)

For instance, an earthquake of Richter (logarithmic) magnitude m (amplitude x = 10m) has 103.04

times more occurrence than a ten-times stronger earthquake of magnitude m + 1, independent

of m; C(a) = a−3.04. It is easy to show that the Gaussian is not scalable. (The ratio above is

C(x, a) = exp[−x2(a2 − 1)], not independent of x). Which functions are? The above equation can

be solved to find the set of functions that are scalable. In the first step, noting that the fraction

is constant, we take the logarithm on the left side, divide it by ln(a) and letting this factor go to

zero,

lim
ln(a)→0

ln[f(ax)]− ln[f(x)]

ln(a)
= c. (3)

(c = ln(C)). The left side here is the definition of a derivative of the function on a log-log scale

(ln(ax)− ln(x) = ln(a)). Therefore, the function in a log-log plot is a line, with constant derivative,

d ln[f(x)]

d ln(x)
= c,

d ln[f(x)]/dx

d ln(x)/dx
= c,

d ln[f(x)]
d(f(x))

·
d(f(x))

dx

1/x
= c,

1
f(x)

·
df(x)
dx

1/x
= c,

df(x)

dx
= c

f(x)

x
. (4)
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This is a differential equation which has as unique solutions the power-law functions,

f(x) = f1x
−α, (5)

with f1 a constant being the function value at x = 1 and α a constant (α = −c) denoting the

power (for instance, earthquakes follow power α = 3.04[11]) – the lower the number, the more the

system is pestered by outliers[1]. (See Figure 1 for an example with α = 0.5). Thus, we conclude

that ’scalable’, ’fractal’ and ’power-law’ are all one and the same thing; the only functions that

are scalable are power-law functions.

Here the work of Newman should be mentioned who made an excellent summary of the power-

law functions[11]. Basically, power-law functions are very difficult to work with; they can behave

like Gaussian functions (thus sometimes making us believe the data are following the bell curve),

especially for small numbers of samples, but they lack the parameter σ and drawing conclusions

on basis of this parameter can thus not be done.

Why are the scalable functions so difficult to work with? The function of probabilities, for

instance for the lottery, is by definition integrable (and integrated to unity; somebody has to win).

Not so for the frequency-of-occurrence (empirical analysis) functions of many natural phenomena.

A power-law function (Eq. 5) cannot be integrated over all possible values of x (zero to infinity),

since it results in infinity, for any value of α, either on the zero-side or on the infinite tail of x.

(Often, the function is ’truncated’ by setting arbitrary lower or higher limits to x, for instance the

strongest earthquake ever measured, until now, to force it to be usable, integrable, because that is

so much needed. Yet, in some cases the truncation is natural, like setting the minimal word length

to 1 letter, where word-length and frequency-of-use follow a power 2.20). It can thus also not be

scaled to result in unity when integrated (Interestingly, or confusingly, scalable functions cannot be

scaled), and these functions cannot represent probability-density functions. ’Probabilities’ are not
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Fig. 1: Two types of functions (half shown, only positive x), non-scalable (like Gaussian, or the

similar 2−x2

shown with solid line), and scalable, power-law (like the shown 1/
√
x, dashed line). The

former is docile and integratable, the latter not (the shown example because of the long tail, not

going fast enough to zero; for other exponents, problems can occur at x = 0)

defined; only real-events statistics remain. As, such, the average expected magnitude of a future

event,

<x>=

∫

∞

0
xf(x)dx

∫

∞

0
f(x)dx

(6)

cannot be calculated on basis of empirically-found parameters (f1 and α). In other words, the av-

erage magnitude is not defined for such phenomena Ex. earthquakes; One cannot make a statement

about the predicted average earthquake next year. The past has an average, the future not (yet).

There are some once-in-a-while-occurring high-magnitude outliers – Black Swans – that mess-up

the analysis.

Finally, interesting to point out, the scalability can also be defined as the property that the

derivative, normalized by the scaled function, is constant

df(x)/dx

f(x)/x
= c. (7)

This is just saying the same as Taleb with other words, and was part of the demonstration of Eq.
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(4).

In conclusion, we have shown here that the only functions that are ’scalable’ (’fractal’) as

defined by Taleb are power-law functions of Eq. (5). Moreover, we have shown why it is that they

give problems in the analysis, which basically stems from the fact that they are not-integratable

(Eq. (6)) and thus they are not normalizable into a probability function.
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