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Abstract

This article furnishes a new and simple matrix inversion method which makes full use of the
condensation technique of the author of Alice’s Adventures in Wonderland, Charles Dodgson.
A special feature of this article is the adoption of Bhaskara’s Law of Impending Operation on
Zero in overcoming the problem of division by zero whenever zero appears as a divisor in the
condensation technique of Dodgson.

Keywords: Matrix; Determinant; Division by zero; Bhaskara’s law of impending operation on zero;
Inverse of Matrices; Dodgson Condensation; Cofactor matrix.

2010 Mathematics Subject Classification: 15A06, 15A15, 15A09.

1 Introduction

Given any matrix, one knows, by the standard method of finding the minor of each element [23],
how to compute the cofactor matrix containing the minors with their prescribed signs, and hence
the inverse of the original matrix, obtained by dividing the transpose of the cofactor matrix by the
determinant of the original matrix [4], [9], [11], [16], [17]. This method, practicable only for the
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second and third orders, becomes tedious and painful when it is adopted in computing the inverses
of higher–order matrices [5], [18], [19], [21], [31].

Another method, more efficient, of computing the inverses of matrices is that due to Jordan, often
called Gauss–Jordan method [5], [17], [18]. This method involves setting up the n × 2n matrix[

D I
]

and applying elementary row operations to this matrix to convert the left half to the
identity matrix I. Clearly, in doing this, the right half will be converted to a matrix; that is, the
inverse matrix D−1 will automatically be constructed in the right half as the left half is converted
to the identity [28], [29], [32]. However, the method has some weakness. Even though the original
matrix has integer entries, fractions are introduced along the way, making the method somewhat
inefficient by requiring additional time and space to calculate the inverse.

The determination of the inverses of matrices is of great concern to mathematicians, engineers and
the scientists. Muen Han and Zhaolin Jiang consider the inverse of a skew Poeplitz matrix and
a skew Peankel matrix involving Perrin numbers [13]. Ivan I. Kyrchei discusses Cramer’s rule for
generalized inverse solutions [16]. Karawia furnishes an algorithm for computing the inverse of
any nonsingular heptadiagonal matrix [15]. Jinyu Chen gives explicit formulae for the inverses of
symmetric Poeplitz and Qoeplitz matrices by constructing the transformation matrices [14].

The cardinal aim of this paper is to introduce a novel and fraction–free method of computing the
inverses of any kind of matrix without wasting time and space. This approach makes use of the
well-known condensation method of the writer of the famous Alice’s Adventures in Wonderland,
Charles Dodgson.

The rest of this paper is structured into three sections. Because some understanding of the theory
of Dodgson’s condensation of determinants is required to compute the inverses of matrices to which
this paper is mainly devoted, we will discuss Dodgson’s condensation first, and Section 2 is set
up for this purpose. Section 3 deals with Bhaskara law of impending operation on zero and its
application in overcoming the problem of division by zero which sometimes arise in the use of
Dodgson’s condensation. Section 4 deals with the use of Dodgson’s condensation in computing the
inverses of matrices. It is assumed that the reader is familiar with the elementary theorems of
matrices and determinants.

2 Dodgson’s Condensation

Charles L. Dodgson, also known as Lewis Carroll, made significant mathematical discoveries, one of
which is his condensation method which has had the greatest influence on subsequent mathematical
discoveries. He described his method this way: for any n by n block, i.e. matrix [1], [8]

Compute the determinant of every 2 by 2 minor consisting of four adjacent terms.
These values become the terms of a second block having n−1 rows and n−1 columns.
[In modern usage, a minor is a determinant of a square sub-matrix formed from
consecutive rows and columns.]

Condense the second block in the same way, dividing each term, when found, by
the corresponding term in the interior of the first block (the block that remains when
the first and last rows and columns are erased).

Repeat this process until the block is condensed to a single term, which will be
the required value. Note that in condensing any block r in the series, the terms found
must be divided by the corresponding terms in the interior of the r − 1th block.

To make the method clear, we consider the matrix : 1 3 −2
2 1 4
3 5 −1

 . (2.1)
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We compute its determinant by condensing it to
∣∣∣∣1 3
2 1

∣∣∣∣ ∣∣∣∣3 −2
1 4

∣∣∣∣∣∣∣∣2 1
3 5

∣∣∣∣ ∣∣∣∣1 4
5 −1

∣∣∣∣


which when evaluated gives [
−5 14
7 −21

]
.

This in turn is condensed to give the value, 7. Dividing this value by the interior, 1, of the original
3rd order matrix (2.1), we get 7 which is the value of the determinant of our original 3rd order
matrix.

Again, we want to compute the determinant of the 4th order matrix
2 0 −4 6
4 5 1 0
0 2 6 −1
−3 8 9 1

 (2.2)

using Dodgson’s condensation technique. This is condensed into

∣∣∣∣2 0
4 5

∣∣∣∣ ∣∣∣∣0 −4
5 1

∣∣∣∣ ∣∣∣∣−4 6
1 0

∣∣∣∣∣∣∣∣4 5
0 2

∣∣∣∣ ∣∣∣∣5 1
2 6

∣∣∣∣ ∣∣∣∣1 0
6 −1

∣∣∣∣∣∣∣∣ 0 2
−3 8

∣∣∣∣ ∣∣∣∣2 6
8 9

∣∣∣∣ ∣∣∣∣6 −1
9 1

∣∣∣∣


which, when evaluated, gives  10 20 −6

8 28 −1
6 −30 15

 . (2.3)

This in turn is condensed into 
∣∣∣∣10 20

8 28

∣∣∣∣ ∣∣∣∣20 −6
28 −1

∣∣∣∣∣∣∣∣8 28
6 −30

∣∣∣∣ ∣∣∣∣ 28 −1
−30 15

∣∣∣∣


which, being evaluated, furnishes [
120 148
−408 390

]
.

