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ABSTRACTABSTRACTABSTRACTABSTRACT    
 

In order to deal with the problem of the mixture noise removing and deblurring, a new model 
based on partial differential equations is proposed in this paper. We analyze some basic 
properties of the model, such as the existence and uniqueness of the solution of the model. 
Furthermore, we use an alternating minimization algorithm to find out the minimum of the 
proposed model. The experimental results show that the proposed model can restrain the 
stair-case and edge blurring effectively while removing the mixture noise and blur of the image. 
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1111. . . . IIIINTRODUCTIONNTRODUCTIONNTRODUCTIONNTRODUCTION    
    
The image is interfered by any unexpected blur or noise signal in the process of the emerged, 
transmission and storage. For example, the radar images, remote sensing images and 
medical ultrasonic images have irrelevant trails, the scientific research and medical diagnosis 
will be disturbed, so the results is distorted. In view of these facts, the technology of image 
deblurrring and denoising plays an important role in the domain of image processing, which 
continue to attract more and more attention of the researchers. 
 
In this paper, we use a mathematical description to show how the noise and blur image is 
formed [1]. Suppose that the degraded image f is formed as 

f = (Hw+b)v, 
where f is the observed image, w is the original image, b is the additional noise, and v is the 
multiplicative noise. H is the blurred operator which follows the corresponding distribution such 
as the motion blur, Gaussian blur or average blur. If let H=Id, Id denotes the identity matrix, the 
observed image f is only disturbed by the noise. In the past few years, there are so many 
efficient methods which have been studied to deal with the image denoising problem [2, 3]. 
Initially, the researchers removed the noise signal by the spatial filter or timing filter, such as 
the Fourier transmission filter, average filter, etc. [4, 5]. In the following years, with the 
development of the mathematical theory, especially the partial differential equation(PDE) and 
total variation(TV) theory, the image denoising based on the PDEs and TV theory draw more 
attention of the researchers. 
 
In fact, there are two important types of the noise, so we must take different measures to 
restore the image. Under the additive noise scheme, the most typical method is the ROF 
model, which was based on the total variation proposed by Rudin，Osher，Fatemi in 1992 [2], 
and the ROF model is defined as: 
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Here BV(Ω) is the bounded variation space defined in the compact support domain Ω of the 

image u, f is the degradation image, ( ) ( )22
u x yD u u= ∂ + ∂ . The first item in E(u) is called the 

regularization term, which serves to penalize high noise solutions and restrict the solution 



space to the desired class of functions. The second item measures the fidelity to the data, 
which ensures that the denoised image u reserves main characteristic of the observed image f. 
The parameter λ is a positive weighting constant, which coordinates the regularization term 

and fitting term. 
 
ROF model has been defined in the BV space, the biggest advantage of it is that it allows the 
energy function to be discontinued, so it can preserve more edges information when removing 
the noise. However, the model for retaining image texture features is not perfect, which causes 
some virtual edges in the smooth area of image, brings the piecewise constant solution and 
the "stair-case" phenomenon. Later, a lot of improved models for this problem have been put 
forward [6-11], and these models are used to remove the multiplicative noise. In addition, great 
deals of denoising approaches were proposed to remove the impulse noise [12, 13] and 
Possion noise [8, 14]. The most important method is RLO model proposed by Rudin, Lions 
and Osher [15]: 

2
1 2( ) ( )

min ( ) : min { ( 1) }
u BV u BV

f f
E u Du

u u
λ λ

Ω Ω Ω∈ Ω ∈ Ω
= + + −∫ ∫ ∫ .            (1.2) 

Then based on this model, Aubert and Aujor proposed their model as follows [16] 
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In [16], the Gamma noise with mean 1 is considered. Although their function is not convex, 
they still proved that their model have a unique solution by the numerical examples. Later, 
Huang et al. also improved this model (called HNW model) [17]: 
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Numerical results have shown that this model can provide the denoised images with better 
visual qualities. From then on, many fast and efficient algorithms and models were presented 
to solve above problem [9-11, 16, 17]. In fact, a lot of methods focus on the improvement of the 
fidelity term [16, 17]. However, instead of the fidelity term, the main damage to the texture 
features of the image is the regularization term, so we need to pay more attention to improve 
the regularization term. Then a series of models have been proposed to solve this problem 
[9-11]. One of the typical improved models is as follows 
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Here B is the traditional fidelity term such as 2
1 2 ( 1)
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Ω
+∫ , etc. Compared with HNW and AA model, these models have better restored 

results and retain more texture features than HNW and AA model. 
 
