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Alkaline Solvolysis of Poly(ethylene terephthalate) in Butan–1–ol Media:  Kinetics and 3 

Optimization studies 4 
ABSTRACT 5 
This study was carried out to examine the thermo-chemical decomposition of postconsumer poly(ethylene 6 
terephthalate) (PET) in alkaline solution of butan-1-ol. The effect of various process parameters such as 7 
reactor temperature, time and sodium hydroxide concentration on the degree of PET degradation and 8 
products yield were studied and it was found that the decomposition of PET was essentially complete in 9 
an hour, with terephthalic acid and ethylene glycol being the main products. A kinetic study of the 10 
process showed that the alkaline solvolysis of PET is a second order reaction.  11 
1. Introduction  12 

Poly(ethylene terephthalate) (PET) is a linear thermoplastic, bluish-white resin made from terephthalic 13 
acid and ethylene glycol through poly-condensation (Aguado et al., 1999). It is an indispensable material 14 
owing to its low cost (Thompson et al., 2009), excellent tensile strength, chemical resistance, clarity, 15 
processability, and reasonable thermal stability (Caldicott, 1999). It is mainly applied in the textile 16 
industry, where more than 60% of the entire PET produced worldwide is consumed. Enormous amounts 17 
are also used for other applications including manufacture of video and audio tapes, X-ray films, 18 
thermoformed products and food packaging (Carraher, 2000; ILSI, 2000; Olabisi, 1997).   In food 19 
packaging, PET has become the choice especially for beverages mainly due to its glass-like transparency 20 
coupled with adequate gas barrier properties for retention of carbonation. It provides an excellent barrier 21 
against oxygen and carbon dioxide in the carbonated soft drink sector, which has been growing more 22 
rapidly than other applications. In addition, it exhibits a high toughness/weight property ratio, which 23 
allows lightweight and securely unbreakable containers with large capacity (Welle, 2011).  24 
Combining the relative simplicity of the polymerization process with the durable mechanical properties of 25 
PET, industries throughout the world have used PET as the staple polymer for beverage packaging. Along 26 
with this widespread use of PET is the inevitable creation of large amounts of post-consumer PET waste 27 
due to its increasing consumption rate and non-biodegradability, thus creating serious environmental 28 
concerns. PET does not have any side effects on the human body, and does not create a direct hazard to 29 
the environment. However, due to its substantial fraction by volume in the waste stream and its high 30 
resistance to the atmospheric and biological agents, it is considered as a noxious material (Paszun and 31 
Spychaj, 1997). With the increase in the amount of PET wastes, its disposal began to pose serious 32 
economical and environmental problems. The recycling of PET does not only serve as a partial solution to 33 
the solid waste problem but also contributes to the conservation of raw petrochemical products and 34 
energy. Products made from recycled plastics can result in 50-60% capital saving as compared to making 35 
the same product from virgin resin (Sinha et al., 2008).  36 
Recycling is assumed to be one of the best approaches to solve the problems of PET wasted 37 
accumulation. Various methods such as primary recycling (Hopewell et al., 2009; Al-Salem et al., 2009), 38 
mechanical recycling (Aguado and Serrano, 1999; Bartolome et al., 2012) and chemical recycling 39 
(Campanelli et al., 1993; Yoshioka et al., 2003; Hopewell et al., 2009; IPTS 2012) have been considered 40 
to recycle the PET. Among the various methods of PET recycling, only chemical recycling conforms to 41 
the principles of sustainable development because it has potentials for yielding the raw materials from 42 
which PET is originally made. However, the various chemical recycling routes reported in various works 43 
(such as hydrolysis, alcoholysis and aminolysis) are fraught with shortcomings such as the need for high 44 
pressure and corrosion resistant equipment (Genta et al., 2007), high temperature (Campanelli et al., 45 
1993), and long reaction times (Yoshioka et al., 2003). Taking into account the cost and energy 46 
consumption, chemical reclamation methods are the most effective recycling methods for PET. Alkaline 47 
solvolysis was chosen for this study because it operates under less hazardous conditions, effectively 48 
eliminating the need for corrosion resistant pressure vessels (since it can be carried out at atmospheric 49 
pressure).  50 
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In order to optimize the alkaline solvolysis process, a three-level-three factor Box-Behnken design was 93 
employed for this study, with 15 experimental runs per alcohol. The factors investigated in this study 94 
were temperature (oC), reaction time (min) and alkali concentration (g.dm-3). The coded and uncoded 95 
levels of the independent factors are shown in Table 1. 96 
The response for each alcohol was evaluated using Minitab statistical software (version 16.1.1) and fitted 97 
to the quadratic model below: 98 