We divide each element of the above 2 × 2 matrix by the corresponding element of the interior
matrix of the original 4th order matrix (2.2)[

5 1
2 6

]
,

and have 
120

5

148

1

−408

2

390

6


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which gives [
24 148
−204 65

]
which, when evaluated, gives the value of 31752. Dividing this value by the interior, 28, of the
derived 3rd order matrix (2.3), we get 1134 which is the value of our original 4th order matrix.

The simplest way of presenting the workings appears to be to arrange the series of matrices one
under another, as it is displayed below; it will then be found very easy to pick out the divisors (in
the interior matrices): 

2 0 −4 6
4 5 1 0
0 2 6 −1
−3 8 9 1


 10 20 −6

8 28 −1
6 −30 15


[

24 148
−204 65

]
1134.

Dodgson’s condensation method, being interesting and excellently suited to hand–computations, is
in the first place remarkable for its exceedingly great briefness, lucidity and accuracy. It is also
noteworthy as it involves the evaluation of only 2nd order determinants, the elements of which are
adjacent to one another [1], [7], [8].

However, it is evident that, when zeros (which Dodgson called ciphers in his paper [8] ) appear
in the interior of the original matrix or any one of the derived matrices, the process cannot be
continued because of the emergence of division by zero[8]. A solution to this problem, as Dodgson
suggests, is to recommence the operation by first rearranging the original matrix by transferring
the top row to the bottom or the bottom row to the top so that the zero, when it occurs, is now
found in an exterior row [1], [7], [30]. The merit of this solution is that “there is only one new row
to be computed; the other rows are simply copied from the work already done”[8].

Suppose now we want to find the value of the determinant of the matrix
2 −1 2 1 −3
1 2 1 −1 2
1 −1 −2 −1 −1
2 1 −1 −2 −1
1 −2 −1 −1 2

 .
We compute as follows: 

2 −1 2 1 −3
1 2 1 −1 2
1 −1 −2 −1 −1
2 1 −1 −2 −1
1 −2 −1 −1 2




5 −5 −3 −1
−3 −3 −3 3

3 3 3 −1
−5 −3 −1 −5



4



Ufuoma; ARJOM, x(x), XX-XX, 20xx; Article no.ARJOM.36240

 −15 6 12
0 0 6
6 −6 8

 .
We cannot continue the operation because of the zero which occurs in the interior of the derived
3rd order matrix. Division by zero will occur. So we rearrange the original 5th order matrix by
moving the top row to the bottom and moving all the other rows up once, and recommence the
operation: 

1 2 1 −1 2
1 −1 −2 −1 −1
2 1 −1 −2 −1
1 −2 −1 −1 2
2 −1 2 1 −3



−3 −3 −3 3

3 3 3 −1
−5 −3 −1 −5

3 −5 1 1


 0 0 6

6 −6 8
−17 8 −4


[

0 12
18 40

]
36.

There is another means of overcoming this problem of zero divisor without recommencing the
condensation process. It is the use of Bhaskara’s Law of Impending Operation on Zero which is
discussed in the next section.

3 Bhaskara’s Law of Impending Operation on Zero

The first master of the use of zero, the number representing absolute nothing [6],[12] [20] was the
Indian mathematician Brahmagupta [3]. About 500 years later, the use of zero in calculation was
then taken up by Bhaskara II. In his Lilavati, he gives us a mass of information on the arithmetic
of zero. He was quite aware of the subtleties of treating zero as a number. In fact, he was cognizant
of the eluding behaviour of zero as a divisor. We read himr [2]:

The product of zero is naught, but it must be retained as a multiple of zero if any
operations impend. Zero, having become a multiplier, should naught afterwards
become a divisor, the definite quantity must be understood to be unchanged.

This is Bhaskara’s law of impending operation on zero and it will lend us some light on which we
expect some pregnant hints. Division and multiplication are inverse operations. That means that
if we start with some finite number a and then divide by 0 where the bold–faced symbol 0 is a
numerical value representing absolute nothing, then if we wish to preserve a, we have to multiply
by 0:

a

0
· 0 = a.

If, however, we first multiply by 0, then to preserve the finite number a, we have to divide by 0:

a · 0
0

= a.

5
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Let there be no mistake or vagueness about this law of Bhaskara’s. It is this law which underlies
and forms the basis of zero analysis. Understanding it, everything is simple, regular, logical and
non–paradoxical; ignoring it, the various operations seem disconnected and abstruse. All - even
the most advanced - work in analysis is based on this simple law, and not on the cumbersome and
innumerable rules of the method of limit.

Now, we use the symbol 0 for evaluation processes e.g when we say let x = 0 in any expression
of x or when we set x = c in the expression x − c (comparison subtraction), viz (c) − c = 0 or
when we put x = −c in the expression x + c viz (−c) + c = 0. It follows that setting x = c in
the expression c − x, which is also −(x − c), is −0 and putting x = −c in the expression −x − c,
which is also −(x + c), is −0. The zeros 0 and −0 coincide at the origin of the number line and
hence signify the same physical thing, absolute nothing. Still in impending operations one cannot
be substituted for the other. This last statement is true also of other zeros such as 2 · 0, 04, etc.
Elimination expressions (take away subtractions) such as 1− 1, 2− 2, x− x, 3x2 − 3x2, etc which
arise only during simplification of mathematical expressions or equations are considered blank or
marked with the usual sign 0 [26], [27].

It may be asked: Why must we use a ·0 in impending operations and not merely 0 where the usual
symbol 0 represents blank or absence of quantity? The answer to this appears when we consider the
following. It is well known that the product of every two numbers x and y is algebraically written
as x · y. For example, the product of 2 and 3 is 2 · 3. But, since this corresponds with a recognized
finite number in the number system, that is, the number 6, we just write 2 · 3 = 6. Now, the result
6 which is the evaluation of 2 · 3 contains in itself the two factors, 2 and 3, forming it. Thus, when
it is required that this number 6 be used in a future calculation where it is to be divided by any
multiple of 2 or 3, the 2 or 3 contained in the number 6 will have to cancel out with the 2 or 3 in
the multiple. Thus,

6

10
=

2× 3

2× 5
=

3

5

or
6

21
=

2× 3

3× 7
=

2

7
.