However the image is not only disturbed by the noise practically, but also interfered by the 
atmospheric attenuation or lens/geometric distortion [18], etc. So many researchers begin to 
restore the blurred image. Aubert and Aujor have also extended their model to handle the 
image deblurring problem [16]. Because of the non-convexity, Huang et al. improved this 
method and proposed a new model (called HNZ model) [1]  
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where u is an intermediate image and u=Hw+b. In [1], they use the convex relaxation technique 
to compensate the shortcoming of non-convexity. Except for analysing the basic properties of 
the model, the paper also provide some experiments, which show that model (1.6) has a good 
effect.  
 



To remove mixture noise and blur effectively, and retain more edges and texture features in 
the restored image in this paper, inspired by [9, 11], we propose a novel model as follows: 
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Here u is an intermediate image and u=Hw+b, b is Gaussian whiter noise with standard 
variance σ. Moreover, we analyse some basic properties of the proposed model and list some 
numerical results, the experiments results demonstrate that our model have a good visual 
effect and preserve more texture features in the restored image. 
 
The rest of this paper is organized as follows. Some properties about the proposed model are 
obtained in the next section. In section 3, an alternating minimization algorithm of our model is 
developed. Some numerical experiments are listed in section 4 to illustrate the performance of 
the proposed algorithm. Finally, a conclusion is given in section 5.  
 
2222    SOME BASIC PROPERTIESOME BASIC PROPERTIESOME BASIC PROPERTIESOME BASIC PROPERTIES OF THE S OF THE S OF THE S OF THE PROPOPROPOPROPOPROPOSED SED SED SED MODELMODELMODELMODEL    
    
In this section, we shall discuss some basic properties of the proposed model to prove the 
existence, uniqueness, and comparing principle of the model. For the convenience of the 
analysis and the discretization, the model (1.7) can be rewritten as: 

2
[u]

20 ,
0 0

[ ] [ ]
min ( , ) : min ([ ] [ ] )+ [ ] ln(1 [ ] )

2
i

mn mn
i i

i i i i
u w

i i

H w u
E u w u f e D w D wλ

σ
−

> = =

 − = + + + 
  

∑ ∑ .   (2.1) 

    
TheoremTheoremTheoremTheorem    1111. Assume that f >0 and λ>0. Then E(u, w) in problem (2.1) is convex. 
 

ProofProofProofProof. This is a standard result. It is based on f >0, λ>0, and 
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RRRRemarkemarkemarkemark    1111. . . . By theorem 1, we deduce that the model (2.1) has at most one solution.    
    
TTTTheoremheoremheoremheorem    2.2.2.2. Let (u, w) be the solution of problem (1.7). Suppose that H=Id≥0 and H1=1, where 
1 is constant image with entries 1, Then 
1) min(inf , inf(ln )) max(sup ,sup(ln ))w f u w f≤ ≤ . 
2) inf inf infw u f≥ ≥ , sup sup sup≤ ≤w u f . 
 
ProofProofProofProof. 1) If inf 0>f , for any i, as the function 
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is monotone decreasing when (0,min(ln[ ] ,[ ] ))i it f Hw∈ . We know that 
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That is  
inf inf≥Hw w . 

We get 
u min(inf(ln ), inf )f w>  

So we obtain the left side of the first assertion. Similarly, we have the right side. 

2) Now suppose that H=Id and consider 
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With u fixed, denote infβ = w  and let w0=max(w, β), by [10], we know that ln(1 )Dw Dw+  is 
convergence and regularization, and it has a minimum  

0 0l n (1 )D w D w+ .                         (2.3) 

Moreover, by the proposition 3.2 in [1], for each i fixed, by the definition of w0, we have either 

0[ ] [ ]i iw w=  or 0[ ] [ ]i iw wβ= ≥ . 
As [ ]iu β≥ , both cases lead to 

[ ] [ ]( ) [ ] [ ] [ ]( )0 0 2 0
i i ii i

w w w w u− + − ≤ . 

