Symmetric q-Gamma Function

Hédi Elmonser^{1*}

¹Department of Mathematics, College of Science and Humanities at Howtat Sudair, Majmaah University, Saudi Arabia.

Review Article

Abstract

In this work we are interested by giving new characterizations of the symmetric q-Gamma function and show that there are intimately related. For that, some special q-calculus technics are used.

Keywords: q-analogue; gamma function; characterization.

2010 Mathematics Subject Classification: 33D05.

1 Introduction

In literature the characterizations of the well known Gamma function are studied by many authors [1, 2] and [3]. As same as the Gamma function, the characterization of the q-Gamma function was studied by Elmonser, Brahim and Fitouhi in [4], they proved the following results:

Theorem 1.1. The q-Gamma function is the unique function f(x) > 0 on $]0, +\infty[$ that satisfies the following properties:

a) f(1) = 1b) $f(x+1) = [x]_q f(x)$ c) $f(x+n) = (1-q)^{[x]_q - x} f(n) [n]_q^{[x]_q} t_n(x)$, where $t_n(x) \to 1$ as $n \to \infty$.

The second theorem gives the relationship between three different characterizations of the q-Gamma function:

Theorem 1.2. For a q-PG function f, the following properties are equivalent: (C) $\ln f$ is convex on $]0, +\infty[$, (L) $L(n + x) = ([x]_q - x) \ln(1 - q) + L(n) + x \ln(n + 1) + r_n(x)$, where $L(x) = \ln f(x + 1)$ and $r_n(x) \to 0$ as $n \to \infty$, (P) $f(x + n) = (1 - q)^{[x]_q - x} f(n) [n]_q^{[x]_q} t_n(x)$, where $t_n(x) \to 1$ as $n \to \infty$. A q-PG function f satisfying these properties is equal to $c\Gamma_q(x)$, for some constant c.

where the a q-PG function (pre-q-gamma function) is a positive function f on $]0, +\infty[$ satisfying the functional equation $f(x + 1) = [x]_q f(x)$.

^{*}Corresponding author: E-mail: h.elmonser@mu.edu.sa

A generalization of the q-gamma function, called symmetric q-Gamma function, was introduced and studied by K. Brahim and Yosr Sidomou in [6].

In the present paper, we continue the study of this function by giving some new characterizations and prove that they are intimately related.

2 Notations and Preliminaries

We recall some usual notions and notation used in the q-theory [7, 8, 9] and [10]. Throughout this paper, we assume $q \in]0, 1[$.

For $a \in \mathbb{C}$, the q-shifted factorials are defined by

$$(a;q)_0 = 1,$$
 $(a;q)_n = \prod_{i=0}^{n-1} (1 - aq^i) = (1 - a)(1 - aq)....(1 - aq^{n-1}),$ $n = 1, 2,$ (2.1)

$$(a;q)_{\infty} = \prod_{i=0}^{\infty} (1 - aq^i).$$
 (2.2)

We also denote

$$[x]_q = \frac{1-q^x}{1-q}, \quad x \in \mathbf{C},$$
(2.3)

$$\widetilde{[x]}_q = \frac{q^x - q^{-x}}{q - q^{-1}} =, \quad x \in \mathbf{C},$$
(2.4)

$$[n]_q! = \prod_{k=1}^n [k]_q = \frac{(q;q)_n}{(1-q)^n}, \quad n \in \mathbf{N}.$$
(2.5)

and

$$\widetilde{[n]}_{q}! = \prod_{k=1}^{n} \widetilde{[k]}_{q}, \quad n \in \mathbf{N}.$$
(2.6)

One can see that

$$\widetilde{[x]}_q = q^{-(x-1)} [x]_{q^2}.$$
(2.7)

3 The symmetric *q*-Gamma function:

The q-Gamma function $\Gamma_q(x)$, a q-analogue of Euler's gamma function, was introduced by Thomae [11] and later by Jackson [12] as the infinite product:

$$\Gamma_q(x) = \frac{(q;q)_{\infty}(1-q)^{1-x}}{(q^x;q)_{\infty}} \quad , x > 0,$$
(3.1)

where q is a fixed real number 0 < q < 1.