Now, there is no number in the number system which is recognized as the result of the evaluation
of the product a · 0, and since this is true, it is, therefore, important to leave the product a · 0 in
this form if we are expecting that this result will be employed in impending operations. Thus, if we
obtain 6 ·0 as the result from a calculation, and we are expecting that this result be used in further
computations, we should not, therefore, write 6 ·0 = 0, for the result 0 does not reveal the presence
of the factor 6. But, we should use this product 6 ·0 in this form in the expected calculations. Thus,
if we are anticipating that this product divides 12 · 0 we should work the calculation as follows:

12 · 0
6 · 0 = 2.

For more details, the reader should read the Author’s papers:

1. Bhaskara’s Arithmetic Operation of Division by Zero with Application in the Foundation of
the Differential Calculus, The Journal of the Indian Mathematical Society, Volume
84, Issue 3-4, 2017.

2. On the Operation of Division by Zero in Bhaskara’s Framework: Survey, Criticisms,
Modifications and Justifications, Asian Research Journal of Mathematics 6(2): 1-20,
2017; Article no.ARJOM.36240.
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3.1 Arithmetic Operations with Zero

It is our business now to deal with the arithmetic operations with zero, based on the fact that there
is an approaching or impending operation of division by zero.

3.1.1 Zeros of First Order

The first idea that occurs on this subject is that zeros of the form 0a, also written as 0 · a or a · 0
and called zeros of first order, are added, subtracted, multiplied and divided just as we would any
algebraic expression of the form ax where a is a constant and x is a variable. The one difference we
need to keep in mind is that a · 0 is absolute naught.

We define the sum, difference, and product of zeros of first order as follows. To add these zeros,
add their finite parts. If a · 0 and b · 0 are two zeros of the first order, then

a · 0 + b · 0 = (a+ b) · 0.

For instance,

3 · 0 + 4 · 0 = (3 + 4) · 0 = 7 · 0.

To subtract the zeros of first order, subtract their finite parts. Thus

a · 0− b · 0 = (a− b) · 0.

For instance,

3 · 0− 4 · 0 = (3− 4) · 0 = −0.

The product of a finite number a and the zero b · 0 is (a · b) · 0. Thus, for instance,

2× 3 · 0 = 6 · 0.

To multiply two zeros of first order, we multiply their finite parts and then their zero parts, observing
the law of indices- am × an = am+n. Thus we have

a · 0× b · 0 = (a× b) · (0× 0) = ab · 02.

For example,

3 · 0× 4 · 0 = 12 · 02.

Division of first order zeros is much like the algebraic division

ax

bx
=
a

b
.

For the division of the zero a · 0 by the zero b · 0 we have

a · 0
b · 0 =

a

b
.

The expression a/b is a finite number as it is the ratio of two finite numbers. Thus the division of
two zeros of first order gives a finite number.

7
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3.1.2 Zeros of Higher Orders

We are now concerned with the operations with zeros of higher orders. A numerical zero of order n
is a zero of the form k · 0n where n is a positive integer and k is any finite number. The number k
is called the finite part of the zero. The expression 0n is called the unit zero part of the numerical
zero. The following zero is of order 5 and has a finite part of 3: 3 · 05.

The sum of two zeros of the same order is found by adding their finite parts. If k1 · 0n and k2 · 0n

are two zeros of the same order n, then, using the distributive property

k1 · 0n ± k2 · 0n = (k1 ± k2) · 0n.

Consider the following example:
2 · 03 + 3 · 03.

This expression can be written as

2 · 03 + 3 · 03 = (2 + 3) · 03 = 5 · 03.

Similarly, we have the subtraction

2 · 03 − 3 · 03 = (2− 3) · 03 = −03.

The process of addition or subtraction is performed only with the finite parts as we already
mentioned. The zero part remains unchanged. Recall that 0 is the same as 1 · 0. The finite
part is understood to be 1. Also, −0 is the same as −1 · 0.

Suppose we wish to perform the indicated addition and subtraction

6 · 02 − 4 · 0 + 3 · 0− 2 · 02.

We work as follows:

6 · 02 − 4 · 0 + 3 · 0− 2 · 02 = 6 · 02 − 2 · 02 − 4 · 0 + 3 · 0

= 4 · 02 − 1 · 0

= −0 + 4 · 02

Because of the commutative and associative properties, we can rearrange the expression and add
zeros of like order.

If the zero k · 0n is multiplied by the finite number c, only the finite part is involved in the
multiplication. Thus, c × k · 0n = (ck) · 0n. For instance, to multiply 2 by the zero 3 · 05, we
only need to find the product of the finite number 2 and the finite part of 3 · 05 which is 3. So,

2× 3 · 05 = 6 · 05.

The multiplication of two numerical zeros is a third zero expressed as the product of their finite
parts times the product of their unit zero parts. To multiply 3·02 by 2·0, we apply the commutative
and associative properties of multiplication along with the properties of exponents. We then write
the expression 3 · 02 × 2 · 0 as a product of the finite parts 3× 2 times the product of the unit zero
parts 02 × 0. That is

3 · 02 × 2 · 0 = (3× 2) ·
(
02 × 0

)
= 6 · 03.

Of importance in this work is the division of any power of the unit zero, say 0m by another power

8
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of the unit zero, 0n. The rule is to subtract the exponent n of the zero divisor from the exponent
m of the zero dividend:

0m

0n
= 0m−n.

Thus 0,02,03,04, . . ., divided by 0 give the respective results 1,0,02, . . .. The indicated division

8 · 05

0

when simplified gives 8 · 04.

Based on zeros of higher orders, we improve the principle of impending operation on zero: “If in
some mathematical calculations, zeros are likely to occur frequently, then, though a · 0n is absolute
nothing, where a is a finite number and n is any positive number, one should maintain the form
a · 0n in the rest of the operations until the final operation is reached. This is because if a finite
number is multiplied by zero and divided by the same zero, then the result is the finite number”.

3.2 Illustrative Example given by Bhaskara

The following illustrative example given by Bhaskara will be of incalculable guild to the reader.