ܻ ൌ ௢ߜ	 ൅ ଵߜ ଵܺ ൅	ߜଶܺଶ ൅ ଷܺଷߜ ൅ ଵଶߜ ଵܺܺଶ ൅ ଵଷߜ ଵܺܺଷ ൅ ଶଷܺଶܺଷߜ ൅ ଵଵߜ ଵܺ
ଶ ൅ ଶଶܺଶߜ

ଶ ൅ ଷଷܺଷߜ
ଶ    (3)  99 

Where Y is the predicted response (% PET decomposition or TPA yield), ߜ௢ is the intercept term, ߜଵ, ߜଶ, 100 
 ଷଷ are the 101ߜ ,ଶଶߜ ,ଵଵߜ ଶଷ are the interactive coefficients andߜ ,ଵଷߜ ,ଵଶߜ ,ଷ are the linear coefficientsߜ
quadratic coefficients. In addition, the terms X1, X2 and X3 are the coded factors, which are related to the 102 
actual factors x1, x2 and x3 in Table 1 by equation (4): 103 

࢏ࢄ ൌ
࢕࢞ି࢏࢞
࢞∆

                     (4) 104 

where: 105 
 Xi = coded value for the ith input (that is, Xi), 106 
  xo = mid value for the experimental design, and 107 
 Δx = (ݔ௛௜௚௛ –ݔ௢) = (ݔ௢ – ݔ௟௢௪). 108 

The terms Xhigh  and Xlow represent the chosen upper and lower design limits, respectively. 109 
Table 1:  Coded and uncoded levels of variables for the RSM Box–Behnken design. 110 

Variable Symbol 
Coded factor levels 

-1 0 +1 
Oil bath Temperature (oC) x1 120 135 150 

Time (min) x2 15 37.5 60 

[NaOH] (g.dm-3) x3 10 30 50 

2.3. Acid value determination 111 
About 1 g of the crude terephthalic acid obtained from each of the alkaline solvolysis runs was accurately 112 
weighed into a 100 cm3 beaker containing 25 cm3 of pyridine. The mixture was stirred till the sample 113 
completely dissolved, after which 25 cm3 of water and 2 – 3 drops of phenolphthalein indicator were 114 
added. The solution was titrated against 0.5 mol.dm-3 potassium hydroxide solution till a permanent pink 115 
end point was obtained. A blank determination was also carried out, excluding the sample. The acid value 116 
was determined from the formula:  117 

AV	ሺmg	KOH/gሻ 		ൌ 	
ହ଺.ଵൈ୑ൈሺ୚౩ି୚ాሻ

୵
     (5) 118 

Where M is the molarity of the KOH solution (mol.dm-3), Vs and VB are the titre values of sample and 119 
blank, respectively, and w (g) is the mass of sample taken for test. 120 
2.4. Instrumental analysis  121 

Differential thermal analysis of the solid product was carried out on a Netzsch Diffential Thermal 122 
Analyzer (Model DTA 404 PC Ёos) at a heating rate of 10 oC/min. Infrared spectroscopy was carried out 123 
on a Thermo Nicolet iS5 FT-IR equipped with iD3 Attenuated Total Reflectance (ATR) accessory and 124 
Omnic FTIR software for spectra processing and analysis. 125 
The analysis of the liquid products was done on an Agilent 6890/5973 GCMS System with 5% phenyl 126 
methyl siloxane capillary column. Helium was used as the carrier gas at a flow rate of 1.5 ml/min. The 127 
oven temperature was programmed as follows: 35 °C for 5 min, then 4 °C/min to 150 °C for 2 min, and 128 
finally at 20 °C/min to 250 °C for 5 min. The quadrupole temperature was set at 150°C. Methanol was 129 
used as solvent.  130 
3. Results and Discussion 131 
3.1. PET depolymerization kinetics  132 
The overall chemical equation for the alkaline solvolysis of PET to yield disodium terephthalate 133 
(Na2TPA) and ethylene glycol (EG) may be written as shown: 134 
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 200 
Figure 5: DTA Thermograph for the solid Product  201 
3.3. PET Solvolytic Decomposition study Using Response Surface Methodology 202 
The relationship between the responses (% decomposition of PET and terephthalic acid yield) and three 203 
independent variables (reaction time, temperature and alkali concentration) were studied in order to 204 
optimize the alkaline solvolysis of PET.  The design matrix in actual terms and the experimental results of 205 
RSM are presented in Table 3. The experimental data were fitted to Equation (3) to obtain mathematical 206 
regression quadratic models for the relationship between the responses (% decomposition of PET and 207 
TPA yield) and the experimental factors:  208 