Recently, K. Brahim and Yosr Sidomou [6] introduced the symmetric q-Gamma function as follows:

$$\widetilde{\Gamma}_{q}(z) = q^{-\frac{(z-1)(z-2)}{2}} \Gamma_{q^{2}}(z), \quad , z > 0, q > 0, q \neq 1,$$
(3.2)

where

$$\Gamma_q(z) = \begin{cases} \frac{(q,q)\infty}{(q^x,q)\infty} (1-q)^{1-x}, & \text{if } 0 < q < 1, \\ \frac{(q^{-1},q^{-1})\infty}{(q^{-x},q^{-1})\infty} (1-q)^{1-x} q^{\frac{x(x-1)}{2}}, & \text{if } q > 1. \end{cases}$$
(3.3)

They proved that it is symmetric under the interchange $q \leftrightarrow q^{-1}$ and satisfies a q-analogue of the Bohr-Mollerup theorem for $q \neq 1$:

Theorem 3.1. Let q > 0, $q \neq 1$. The only function $f \in C^2((0,\infty))$ satisfying the conditions: (a) f(1) = 1. (b) $f(x+1) = [\widetilde{x}]_q f(x)$. (c) $\frac{d^2}{dx^2} Logf(x) \ge |Logq|$ for positive x, is the symmetric q-Gamma function.

In [4], the author proved the following relation

$$\Gamma_q(x) = \lim_{n \to +\infty} (1-q)^{[x]_q - x} \frac{[n]_q^{[x]_q} [n]_q!}{[x]_q [x+1]_q \dots [x+n]_q}, \quad x > 0.$$
(3.4)

Using the relation (3.2) and (3.4), we derive the following relation:

$$\widetilde{\Gamma}_{q}(x) = \lim_{n \to +\infty} q^{-\frac{(x-1)(x-2)}{2}} (1-q^{2})^{[x]_{q^{2}}-x} \frac{[n]_{q^{2}}^{[x]_{q^{2}}}[n]_{q^{2}}!}{[x]_{q^{2}}[x+1]_{q^{2}}...[x+n]_{q^{2}}}, \quad x > 0, 0 < q < 1.$$
(3.5)

4 Characterization of the *q*-Gamma function:

As it is proved in [4] and [5] we establish new characterizations of the symmetric q-Gamma function. The first characterization is given by the following theorem:

Theorem 4.1. The symmetric q-Gamma function $\widetilde{\Gamma}_q(x)$ is the unique function f(x) > 0 on $]0, +\infty[$ that satisfies the following properties: a) f(1) = 1

Proof. .

First we prove that $\widetilde{\Gamma}_q(x)$ satisfies conditions (a), (b) and (c).

From Theorem 3.1, the symmetric q-Gamma function satisfies the condition (a) $\widetilde{\Gamma}_q(1) = 1$, and the condition (b) $\widetilde{\Gamma}_q(x+1) = [\widetilde{x}]_q \widetilde{\Gamma}_q(x)$.

As a consequence of the two properties, we get $\widetilde{\Gamma}_q(n) = \widetilde{[n-1]}_q!$

(c) Let
$$s_n(x) = \frac{\tilde{\Gamma}_q(x)}{q^{-\frac{(x-1)(x-2)}{2}}(1-q^2)^{[x]}q^{2-x}\tilde{\Gamma}_{n,q}(x)},$$

where $\widetilde{\Gamma}_{n,q}(x) = \frac{[n]_{q^2}^{[x]_q ^2} [n]_{q^2}!}{[x]_{q^2} [x+1]_{q^2} \dots [x+n]_{q^2}} = \frac{[n]_{q^2}^{[x]_q ^2} [\widetilde{n}]_{q}!}{q^{nx+x-1} [\widetilde{x}]_q [\widetilde{x+1}]_q \dots [\widetilde{x+n}]_q},$

then $\widetilde{\Gamma}_q(x) = s_n(x)q^{-\frac{(x-1)(x-2)}{2}}(1-q^2)^{[x]_{q^2}-x}\widetilde{\Gamma}_{n,q}(x)$ and $\lim_{n \to +\infty} s_n(x) = 1$.

For $n \in \mathbf{N}$ and x > 0, we apply (b) n times to get

$$\begin{split} \widetilde{\Gamma}_{q}(x+n) &= [\widetilde{x+n-1}]_{q}...\widetilde{[x+1]}_{q}\widetilde{[x]}_{q}\widetilde{\Gamma}_{q}(x) \\ &= \underbrace{\widetilde{[x+n]}_{q}...\widetilde{[x+1]}_{q}\widetilde{[x]}_{q}}_{[x+n]_{q}}.q^{-\frac{(x-1)(x-2)}{2}}(1-q^{2})^{[x]_{q}2-x}\frac{[n]_{q^{2}}^{[x]_{q}^{2}}\widetilde{[n]}_{q}!}{q^{nx+x-1}\widetilde{[x]}_{q}\widetilde{[x+1]}_{q}...\widetilde{[x+n]}_{q}}.s_{n}(x) \\ &= q^{-\frac{x^{2}+2nx-3x}{2}}(1-q^{2})^{[x]_{q}2-x}[n]_{q^{2}}^{[x]_{q}^{2}}\widetilde{\Gamma}_{q}(n)t_{n}(x). \end{split}$$