A certain number is multiplied by 0 and added to half of result. If the sum so obtained
is first multiplied by 3 and then divided by 0, the result is 63. Find the original number.

If the number is x, then we write (
x · 0 +

1

2
x · 0

)
3

0
= 63

which becomes

3x · 0 +
3

2
x · 0

0
= 63

which in its turn becomes
6x · 0 + 3x · 0

2 · 0 = 63.

This is simplified to
9x · 0
2 · 0 = 63

which, canceling out the two zeros, becomes

9x

2
= 63

which finally gives x = 14. This is the answer Bhaskara would expect.

3.3 Application in the Evaluation of Functions

Suppose we were asked to determine the value of

f(x) =
x2 + x− 6

x+ 3

where x = −3. Direct substitution shows that both numerator and denominator must equal zero
numbers. To obtain the expressions for these, we first factor x2 + x − 6 and set x = −3. Thus,
x2 + x− 6 becomes (x− 2)(x+ 3) which on setting x = −3 becomes (−3− 2)(−3 + 3) = −5 · 0. We

9



Ufuoma; ARJOM, x(x), XX-XX, 20xx; Article no.ARJOM.36240

must retain this zero number because of the further operation of division by the denominator zero
number (−3 + 3) = 0. Thus,

f(−3) =
−5 · 0

0
= −5.

Suppose we wish to evaluate the function

f(x) =

√
x+ 1− 1

x

at x = 0. We accomplish this as follow:

f(0) =

√
0 + 1− 1

0
.

To simplify this, we apply the method of rationalization, viz.

f(0) =

√
0 + 1− 1

0
×
√

0 + 1 + 1√
0 + 1 + 1

=
(
√

0 + 1)2 − 12

0(
√

0 + 1 + 1)

=
0 + 1− 1

0(
√

0 + 1 + 1)

=
0

0(
√

0 + 1 + 1)

=
1√

0 + 1 + 1

=
1

2

We desire to evaluate
2x7 sinx

2− x4 − 2 cosx2

at x = 0. First we evaluate the numerator at x = 0:

2 · 07 sin 0 = 2 · 07

(
0− 03

3!
+

05

5!
− · · ·

)
= 2 · 08

(
1− 02

3!
+

04

5!
− · · ·

)
which is absolute nothing. Next, we evaluate the denominator at x = 0:

2− 04 − 2 cos 02 = 2− 04 − 2

(
1− 04

2!
+

08

4!
− 012

6!
+ · · ·

)
= 2− 04 − 2 + 04 − 08

12
+

012

360
− · · ·

= 2− 2− 04 + 04 − 08

12
+

012

360
− · · · .

The expressions 2 − 2 and −04 + 04 are elimination expressions and so we consider them blank.
Hence, we write

2− 04 − 2 cos 02 = −08

12
+

012

360
− · · · = −08

12

(
1− 02

30
+ · · ·

)

10
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which is also absolute nothing. Thus the evaluation of

2x7 sinx

2− x4 − 2 cosx2

at x = 0 is

2 · 07 sin 0

2− 04 − 2 cos 02
=

2 · 08

(
1− 02

3!
+

04

5!
− · · ·

)
− 08

12

(
1− 02

30
+ · · ·

)
which becomes

2 · 07 sin 0

2− 04 − 2 cos 02
=

2 · 08

−08

12

= −24.

3.4 Application in the Calculus

In the late 17th century, Leibniz and Newton sought to give a foundation for the calculus. They
made use of infinitesimals and fluxions respectively, that is non-zero quantities that is less that any
finite quantity but capable of being neglected or made to vanish. For instance, if we wish to find
the derivative of f(x) = x2, we would compute as follows:

f ′(x) =
(x+ ε)2 − x2

ε
=

2xε+ ε2

ε
= 2x+ ε.

It is claimed that because ε is infinitely small though not equal to zero, it will be convenient to
regard it to be equal to zero. Many mathematicians, notably Rolle and Berkeley, railed at this
because the infinitesimal and fluxional doctrines were unintelligible for them to understand.

Let us now apply Bhaskara’s Law in finding the derivative of f(x) = x2. This is done as follows:

f ′(x) =
(x+ 0)2 − x2

0
=

2x · 0 + 02

0
=

2x · 0
0

+
02

0
= 2x+ 0 = 2x.

3.5 Application in Dodgson’s Condensation of Determinants

We are led to consider now the application of Bhaskara’s Law in the expansion of determinants of
matrices by Dodgson’s condensation. Suppose we want to find the value of the determinant of the
matrix  2 1 5

1 0 1
3 1 −1

 .
It will be seen at once that this will be impossible using Dodgson’s condensation, since the interior
of the matrix is 0. Division by the zero will result in an infinite value. Since there is a division by
zero, it must be admitted that the calculation is to be performed in Bhaskara’s framework. Thus,
all the beautiful properties of zero that have been discussed so far should be ready for absolute
employment. Add 0 to the blank represented by 0. This step gives rise to the matrix 2 1 5

1 0 1
2 1 −1


which undergoes condensation to give[

2 · 0− 1 1− 5 · 0
1− 2 · 0 −0− 1

]
.

11



Ufuoma; ARJOM, x(x), XX-XX, 20xx; Article no.ARJOM.36240

This in turn is condensed to give

(2 · 0− 1)(−0− 1)− (1− 5 · 0)(1− 2 · 0)

0

which becomes
1

0

[(
−2 · 02 − 2 · 0 + 0 + 1

)
−
(
1− 2 · 0− 5 · 0 + 10 · 02)]

which, being evaluated, becomes

1

0

[(
−2 · 02 − 0 + 1

)
−
(
1− 7 · 0 + 10 · 02)] .

This is also simplified to
1

0

(
−2 · 02 − 0 + 1− 1 + 7 · 0− 10 · 02)

which, taking 1− 1 as blank, is reduced to

1

0

(
−12 · 02 + 6 · 0

)
which, on removing the bracket, results in

−12 · 02

0
+

6 · 0
0

.

This gives us
−12 · 0 + 6

which gives 6 as will be obtained if the well-known Laplace method is employed.

