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Hédi Elmonser1
∗

1Department of Mathematics, College of Science and Humanities at Howtat Sudair,

Majmaah University, Saudi Arabia.

Review Article

Abstract

In this work we are interested by giving new characterizations of the symmetric q-Gamma

function and show that there are intimately related. For that, some special q-calculus technics

are used.
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1 Introduction

In literature the characterizations of the well known Gamma function are studied by many authors
[1, 2] and [3]. As same as the Gamma function, the characterization of the q-Gamma function was
studied by Elmonser, Brahim and Fitouhi in [4], they proved the following results:

Theorem 1.1. The q-Gamma function is the unique function f(x) > 0 on ]0,+∞[ that satisfies
the following properties:
a) f(1) = 1
b)f(x+ 1) = [x]qf(x)

c)f(x+ n) = (1− q)[x]q−xf(n)[n]
[x]q
q tn(x), where tn(x) → 1 as n → ∞.

The second theorem gives the relationship between three different characterizations of the q-Gamma
function:

Theorem 1.2. For a q-PG function f , the following properties are equivalent:
(C) ln f is convex on ]0,+∞[,
(L)L(n+ x) = ([x]q − x) ln(1− q) + L(n) + x ln(n+ 1) + rn(x),
where L(x) = ln f(x+ 1) and rn(x) → 0 as n → ∞,

(P) f(x+ n) = (1− q)[x]q−xf(n)[n]
[x]q
q tn(x),

where tn(x) → 1 as n → ∞.
A q-PG function f satisfying these properties is equal to cΓq(x), for some constant c.

where the a q-PG function ( pre-q-gamma function) is a positive function f on ]0,+∞[ satisfying
the functional equation f(x+ 1) = [x]qf(x).
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A generalization of the q-gamma function, called symmetric q-Gamma function, was introduced
and studied by K. Brahim and Yosr Sidomou in [6].

In the present paper, we continue the study of this function by giving some new characterizations
and prove that they are intimately related.

2 Notations and Preliminaries

We recall some usual notions and notation used in the q-theory [7, 8, 9] and [10]. Throughout this
paper, we assume q ∈]0, 1[.

For a ∈ C, the q-shifted factorials are defined by

(a; q)0 = 1, (a; q)n =

n−1∏
i=0

(1− aqi) = (1− a)(1− aq)....(1− aqn−1), n = 1, 2, ..... (2.1)

(a; q)∞ =
∞∏
i=0

(1− aqi). (2.2)

We also denote

[x]q =
1− qx

1− q
, x ∈ C, (2.3)

[̃x]q =
qx − q−x

q − q−1
=, x ∈ C, (2.4)

[n]q! =

n∏
k=1

[k]q =
(q; q)n
(1− q)n

, n ∈ N. (2.5)

and

[̃n]q! =

n∏
k=1

[̃k]q, n ∈ N. (2.6)

One can see that
[̃x]q = q−(x−1)[x]q2 . (2.7)

3 The symmetric q-Gamma function:

The q-Gamma function Γq(x), a q-analogue of Euler’s gamma function, was introduced by Thomae
[11] and later by Jackson [12] as the infinite product:

Γq(x) =
(q; q)∞(1− q)1−x

(qx; q)∞
, x > 0, (3.1)

where q is a fixed real number 0 < q < 1.

Recently, K. Brahim and Yosr Sidomou [6] introduced the symmetric q-Gamma function as follows:

Γ̃q(z) = q−
(z−1)(z−2)

2 Γq2(z), , z > 0, q > 0, q ̸= 1, (3.2)

where

Γq(z) =

{
(q,q)∞
(qx,q)∞ (1− q)1−x, if 0 < q < 1,
(q−1,q−1)∞
(q−x,q−1)∞ (1− q)1−xq

x(x−1)
2 , if q > 1.

(3.3)

They proved that it is symmetric under the interchange q ↔ q−1 and satisfies a q-analogue of the
Bohr-Mollerup theorem for q ̸= 1:



Theorem 3.1. Let q > 0, q ̸= 1. The only function f ∈ C2((0,∞)) satisfying the conditions:
(a) f(1) = 1.

(b) f(x+ 1) = [̃x]qf(x) .

(c) d2

dx2Logf(x) ≥ |Logq| for positive x,
is the symmetric q-Gamma function.

In [4], the author proved the following relation

Γq(x) = lim
n→+∞

(1− q)[x]q−x [n]
[x]q
q [n]q!

[x]q[x+ 1]q...[x+ n]q
, x > 0. (3.4)

Using the relation (3.2) and (3.4) , we derive the following relation:

Γ̃q(x) = lim
n→+∞

q−
(x−1)(x−2)

2 (1− q2)
[x]

q2
−x

[n]
[x]

q2

q2
[n]q2 !