Where $t_n(x) = q^{-x} \frac{\widetilde{[n]}_q}{\widetilde{[x+n]}_q} s_n(x)$. Thus, $\widetilde{\Gamma}_q(x+n) = q^{-\frac{x^2+2nx-3x}{2}} (1-q^2)^{[x]_{q^2}-x} [n]_{q^2}^{[x]_{q^2}} \widetilde{\Gamma}_q(n) t_n(x)$ and $t_n(x) \to 1$ as $n \to +\infty$.

To show uniqueness, we assume f(x) is a function that satisfies (a), (b) and (c). From properties (a) and (b), we have

$$f(n) = [\widetilde{n-1}]_q!. \tag{4.1}$$

$$f(x+n) = [\widetilde{x+n-1}]_q [\widetilde{x+n-2}]_q \dots [\widetilde{x+1}]_q [\widetilde{x}]_q f(x).$$
(4.2)

Combining (4.1),(4.2) and (c) together, we have

$$f(x) = q^{-\frac{x^2 + 2nx - 3x}{2}} (1 - q^2)^{[x]_{q^2} - x} \frac{[n]_{q^2}^{[x]_{q^2}} [n - 1]_q!}{[x + n - 1]_q [x + n - 2]_q \dots [x + 1]_q [x]_q} t_n(x)$$
$$= q^{-\frac{(x - 1)(x - 2)}{2}} (1 - q^2)^{[x]_{q^2} - x} \widetilde{\Gamma}_{n,q}(x) . s_n(x),$$

where $s_n(x) = q^x \frac{[x+n]_q}{[n]_q} t_n(x) \to 1$ as $n \to +\infty$. Therefore $f(x) = \widetilde{\Gamma}_q(x)$ and hence f is uniquely determined. This completes the proof.

5 **Relationship between Characterizations**

In what follows, we will adopt the terminology of the following definition.

Definition 5.1. A function f is said to be a qs-PG function (pre-symmetric-q-gamma function), if f is positive on $]0, +\infty[$ and satisfies the functional equation

$$f(x+1) = \widetilde{[x]}_q f(x).$$

In the previous section we showed that the property

$$f(x+n) = q^{-\frac{x^2+2nx-3x}{2}} (1-q^2)^{[x]_{q^2}-x} [n]_{q^2}^{[x]_{q^2}} f(n)t_n(x)$$

characterizes the q-gamma function. In this section we will give three properties which are equivalent to one another for a qs-PG function and characterize the symmetric q-gamma function.

Theorem 5.1. For a q-PG function f, the following properties are equivalent: (C) $\ln f$ is convex on $]0, +\infty[$, $\begin{aligned} (U) & \text{if } y = 0 \text{ for } x_{1}^{2} + y_{1} + y_{1} \\ (L)L(n+x) &= -\frac{x^{2} + 2nx - 3x}{2} \ln q + ([x]_{q^{2}} - x) \ln(1 - q^{2}) + L(n) + [x]_{q^{2}} \ln[n+1]_{q^{2}} + r_{n}(x), \\ where \ L(x) &= \ln f(x+1) \text{ and } r_{n}(x) \to 0 \text{ as } n \to \infty, \\ (P) \ f(x+n) &= q^{-\frac{x^{2} + 2nx - 3x}{2}} (1 - q^{2})^{[x]_{q^{2}} - x} [n]_{q^{2}}^{[x]_{q^{2}}} f(n) t_{n}(x), \end{aligned}$ where $t_n(x) \to 1$ as $n \to \infty$.

A qs-PG function f satisfying these properties is equal to $c\widetilde{\Gamma}_q(x)$, for some constant c.