Let us now find the value of the determinant of the already mentioned matrix
2 −1 2 1 −3
1 2 1 −1 2
1 −1 −2 −1 −1
2 1 −1 −2 −1
1 −2 −1 −1 2

 .
We compute as follows: 

2 −1 2 1 −3
1 2 1 −1 2
1 −1 −2 −1 −1
2 1 −1 −2 −1
1 −2 −1 −1 2




5 −5 −3 −1
−3 −3 −3 3

3 3 3 −1
−5 −3 −1 −5


 −15 6 12

0 0 6
6 −6 8

 .
We cannot continue the operation because of the zero which occurs in the interior of the derived 3rd
order matrix. To overcome this, we add 0 to any of the entries of the submatrix whose determinant
is zero. Thus, we have 

5 −5 −3 −1
−3 −3 −3 3
3 3 3 + 0 −1
−5 −3 −1 −5



12
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 −15 6 12
0 −0 6 + 0
6 −6− 0 8 + 5

2
· 0

 .
 −5 · 0 −12− 10 · 0

2 · 0 72 + 8 · 0− 3 · 02

2(3 + 0)

 .
The determinant of the matrix is therefore

1

−0

[
−5 · 0

(
72 + 8 · 0− 3 · 02

2(3 + 0)

)
+ 2 · 0(12 + 10 · 0)

]
which becomes

5

(
72 + 8 · 0− 3 · 02

2(3 + 0)

)
− 2(12 + 10 · 0).

Omitting 0 as it merely represents absolute nothing gives

5

(
72

2(3)

)
− 2(12)

which is equal to 36.

4 Inverses of Matrices

In this section, I shall teach how to calculate, by means of a new method, the inverses of matrices
of not only the second and third orders, but also the fourth orders. This method uses Dodgson’s
condensation and computes the inverse of any n × n matrix D as demonstrated in the following
rules:

1. Form the four-quadrant matrix by putting D in four quadrants:[
D D
D D

]
.

2. Form the interior matrix of the four-quadrant matrix by deleting the first and last rows and
columns of the four-quadrant matrix.

3. Apply Dodgson’s condensation by condensing the interior matrix of the four-quadrant matrix
to matrix of the next lower order and continue the process until a matrix of the same order
as D is obtained, that is an n× n matrix.

If n is odd, the final n×n matrix formed is the cofactor matrix of D. If n is even and we give each
element of the final n × n matrix formed its prescribed sign, the resulting matrix is the cofactor
matrix of D.

It is interesting to note that the determinant of D can be easily obtained from the above process.
Apply the condensation one more time. We get an n − 1 × n − 1 matrix. If n is odd, then the
n − 1 × n − 1 matrix formed is a matrix consisting of only the determinant of D as its elements.
If n is even and we give each element of the n − 1 × n − 1 matrix formed its prescribed sign, the
resulting matrix consists of only the determinant of D as its elements.

To illustrate the ease with which this method is used to obtain the inverse of matrices, we begin
with the simplest case, the 2nd order matrix

D =

[
2 4
−1 7

]
.

13
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By rule 1 we write the four-quadrant matrix as
2 4 2 4
−1 7 −1 7
2 4 2 4
−1 7 −1 7


and by rule 2 we get the interior matrix of the four-quadrant matrix as[

7 −1
4 2

]
.

We give the elements of this matrix their prescribed signs since the original matrix is of even order,
and we obtain the cofactor matrix as [

7 −(−1)
−4 2

]
which gives [

7 1
−4 2

]
which, being transposed, becomes [

7 −4
1 2

]
.

The inverse of the original matrix is, therefore,

D−1 =
1

18

[
7 −4
1 2

]
where the value 18 is the determinant of the original matrix.

We now compute by means of this new technique the inverse of the 3× 3 matrix:

D =

 4 1 −5
−2 3 1
3 −1 4

 .
By rule 1 we write the four-quadrant matrix as

4 1 −5 4 1 −5
−2 3 1 −2 3 1
3 −1 4 3 −1 4
4 1 −5 4 1 −5
−2 3 1 −2 3 1
3 −1 4 3 −1 4

 ,

and by applying rule 2 we get the 4× 4 interior matrix of the four-quadrant matrix as
3 1 −2 3
−1 4 3 −1
1 −5 4 1
3 1 −2 3


which, by rule 3, becomes the cofactor matrix 13 11 −7

1 31 7
16 6 14



14
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which, after famously undergoing transposition, becomes 13 1 16
11 31 6
−7 7 14

 .
Here we must not give signs to the elements since the original matrix is of odd order, and we must
stop condensation at this point since the derived matrix is of the same order as the original matrix
D. We now compute the determinant of D as follows:

|D| = 1

4

∣∣∣∣ 13 11
1 31

∣∣∣∣ = 98.

Notice also that

|D| = 1

3

∣∣∣∣ 11 −7
31 7

∣∣∣∣ = 98,

|D| = 1

−5

∣∣∣∣ 1 31
16 6

∣∣∣∣ = 98,

|D| = 1

4

∣∣∣∣ 31 7
6 14

∣∣∣∣ = 98.

Thus the inverse of D is

D−1 =
1

98

 13 1 16
11 31 6
−7 7 14

 .
Clearly, the computation of the inverse of 2 × 2 and 3 × 3 matrices by employing Dodgson’s
condensation is simple and systematic and does not involve the liability of dividing by elements
in the interiors of the matrices, thereby escaping the cipher problem of division by zero. This new
method, therefore, deserves utmost consideration and absolute attention of all as the 2 × 2 and
3 × 3 matrices are the most common matrices employed in texts and by students and teachers of
mathematics, science and engineering. Thus, the Author strongly recommend this new method for
hand–computation of inverses of matrices worldwide.