The vector form gives: 
2 2

0w u w u− ≤ − . 
Together with (2.3), we can see that the replacing of w with w0 will decrease the objective 
function value of (2.2), this implies that 

inf infβ≥ =w u . 
Combining with the fact that  

inf min(inf , inf )≥u w f . 
We immediately have  

inf inf≥u f . 
Then we get 

inf inf infw u f≥ ≥ . 

This finishes the proof of the first part of the second assertion, with the same argument, we 
can get that the rest part is also true. 
    
RRRRemark 2.emark 2.emark 2.emark 2. Note that the condition H≥0 and for each i, H1=1 is classical in the domain of image 
processing, we know that the above theorem also holds in the continuous settings. 
    
TTTTheoremheoremheoremheorem    3333....    If ( )w L∞∈ Ω  with inf 0wΩ > , then the model (1.7) exists a unique solution. 
 
ProofProofProofProof....    Denote by inf wα Ω=  and sup wβ Ω= . Since ( )w L∞∈ Ω  with inf 0wΩ > , we can 

choose a sequence { } ( )nw C∞∈ Ω  such that nw w→  in 1( )L Ω  and a.e. in Ω as n → ∞ , 

and 
inf supnw w wΩ Ω≤ ≤ .                            (2.4) 
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Letting n → ∞  in the above inequality, using Lebesgue Convergence Theorem and (2.4), we 
deduce 
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Then combine (2.5) with the results of [10] and [19], we obtain 
(min( , )) ( , )E u w E u w≤ . 

In the same way, we have  
(max( , )) ( , )E u w E u w≤ . 

Hence, we get that there exists a constant C such that 
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Here ( ) nu
n nh u u fe−= + , ( ) ln(1 )n n nw Dw Dwφ = + . We know that (un, wn) is bounded in BV(Ω), 

then exist (u, w)∈BV(Ω) such that (u, w) is the solution of problem(1.7). 
    
RRRRemark emark emark emark 3333.... Since h, φ is strictly convex as f>0, the uniqueness of the minimum follows the strict 
convexity of the energy function. We deduce that the (u, w) is the unique solution of the 
problem (1.7). 
 
3333. . . . ALTERNATING MINIMIZAALTERNATING MINIMIZAALTERNATING MINIMIZAALTERNATING MINIMIZATION METHODTION METHODTION METHODTION METHOD    
    
In this section, we propose using an alternating minimization algorithm to solve the problem 
(1.7). Starting from an initial guess w(0), the method computes a sequence of iterations such 
that 
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Step 1Step 1Step 1Step 1.... Consider the problem (3.1), let 
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Because g(u) is continuously differentiable in the domain of u(i, j), the minimizer of the problem 
(3.2) is equivalent to solve the following n2 decoupled nonlinear equations 
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As the original objective function ( )g u  is strictly convex, the corresponding nonlinear 
equation has a unique solution. We can use the Newton method to solve the problem (3.3) as 
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StepStepStepStep    2222.... Consider the variation problem (3.2), let 
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Using the variation theory, we know the solution of G is determined by the corresponding 
Euler-Lagrange equation, which is 
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When J(w)=0, we can get the solution of the problem G, the equation is as follows 
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Using the numerical discrete method of [9], the optimum numerical solution can be obtained by 
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The iterative scheme is 

( ) ( 1) _m mw w dt w t−= + × . 
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ε= + + , p∈ Λ , Λ is the four adjacent 

pixels of the pixel u(i, j), and (( 1, ), ( 1, ), ( , 1), ( , 1))i j i j i j i jΛ = − + − + . 
 
The ending condition of the iterative of the proposed method is that the relative difference 
between the successive iterates of the restored images should satisfy the following inequality 
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In this section, numerical simulations are performed to illustrate the effectiveness of the 
proposed model for deblurring and denoising mixture noise simultaneously. All experiments 
are done by the MATLAB2009a on the same machine. In order to make the experimental data 
powerful, we take the average value of 10 times results of our experiment. 
 
First, we select the image ‘office’, on the basis of the emergence mechanism of the noise. 
Figure(a) is the original image. Figure(b) is the image which is blurred by motion blur as 
fspecial(‘motion’,5). Figure (c) is added the Gaussian noise with standard variance 1. Figure(d) 
is the final noised image corrupted by the Gamma noise with standard variance 0.01. Figure(e) 
is the deblurred and denoised image by HNZ model and Figure(f) is the result by our model. 
 