Y୔୉୘ 	ൌ 	89.067 ൅ 2.425Xଵ ൅ 7.075	Xଶ ൅ 19.550	Xଷ െ 5.058	Xଵ
ଶ െ 4.158	Xଶ

ଶ 	െ 12.008	Xଷ
ଶ ൅209 

1.350XଵXଶ ൅ 4.100XଵXଷ െ 2.700XଶXଷ   (R2 = 0.9902)  (12)	210 

Y୘୔୅ 	ൌ 	0.73925 ൅ 0.02013Xଵ ൅ 0.05872	Xଶ ൅ 0.16226	Xଷ െ 0.04198	Xଵ
ଶ െ 0.03451	Xଶ

ଶ 	െ211 

0.09967	Xଷ
ଶ ൅ 0.01120XଵXଶ ൅ 0.03403XଵXଷ െ 0.02241XଶXଷ		  (R

2 = 0.9900)           (13) 212 
where YPET and YTPA represent the percentage decomposition of PET and TPA yield, respectively. 213 
ANOVA for studying the significance of fit from the quadratic equations for the experimental data is 214 
shown in Tables 4 and 5, with P-values lower than 0.05 indicating significant model terms. In addition, 215 
the lack-of-fit for the model is insignificant with a P-value of 0.846 for PET decomposition and 0.844 for 216 
TPA yield, indicating that the models are suitable for fitting the experimental data. The quadratic models 217 
are significant (P < 0.001), accounting for over 98 % of the observations. The extent of PET 218 
decomposition depends on the process temperature and the concentration of NaOH for the alcohol 219 
studied. 220 
Table 3: Actual and Predicted Responses for the Alkaline Solvolysis of PET in Butan-1-ol Media 221 

Run 
Temperature 

(oC) 
Time 
(min) 

[NaOH], 
g/L 

% Decomposition of PET TPA yield (g/g PET) 
Actual Predicted Actual Predicted 

1 120 15 30 70.6 71.70 0.586 0.595 

2 150 15 30 72.6 73.85 0.603 0.613 

3 120 60 30 84.4 83.15 0.701 0.690 

4 150 60 30 91.8 90.70 0.762 0.753 

5 120 37.5 10 54.4 54.12 0.452 0.449 
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6 150 37.5 10 51.2 50.77 0.425 0.421 

7 120 37.5 50 84.6 85.03 0.702 0.706 

8 150 37.5 50 97.8 98.08 0.812 0.814 

9 135 15 10 44.4 43.57 0.369 0.362 

10 135 60 10 61.6 63.13 0.511 0.524 

11 135 15 50 89.6 88.08 0.744 0.731 

12 135 60 50 96.0 96.83 0.797 0.804 

13 135 37.5 30 84.6 89.07 0.702 0.739 

14 135 37.5 30 91.4 89.07 0.759 0.739 

15 135 37.5 30 91.2 89.07 0.757 0.739 

 222 
 223 
Table 4: ANOVA for the Response Model for the % PET Decomposition in Butan-1-ol Media 224 

Source Df a SS b MS c F P  
Model 9 4236.98 470.78 56.02 <0.001 
Temperature (oC) (X1) 1 47.04 47.04 5.60 0.064 
Time (min) (X2) 1 400.44 400.44 47.65 0.001 
[NaOH], g/L (X3) 1 3057.62 3057.62 363.86 <0.001 

X1
2 1 94.47 94.47 11.24 0.020 

X2
2 1 63.85 63.85 7.60 0.040 

X3
2 1 532.43 532.43 63.36 0.001 

X1X2 1 7.29 7.29 0.87 0.394 
X1X3 1 67.24 67.24 8.00 0.037 
X2X3 1 29.16 29.16 3.47 0.122 

Lack of fit 2 12.07 4.02 0.27 0.846 
Pure error 3 29.95 14.97   
Total 14     
a:  Degrees of freedom b: Sum of squares   c:  Mean squares  225 
 226 
 227 
 228 
Table 5: ANOVA for the Response Model for TPA yield 229 

Source Df a SS b MS c F P  
Model 9 0.2917 0.0324 54.98 < 0.001 
Temperature (oC) (X1) 1 0.0032 0.0032 5.50 0.066 
Time (min) (X2) 1 0.0275 0.0275 46.63 0.001 
[NaOH], g/L (X3) 1 0.2106 0.2106 357.20 <0.001 