Let us now compute the inverse of the 3× 3 matrix,

D =

 0 3 0
4 1 6
1 4 0

 .
By rule 1 we write the four-quadrant matrix as

0 3 0 0 3 0
4 1 6 4 1 6
1 4 0 1 4 0
0 3 0 0 3 0
4 1 6 4 1 6
1 4 0 1 4 0

 ,

and by applying rule 2 we get the 4× 4 interior matrix of the four-quadrant matrix as
1 6 4 1
4 0 1 4
3 0 0 3
1 6 4 1

 ,
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which, by rule 3, becomes the cofactor matrix , −24 6 15
0 0 3

18 0 −12


which in its turn, after being transposed, becomes −24 0 18

6 0 0
15 3 −12

 .
We stop the condensation process and start the computation of the determinant of D. Since, of
the four elements in the interior of the 4 × 4 interior matrix of the four-quadrant matrix, only
one element is non–zero, there is, therefore, only one way of finding the determinant of D from the
cofactor matrix, namely, the evaluation in which the divisor is the element, 1. Thus the determinant
of D is

|D| = 1

1

∣∣∣∣ 6 15
0 3

∣∣∣∣ = 18.

and its inverse is

D−1 =
1

18

 −24 0 18
6 0 0

15 3 −12

 .
We now turn to the computation of the inverse of the 4× 4 matrix,

−2 3 4 7
6 2 4 4
3 −3 6 3
2 1 4 2

 .
We write the four–quadrant matrix as

−2 3 4 7 −2 3 4 7
6 2 4 4 6 2 4 4
3 −3 6 3 3 −3 6 3
2 1 4 2 2 1 4 2
−2 3 4 7 −2 3 4 7

6 2 4 4 6 2 4 4
3 −3 6 3 3 −3 6 3
2 1 4 2 2 1 4 2


and obtain its interior matrix as 

2 4 4 6 2 4
−3 6 3 3 −3 6

1 4 2 2 1 4
3 4 7 −2 3 4
2 4 4 6 2 4
−3 6 3 3 −3 6

 .

We employ Dodgson’s condensation and obtain the following:
24 −12 −6 −24 24
−18 0 0 9 −18
−8 20 −18 8 −8

4 −12 50 −22 4
24 −12 50 −22 4


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
−36 0 −18 −72
−90 0 81 72

4 112 2 −48
60 168 −222 −216

 .
We give the elements of this matrix their prescribed signs since the original matrix is of even order,
and we obtain the cofactor matrix as

−36 0 −18 72
90 0 −81 72
4 −112 2 48

−60 168 222 −216

 .
The determinant of D is

|D| = 1

9

∣∣∣∣ −18 −72
81 72

∣∣∣∣ = 504.

and its inverse is

D−1 =
1

504


−36 90 4 −60

0 0 −112 168
−18 −81 2 222

72 72 48 −216

 .
This method is exceedingly simple and lucid, but it may be rendered even more palpable to the
eye by arranging the series of matrices one under another, as it is displayed below; it will then be
found very easy to culled the divisors from the matrices:

−2 3 4 7
6 2 4 4
3 −3 6 3
2 1 4 2




−2 3 4 7 −2 3 4 7
6 2 4 4 6 2 4 4
3 −3 6 3 3 −3 6 3
2 1 4 2 2 1 4 2
−2 3 4 7 −2 3 4 7
6 2 4 4 6 2 4 4
3 −3 6 3 3 −3 6 3
2 1 4 2 2 1 4 2




2 4 4 6 2 4
−3 6 3 3 −3 6
1 4 2 2 1 4
3 4 7 −2 3 4
2 4 4 6 2 4
−3 6 3 3 −3 6




24 −12 −6 −24 24
−18 0 0 9 −18
−8 20 −18 8 −8
4 −12 50 −22 4
24 −12 50 −22 4



−36 0 −18 −72
−96 0 81 72

4 112 2 −48
60 168 −222 −216

 .

17



Ufuoma; ARJOM, x(x), XX-XX, 20xx; Article no.ARJOM.36240

We take the computation of the inverse of another 4 × 4 matrix. This is to teach us how we may
handle cases wherein zero appears as a divisor. Suppose the matrix

1 2 3 −1
2 1 0 1
2 1 −1 1
1 2 3 5

 .
We work as follows: 

1 2 3 −1 1 2 3 −1
2 1 0 1 2 1 0 1
2 1 −1 1 2 1 −1 1
1 2 3 5 1 2 3 5
1 2 3 −1 1 2 3 −1
2 1 0 1 2 1 0 1
2 1 −1 1 2 1 −1 1
1 2 3 5 1 2 3 5




1 0 1 2 1 0
1 −1 1 2 1 −1
2 3 5 1 2 3
2 3 −1 1 2 3
1 0 1 2 1 0
1 −1 1 2 1 −1

 .
We add, based on Bhaskara’s law of zero, the zero 0 to the interior zero and apply condensation as
usual: 

1 0 1 2 1 0
1 −1 1 2 1 −1
2 3 5 1 2 3
2 3 −1 1 2 3
1 0 1 2 1 0
1 −1 1 2 1 −1




−1 1 0 0 −1
5 −8 −9 3 5
0 −18 6 0 0

2 · 0− 3 3 + 0 −3 −3 −3
−1− 0 0 + 1 0 0 −1




−3 −9 0 3
−30 −42 −18 0

12 · 0− 18 6 · 0− 36 −18 0
2 · 0 + 3 3 · 0 + 3 0 3

 .
We omit 0 since it represents nothing. Thus, we have the matrix

−3 −9 0 3
−30 −42 −18 0
−18 −36 −18 0

3 3 0 3


which, giving its elements their prescribed signs, becomes

−3 9 0 −3
30 −42 18 0
−18 36 −18 0
−3 3 0 3

 .
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Thus the inverse is

1

18


−3 30 −18 −3
9 −42 36 3
0 18 −18 0
−3 0 0 3

 .

4.1 Proof of the Validity of the New Approach

We now proceed to give a proof of the validity of this new method. In doing so, we shall take
the following steps in computing the cofactor matrix of the n × n matrix D by means of the new
method:

1. Form the cofactor matrix consisting of the cofactors or minors in determinant form.

2. Rearrange the elements in the determinants, the minors, such that

(a) for every row, from left to right, the 2nd, 3rd, 4th, . . ., (n − 1)st columns of each
determinant are the respective 1st, 2nd, 3rd, . . ., (n − 2)nd columns of the next
determinant.