 
(a) the original image           (b)blurred image(‘motion’,5)           (c)Gaussian noise 

              

(d)Gamma noise                  (e)HNZ model                     (f) our model 
Fig.1. the deblurred and denoised results of the Fig.1. the deblurred and denoised results of the Fig.1. the deblurred and denoised results of the Fig.1. the deblurred and denoised results of the ““““officeofficeofficeoffice””””    imageimageimageimage

Next, we select the image ‘woman’, on the basis of the emergence mechanism of the noise, 
Figure(a) is the original image, Figure(b) is the image which is blurred by Gaussian blur as 
fspecial(‘Gaussian’,5,2), Figure(c) is added the Gaussian noise with standard variance 1, 
Figure(d) is the final noised image by Gamma noise with standard variance 0.01, Figure(e) is 
the deblurred and denoised image by HNZ model and Figure(f) is the result by our model. 



 
(a) the original image         (b)blurred image(‘Gaussian’,5,2)          (c)Gaussian noise 

              
(d)Gamma noise               (e)HNZ model                 (f) our model 

Fig.2. the deblurred and denoised results of the Fig.2. the deblurred and denoised results of the Fig.2. the deblurred and denoised results of the Fig.2. the deblurred and denoised results of the ““““womanwomanwomanwoman””””    imageimageimageimage

Finally, we select the image ‘cameraman’, on the basis of the emergence mechanism of the 
noise. Figure(a) is the original image, Figure(b) is the image which is blurred by average blur 
as fspecial(‘Average’,5), Figure(c) is added the Gaussian noise with standard variance 1, 
Figure(d) is the final noised image by Gamma noise with standard variance 0.01, Figure(e) is 
the deblurred and denoised image by HNZ model and Figure(f) is the result by our model.  
 

 
(a) the original image        (b)blurred image(‘Average’,5)      (c)Gaussian noise 

             
(d)Gamma noise               (e)HNZ model                 (f) our model 

Fig.3. Fig.3. Fig.3. Fig.3. the deblurred and denoised results of the the deblurred and denoised results of the the deblurred and denoised results of the the deblurred and denoised results of the ““““cameramancameramancameramancameraman””””    imageimageimageimage    
 
The above experiments have the same standard variance of the Gaussian white noise and the 
multiplicative Gamma noise. The unique difference is the value of the blur operator. 
 



Now, we introduce table 1 by two objective evaluation index to show the restoring quality of the 
proposed model. Suppose that the image size is m-by-n, The peak signal noise ratio (PSNR) 
and the relative error (ReErr) value [11] are defined as follows: 
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Where w(i, j) is the original image, ( , )w i j% is the restored image, and , max (( ( ,  ), ( ,  ))i jV w i j w i j= % . 
By the definition of PSNR and ReErr, we know a fact that the greater PSRN is, the better 
denoised effect will be reached, and the smaller ReErr is. 
 

Table 1. The related evaluation index of the denoised imageTable 1. The related evaluation index of the denoised imageTable 1. The related evaluation index of the denoised imageTable 1. The related evaluation index of the denoised image    
    

IIIImagemagemagemage    modelmodelmodelmodel    Cpu timeCpu timeCpu timeCpu time    PSNRPSNRPSNRPSNR    ReErrReErrReErrReErr    IIIIterationterationterationteration    

office our 
HNZ 

35.0222 
34.3212 

21.0136 
19.1824 

0.1875 
1.1121 

275 
240 

woman our 
HNZ 

87.1734 
92.3312 

12.9429 
10.8821 

0.5272 
0.7651 

624 
689 

cameraman our 
HNZ 

16.1619  
31.9238 

28.8948 
23.1132 

0.0668 
0.1136 

112 
256 

 
5. CONCLUSION 
 
In this paper, we put forward an improved model in the BV(Ω) space, and discuss the 
existence, uniqueness and comparing principle of the solution of the model. We also provide 
three experiments results including the images and the parameter index in the paper. The 
results demonstrate that the proposed model can restrain the stair-case effectively when 
removing the mixture noise and blur. 
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