Proof. . (a) $(P) \Leftrightarrow (L)$. We have

$$\begin{aligned} (P) &\Leftrightarrow f(x+(n+1)) = q^{-\frac{x^2+2nx-3x}{2}} (1-q^2)^{[x]_{q^2}-x} f(n+1)[n+1]_{q^2}^{[x]_{q^2}} t_{n+1}(x), \\ &\quad t_{n+1}(x) \to 1 \\ &\Leftrightarrow &\ln f(x+(n+1)) = -\frac{x^2+2nx-3x}{2} \ln q + ([x]_{q^2}-x) \ln(1-q^2) + \ln f(n+1) \\ &\quad + [x]_{q^2} \ln[n+1]_{q^2} + \ln t_{n+1}(x), t_{n+1}(x) \to 1 \\ &\Leftrightarrow & L(x+n) = -\frac{x^2+2nx-3x}{2} \ln q + ([x]_{q^2}-x) \ln(1-q^2) + L(n) \\ &\quad + [x]_{q^2} \ln[n+1]_{q^2} + r_n(x), r_n(x) \to 0 \\ &\Leftrightarrow & (L). \end{aligned}$$

(b) (C) \implies (P). Let $m < x \le m+1$, where $m = 0, 1, 2, \dots$ For any natural $n, n+m-1 < n+m < n+x \le n+m+1$. The convexity of $\ln f$ gives us (we write $L_m = \ln f(n+m)$)

$$\frac{L_m - L_{m-1}}{n + m - (n + m - 1)} \leq \frac{\ln f(n + x) - \ln f(n + m)}{(n + x) - (n + m)} \leq \frac{L_{m+1} - L_m}{(n + m + 1) - (n + m)}$$

$$\Leftrightarrow (x - m) \ln [\widetilde{n + m - 1}]_q \leq \ln \frac{f(n + x)}{f(n + m)} \leq (x - m) \ln [\widetilde{n + m}]_q$$

$$\Leftrightarrow [\widetilde{n + m - 1}]_q^{x - m} \leq \frac{f(n + x)}{[n + m - 1]_q [n + m - 2]_q \dots [\widetilde{n}]_q f(n)} \leq [\widetilde{n + m}]_q^{x - m}$$

$$\Leftrightarrow [\widetilde{n + m - 1}]_q^x T_m \leq \frac{f(n + x)}{f(n)} \leq [\widetilde{n + m}]_q^x T_m \frac{[\widetilde{n + m - 1}]_q^m}{[n + m]_q},$$

$$\Leftrightarrow [\widetilde{n + m - 1}]_q^{(\widetilde{n + m - 2}]_q \dots [\widetilde{n}]_q} - \alpha^{\frac{m(m - 1)}{m} [n + m - 1]_q 2[n + m - 2]_q 2 \dots [n]_q 2}$$

where $T_m = \frac{[\widetilde{n+m-1}]_q[\widetilde{n+m-2}]_q...[\widetilde{n}]_q}{[\widetilde{n+m-1}]_q^m} = q^{\frac{m(m-1)}{2}} \frac{[n+m-1]_q2[n+m-2]_q2...[n]_q2}{[n+m-1]_q^2}$ Therefore, we have

$$\lim_{n \to +\infty} q^{nx} \frac{f(n+x)}{f(n)} = \frac{q^{-\frac{x^2 - 3x}{2}}}{(1-q^2)^x},$$

by the squeezing theorem. If we let

$$t_n(x) = \frac{q^{\frac{x^2 + 2nx - 3x}{2}} f(n+x)}{(1-q^2)^{[x]_{q^2} - x} f(n)[n]_{q^2}^{[x]_{q^2}}}$$

then

$$f(n+x) = q^{-\frac{x^2+2nx-3x}{2}}(1-q^2)^{[x]_{q^2}-x}f(n)[n]_{q^2}^{[x]_{q^2}}t_n(x),$$

where $t_n(x) \to 1$ as $n \to \infty$. This proves that f satisfies (P).

(c)
$$(P) \Longrightarrow (C)$$
. From the uniqueness part of the proof of the Theorem 1.1 we have $f(x) = f(1) \lim_{n \to +\infty} q^{-\frac{(x-1)(x-2)}{2}} (1-q^2)^{[x]_{q^2}-x} \Gamma_{n,q}(x).$

Using the fact that the limit function of a convergent sequence of convex functions is convex, it suffices to show that $\ln\left(q^{-\frac{(x-1)(x-2)}{2}}(1-q^2)^{[x]_{q^2}-x}\Gamma_{n,q}(x)\right)$ is convex. Now

$$\ln\left(q^{-\frac{(x-1)(x-2)}{2}}(1-q^2)^{[x]_{q^2}-x}\Gamma_{n,q}(x)\right) = -\frac{(x-1)(x-2)}{2}\ln q + ([x]_{q^2}-x)\ln(1-q^2) + [x]_{q^2}\ln[n]_{q^2} + \ln([n]_{q^2}!) - \ln[x]_{q^2} - \dots - \ln[x+n]_{q^2}.$$