(b) for every column, from top to bottom, the 2nd, 3rd, 4th, . . ., (n − 1)st rows of each
determinant are the respective 1st, 2nd, 3rd, . . ., (n−2)nd rows of the next determinant.

3. Write all the columns of the elements of all the determinants without repeating any column.

If these steps are carefully taken, it will be found that the new matrix formed is the interior of a
matrix formed by putting D in four quadrants, adjacent to one another.

4.1.1 Derivation for 2× 2 Matrix

Let us first take the simplest case, the 2× 2 matrix:

D =

[
a11 a12
a21 a22

]
.

If we compute the cofactors of the elements of this matrix by the method of finding the complementary
minor of each element, we obtain the cofactor matrix[

a22 −a21
−a12 a11

]
which, except for the prescribed signs of the cofactors, is the interior of the matrix,

a11 a12 a11 a12
a21 a22 a21 a22
a11 a12 a11 a12
a21 a22 a21 a22

 ,
formed by putting D in four quadrants, adjacent to one another.

4.1.2 Derivation for 3× 3 Matrix

Secondly, let us take the 3× 3 matrix:

D =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 .
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We find the cofactor matrix by method of minors and get

∣∣∣∣a22 a23
a32 a33

∣∣∣∣ − ∣∣∣∣a21 a23
a31 a33

∣∣∣∣ ∣∣∣∣a21 a22
a31 a32

∣∣∣∣
−
∣∣∣∣a12 a13
a32 a33

∣∣∣∣ ∣∣∣∣a11 a13
a31 a33

∣∣∣∣ − ∣∣∣∣a11 a12
a31 a32

∣∣∣∣∣∣∣∣a12 a13
a22 a23

∣∣∣∣ − ∣∣∣∣a11 a13
a21 a23

∣∣∣∣ ∣∣∣∣a11 a12
a21 a22

∣∣∣∣


.

We rearrange the elements of each determinant in the cofactor matrix above, such that for every row,
from left to right, the 2nd column of each determinant is the 1st column of the next determinant.
Thus we have the cofactor matrix of D rearranged as

∣∣∣∣a22 a23
a32 a33

∣∣∣∣ ∣∣∣∣a23 a21
a33 a31

∣∣∣∣ ∣∣∣∣a21 a22
a31 a32

∣∣∣∣
−
∣∣∣∣a12 a13
a32 a33

∣∣∣∣ − ∣∣∣∣a13 a11
a33 a31

∣∣∣∣ − ∣∣∣∣a11 a12
a31 a32

∣∣∣∣∣∣∣∣a12 a13
a22 a23

∣∣∣∣ ∣∣∣∣a13 a11
a23 a21

∣∣∣∣ ∣∣∣∣a11 a12
a21 a22

∣∣∣∣


.

Again, we rearrange the elements of each determinant, such that for every column, from top to
bottom, the 2nd row of each determinant is the 1st row of the next determinant. So we have the
cofactor matrix rewritten as

∣∣∣∣a22 a23
a32 a33

∣∣∣∣ ∣∣∣∣a23 a21
a33 a31

∣∣∣∣ ∣∣∣∣a21 a22
a31 a32

∣∣∣∣∣∣∣∣a32 a33
a12 a13

∣∣∣∣ ∣∣∣∣a33 a31
a13 a11

∣∣∣∣ ∣∣∣∣a31 a32
a11 a12

∣∣∣∣∣∣∣∣a12 a13
a22 a23

∣∣∣∣ ∣∣∣∣a13 a11
a23 a21

∣∣∣∣ ∣∣∣∣a11 a12
a21 a22

∣∣∣∣


.

This new arrangement of the cofactor matrix may be considered as a derived matrix obtained by
employing Dodgson’s condensation to the matrix,

a22 a23 a21 a22
a32 a33 a31 a32
a12 a13 a11 a12
a22 a23 a21 a22

 ,
which is clearly the interior of the matrix,

a11 a12 a13 a11 a12 a13
a21 a22 a23 a21 a22 a23
a31 a32 a33 a31 a32 a33
a11 a12 a13 a11 a12 a13
a21 a22 a23 a21 a22 a23
a31 a32 a33 a31 a32 a33

 ,

formed by putting D in four quadrants, adjacent to one another. This proves the method for a
3× 3 matrix; and similar proofs might be given for larger matrices.
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4.1.3 Derivation for 4× 4 Matrix

Lastly, let us take the 4× 4 matrix:

D =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 .

We find the cofactor matrix by method of minors and get



∣∣∣∣∣∣
a22 a23 a24
a32 a33 a34
a42 a43 a44

∣∣∣∣∣∣ −

∣∣∣∣∣∣
a21 a23 a24
a31 a33 a34
a41 a43 a44

∣∣∣∣∣∣
∣∣∣∣∣∣
a21 a22 a24
a31 a32 a34
a41 a42 a44

∣∣∣∣∣∣ −

∣∣∣∣∣∣
a21 a22 a23
a31 a32 a33
a41 a42 a43

∣∣∣∣∣∣
−

∣∣∣∣∣∣
a12 a13 a14
a32 a33 a34
a42 a43 a44

∣∣∣∣∣∣
∣∣∣∣∣∣
a11 a13 a14
a31 a33 a34
a41 a43 a44

∣∣∣∣∣∣ −

∣∣∣∣∣∣
a11 a12 a14
a31 a32 a34
a41 a42 a44

∣∣∣∣∣∣
∣∣∣∣∣∣
a11 a12 a13
a31 a32 a33
a41 a42 a43

∣∣∣∣∣∣∣∣∣∣∣∣
a12 a13 a14
a22 a23 a24
a42 a43 a44

∣∣∣∣∣∣ −

∣∣∣∣∣∣
a11 a13 a14
a21 a23 a24
a41 a43 a44

∣∣∣∣∣∣
∣∣∣∣∣∣
a11 a12 a14
a21 a22 a24
a41 a42 a44

∣∣∣∣∣∣ −

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a41 a42 a43

∣∣∣∣∣∣
−

∣∣∣∣∣∣
a12 a13 a14
a22 a23 a24
a32 a33 a34

∣∣∣∣∣∣
∣∣∣∣∣∣
a11 a13 a14
a21 a23 a24
a31 a33 a34

∣∣∣∣∣∣ −

∣∣∣∣∣∣
a11 a12 a14
a21 a22 a24
a31 a32 a34

∣∣∣∣∣∣
∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣



.