X1
2 1 0.0039 0.0065 11.00 0.021 

X2
2 1 0.0027 0.0044 7.42 0.042 

X3
2 1 0.0367 0.0367 62.21 0.001 

X1X2 1 0.0005 0.0005 0.82 0.406 
X1X3 1 0.0047 0.0047 7.96 0.037 
X2X3 1 0.0020 0.0020 3.36 0.126 

Lack of fit 3 0.0009 0.0003 0.27 0.844 
Pure error 2 0.0021 0.0010   
Total 14     
a:  Degrees of freedom b: Sum of squares   c:  Mean squares 230 
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The response surface 3D and contour plots for PET decomposition in relation to temperature, sodium 231 
hydroxide concentration and reaction time are illustrated in Figures 6 and 7, with sodium hydroxide 232 
concentration, time and temperature kept at their mid-point levels in (a), (b) and (c), respectively.  From 233 
the studies, it was found that temperature and alkali concentration play an important role in the alkaline 234 
solvolysis of PET in butan-1-ol media.  235 
The optimum PET decomposition and terephthalic acid yield for the conditions under study were found 236 
to be 99.85 % and 0.8289 g TPA/g PET, respectively for an optimum temperature, NaOH concentration 237 
and reaction time of 139.1 oC, 45.13 g.dm-3 and 50.71 min, respectively as shown by the Minitab 16 238 
Optimization plots in Figure 8.      239 

3.4. Analysis of the liquid product by gas chromatography 240 
The chromatograph for the filtrate obtained from the solvolysis run is shown in Figure 9. From the theory 241 
of the alkaline solvolysis process, the liquid phase obtained at the end of each run is expected to contain 242 
ethylene glycol and the alcohol used. Most of the compounds identified from the chromatograph are 243 
actually presented in form of combinations of the actual compounds of interest due to the conditions 244 
specified for the analyses (up to 300 oC). 245 
 246 
  247 
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were carried in the presence of air, there is a possibility of the partial oxidation of butan-1-ol to give 257 
butanal, which further combined with butan-1-ol to give 1,1-dibutoxy butane according to the reactions 258 
below: 259 

ܪଶܱܪܥଶܪܥଶܪܥ	ଷܪܥ
ሾைሿ
ሱሮ  260 (I)     ܱܪܥଶܪܥଶܪܥ	ଷܪܥ

ܪଶܱܪܥଶܪܥଶܪܥ	ଷܪܥ	2 ൅ 	ܱܪܥଶܪܥ	ଶܪܥଷܪܥ → ଶܪܥଶܪܥଶܪܥ	ଷܪܥ െ ܱ െ

ܪ
|
ܥ
|
	

െ ܱ െ ଷܪܥଶܪܥଶܪܥ	ଶܪܥ ൅261 

 ଶܱ  (II) 262ܪ
The reaction (II) would normally occur in the presence of an anhydrous acid such as hydrogen chloride 263 
(Morrison and Boyd, 1993) which probably came from the acid used in precipitating the terephthalic acid. 264 
Some of the compounds (for example, butoxy-2,4-dimethyl-1-pentene and 2-Ethylnon-1-en-3-ol) are 265 
likely to be from the decomposition of a terephthalate.  266 
Table 6: Some of the identified components in the filtrate  267 

Peak no Identified component RT (min) Peak Area% 

1 2-Methyl-1-butanol 12.824 8.16 

2 Butyl acetate 13.783 4.74 

3 2-Butoxyethanol 14.749 1.29 

4 2-Ethyl-1-hexanol 17.718 1.41 

5 (E)-Nonen-1-ol 18.307 1.56 

6 1-Butoxy-1-isobutoxy-butane 21.795 4.96 

8 2-Oxooctanoic acid 22.439 1.85 

7 1,1-Diisobutoxy-isobutane 23.280 7.67 

9 1,1-Dibutoxy-butane 24.827 30.44 

10 2-Hydroxy-tetradecanoic acid 27.396 2.01 

12 Butoxy-2,4-dimethyl-1-pentene 29.941 2.53 

11 2-Ethylnon-1-en-3-ol 31.819 6.90 

 268 
4. Conclusion 269 
This study has shown that alkaline solvolysis of PET is a simple and effective thermo-chemical route for 270 
processing postconsumer PET into value added products. The rate of decomposition of PET depends on 271 
the concentration of alkali, process time and temperature, with a predicted optimum conversion of over 99 272 
% within an hour. Chemical analyses showed that the solid products obtained have properties similar to 273 
those of terephthalic acid while the liquid products contain ethylene glycol in addition to the solvent used, 274 
along with various products of side reactions, implying that postconsumer PET can be a good source of 275 
terephthalic acid, ethylene glycol and other value-added products.  276 
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