Therefore, we have

$$\left(\ln \left(q^{-\frac{(x-1)(x-2)}{2}} (1-q^2)^{[x]_{q^2}-x} \Gamma_{n,q}(x) \right) \right)' = (-x+\frac{3}{2}) \ln q + \left(-2\frac{\ln q}{1-q^2}q^{2x} - 1 \right) \ln(1-q^2)$$

$$+ \left(-2\frac{\ln q}{1-q^2}q^{2x}\ln[n]_{q^2} \right) + \frac{2\ln q}{1-q^2}\frac{q^{2x}}{[x]_{q^2}} + \dots$$

$$+ \frac{2\ln q}{1-q^2}\frac{q^{2(x+n)}}{[x+n]_{q^2}}.$$

And so

$$\begin{aligned} \left(\ln\left(q^{-\frac{(x-1)(x-2)}{2}}(1-q^2)^{[x]_{q^2}-x}\Gamma_{n,q}(x)\right)\right)'' &= -\ln q - 4\frac{(\ln q)^2}{1-q^2}q^{2x}(\ln(1-q^2) + \ln\frac{1-q^{2n}}{1-q^2}) \\ &+ 4\frac{(\ln q)^2}{1-q^2}[\frac{q^{2x}[x]_{q^2} + \frac{q^{4x}}{1-q^2}}{[x]_{q^2}^2} + \dots \\ &+ \frac{q^{2(x+n)}[x+n]_{q^2}}{[x+n]_{q^2}^2}] \\ &= -\ln q - 4\frac{(\ln q)^2}{1-q^2}q^{2x}(\ln(1-q^{2n})) \\ &+ 4\frac{(\ln q)^2}{1-q^2}[\frac{q^{2x}[x]_{q^2} + \frac{q^{4x}}{1-q^2}}{[x]_{q^2}^2} + \dots \\ &+ \frac{q^{2(x+n)}[x+n]_{q^2}}{[x+n]_{q^2}^2}].\end{aligned}$$

Then

$$\left(\ln\left((1-q)^{[x]_q-x}\Gamma_{n,q}(x)\right)\right)'' > 0.$$

This completes the proof.

Competing Interests

Author has declared that no competing interests exist.

References

- [1] H. Bohr and J. Mollerup, *Laerebog i mathematisk Analyse*. Kopenhage (1922), Vol. III, PP; 149-164.
- D. Laugwitz and B. Rodewald, A simple characterization of the gamma function. Amer. Math. Monthly, 94(1987), 534-536.
- [3] Y. Shen, On characterizations of the Gamma Function, Mathamatical Association of America, Vol. 68, No. 4(Oct, (1995), pp. 301-305.
- [4] H. Elmonser ,K. Brahim and A. Fitouhi, Relationship between characterizations of the q-Gammafunction. Journal of Inequalities and Special Functions Volume 3 Issue 4(2012), Pages 50-58.
- [5] D. Laugwitz and B. Rodewald, A simple characterization of the gamma function. Amer. Math. Monthly, 94(1987), 534-536.

- [6] K. Brahim and Yosr Sidomou, On Some Symmetric q-Special Functions. LE MATHEMATICHE, Vol. LXVIII(2013)-Fasc.II,pp.107-122.
- [7] R. Askey, The q-Gamma and q-Beta Functions. Applicable Anal, 8(2), 125-141, (1978).
- [8] H. T Koelink and T. H. Koornwinder, *q-Special Functions*, a Tutorial, in deformation theory and quantum groups with applications to mathematical physics, Contemp. Math. 134, Editors: M. Gerstenhaber and J. Stasheff, J Amer. Math. Soc., Providence, (1992), 141-142.
- [9] G. Gasper and M. Rahman, *Basic Hypergeometric Series*, 2nd Edition, (2004), Encyclopedia of Mathematics and Its Applications, 96, Cambridge University Press, Cambridge.
- [10] V. G. Kac and P. Cheung, *Quantum Calculus*, Universitext, Springer-Verlag, New York, (2002).
- [11] J. Thomae, Beitrage zur Theorie der durch die Heinesche Reihe, J. reine angew. Math, (70) pp 258-281, 1869.
- [12] F. H. Jackson, On a q-Definite Integrals. Quarterly Journal of Pure and Applied Mathematics 41, (1910), 193-203.