We rearrange the elements of each determinant in the cofactor matrix above, such that for every
row, from left to right, the 2nd and 3rd columns of each determinant are respectively the 1st and
2nd columns of the next determinant. Thus we have the cofactor matrix of D rearranged as



∣∣∣∣∣∣
a22 a23 a24
a32 a33 a34
a42 a43 a44

∣∣∣∣∣∣ −

∣∣∣∣∣∣
a23 a24 a21
a33 a34 a31
a43 a44 a41

∣∣∣∣∣∣
∣∣∣∣∣∣
a24 a21 a22
a24 a31 a32
a24 a41 a42

∣∣∣∣∣∣ −

∣∣∣∣∣∣
a21 a22 a23
a31 a32 a33
a41 a42 a43

∣∣∣∣∣∣
−

∣∣∣∣∣∣
a12 a13 a14
a32 a33 a34
a42 a43 a44

∣∣∣∣∣∣
∣∣∣∣∣∣
a13 a14 a11
a33 a34 a31
a43 a44 a41

∣∣∣∣∣∣ −

∣∣∣∣∣∣
a14 a11 a12
a34 a31 a32
a44 a41 a42

∣∣∣∣∣∣
∣∣∣∣∣∣
a11 a12 a13
a31 a32 a33
a41 a42 a43

∣∣∣∣∣∣∣∣∣∣∣∣
a12 a13 a14
a22 a23 a24
a42 a43 a44

∣∣∣∣∣∣ −

∣∣∣∣∣∣
a13 a14 a11
a23 a24 a21
a43 a44 a41

∣∣∣∣∣∣
∣∣∣∣∣∣
a14 a11 a12
a24 a21 a22
a44 a41 a42

∣∣∣∣∣∣ −

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a41 a42 a43

∣∣∣∣∣∣
−

∣∣∣∣∣∣
a12 a13 a14
a22 a23 a24
a32 a33 a34

∣∣∣∣∣∣
∣∣∣∣∣∣
a13 a14 a11
a23 a24 a21
a33 a34 a31

∣∣∣∣∣∣ −

∣∣∣∣∣∣
a14 a11 a12
a24 a21 a12
a34 a31 a12

∣∣∣∣∣∣
∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣



.

Again, we rearrange the elements of each determinant, such that for every column, from top to
bottom, the 2nd and 3rd rows of each determinant are respectively the 1st and 2nd rows of the next
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determinant. So we have the cofactor matrix rewritten as

∣∣∣∣∣∣
a22 a23 a24
a32 a33 a34
a42 a43 a44

∣∣∣∣∣∣ −

∣∣∣∣∣∣
a23 a24 a21
a33 a34 a31
a43 a44 a41

∣∣∣∣∣∣
∣∣∣∣∣∣
a24 a21 a22
a34 a31 a32
a44 a41 a42

∣∣∣∣∣∣ −

∣∣∣∣∣∣
a21 a22 a23
a31 a32 a33
a41 a42 a43

∣∣∣∣∣∣
−

∣∣∣∣∣∣
a32 a33 a34
a42 a43 a44
a12 a13 a14

∣∣∣∣∣∣
∣∣∣∣∣∣
a33 a34 a31
a43 a44 a41
a13 a14 a11

∣∣∣∣∣∣ −

∣∣∣∣∣∣
a34 a31 a32
a44 a41 a42
a14 a11 a12

∣∣∣∣∣∣
∣∣∣∣∣∣
a31 a32 a33
a41 a42 a43
a11 a12 a13

∣∣∣∣∣∣∣∣∣∣∣∣
a42 a43 a44
a12 a13 a14
a22 a23 a24

∣∣∣∣∣∣ −

∣∣∣∣∣∣
a43 a44 a41
a13 a14 a11
a23 a24 a21

∣∣∣∣∣∣
∣∣∣∣∣∣
a44 a41 a42
a14 a11 a12
a24 a21 a22

∣∣∣∣∣∣ −

∣∣∣∣∣∣
a41 a42 a43
a11 a12 a13
a21 a22 a23

∣∣∣∣∣∣
−

∣∣∣∣∣∣
a12 a13 a14
a22 a23 a24
a32 a33 a34

∣∣∣∣∣∣
∣∣∣∣∣∣
a13 a14 a11
a23 a24 a21
a33 a34 a31

∣∣∣∣∣∣ −

∣∣∣∣∣∣
a14 a11 a12
a24 a21 a22
a34 a31 a12

∣∣∣∣∣∣
∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣



.

This new arrangement of the cofactor matrix may be considered, removing the prescribed signs, as
a derived matrix obtained by employing Dodgson’s condensation to the matrix,

a22 a23 a24 a21 a22 a23
a32 a33 a34 a31 a32 a33
a42 a43 a44 a41 a42 a43
a12 a13 a14 a11 a12 a13
a22 a23 a24 a21 a22 a23
a32 a33 a34 a31 a32 a33

 ,

which is clearly the interior of the matrix,

a11 a12 a13 a14 a11 a12 a13 a14
a21 a22 a23 a24 a21 a22 a23 a24
a31 a32 a33 a34 a31 a32 a33 a34
a41 a42 a43 a44 a41 a42 a43 a44
a11 a12 a13 a14 a11 a12 a13 a14
a21 a22 a23 a24 a21 a22 a23 a24
a31 a32 a33 a34 a31 a32 a33 a34
a11 a12 a13 a44 a11 a12 a13 a44


,

formed by putting D in four quadrants, adjacent to one another. This proves the method for a
4× 4 matrix; and similar proofs might be given for larger matrices.
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