[x]q2 [x+ 1]q2 ...[x+ n]q2
, x > 0, 0 < q < 1. (3.5)

4 Characterization of the q-Gamma function:

As it is proved in [4] and [5] we establish new characterizations of the symmetric q-Gamma function.
The first characterization is given by the following theorem:

Theorem 4.1. The symmetric q-Gamma function Γ̃q(x) is the unique function f(x) > 0 on ]0,+∞[
that satisfies the following properties:
a) f(1) = 1

b)f(x+ 1) = [̃x]qf(x)

c)f(x+ n) = q−
x2+2nx−3x

2 (1− q2)
[x]

q2
−x

[n]
[x]

q2

q2
f(n)tn(x), where tn(x) → 1 as n → ∞.

Proof. .
First we prove that Γ̃q(x) satisfies conditions (a), (b) and (c).

From Theorem 3.1, the symmetric q-Gamma function satisfies the condition (a) Γ̃q(1) = 1, and the

condition (b) Γ̃q(x+ 1) = [̃x]qΓ̃q(x).

As a consequence of the two properties, we get Γ̃q(n) = ˜[n− 1]q!

(c) Let sn(x) =
Γ̃q(x)

q
− (x−1)(x−2)

2 (1−q2)
[x]

q2
−x

Γ̃n,q(x)

,

where Γ̃n,q(x) =
[n]

[x]
q2

q2
[n]

q2
!

[x]
q2

[x+1]
q2

...[x+n]
q2

=
[n]

[x]
q2

q2
[̃n]q !

qnx+x−1 [̃x]q [̃x+1]q...[̃x+n]q
,

then Γ̃q(x) = sn(x)q
− (x−1)(x−2)

2 (1− q2)
[x]

q2
−x

Γ̃n,q(x) and limn→+∞ sn(x) = 1.

For n ∈ N and x > 0, we apply (b) n times to get



Γ̃q(x+ n) = ˜[x+ n− 1]q...
˜[x+ 1]q [̃x]qΓ̃q(x)

=
˜[x+ n]q...

˜[x+ 1]q [̃x]q

˜[x+ n]q

.q−
(x−1)(x−2)

2 (1− q2)
[x]

q2
−x

[n]
[x]

q2

q2
[̃n]q!

qnx+x−1 [̃x]q
˜[x+ 1]q...

˜[x+ n]q

.sn(x)

= q−
x2+2nx−3x

2 (1− q2)
[x]

q2
−x

[n]
[x]

q2

q2
Γ̃q(n)tn(x).

Where tn(x) = q−x [̃n]q

[̃x+n]q
.sn(x). Thus, Γ̃q(x + n) = q−

x2+2nx−3x
2 (1 − q2)

[x]
q2

−x
[n]

[x]
q2

q2
Γ̃q(n)tn(x)

and tn(x) → 1 as n → +∞.

To show uniqueness, we assume f(x) is a function that satisfies (a), (b) and (c). From properties
(a) and (b), we have

f(n) = ˜[n− 1]q!. (4.1)

f(x+ n) = ˜[x+ n− 1]q
˜[x+ n− 2]q...

˜[x+ 1]q [̃x]qf(x). (4.2)

Combining (4.1),(4.2) and (c) together, we have

f(x) = q−
x2+2nx−3x

2 (1− q2)
[x]

q2
−x

[n]
[x]

q2

q2
˜[n− 1]q!

˜[x+ n− 1]q
˜[x+ n− 2]q...[x̃+ 1]q [̃x]q

tn(x)

= q−
(x−1)(x−2)

2 (1− q2)
[x]

q2
−x

Γ̃n,q(x).sn(x),

where sn(x) = qx
[̃x+n]q

[̃n]q
tn(x) → 1 as n → +∞. Therefore f(x) = Γ̃q(x) and hence f is uniquely

determined. This completes the proof.

5 Relationship between Characterizations

In what follows, we will adopt the terminology of the following definition.

Definition 5.1. A function f is said to be a qs-PG function ( pre-symmetric-q-gamma function),
if f is positive on ]0,+∞[ and satisfies the functional equation

f(x+ 1) = [̃x]qf(x).

In the previous section we showed that the property

f(x+ n) = q−
x2+2nx−3x

2 (1− q2)
[x]

q2
−x

[n]
[x]

q2

q2
f(n)tn(x)

characterizes the q-gamma function. In this section we will give three properties which are equivalent
to one another for a qs-PG function and characterize the symmetric q-gamma function.

Theorem 5.1. For a q-PG function f , the following properties are equivalent:
(C) ln f is convex on ]0,+∞[,

(L)L(n+ x) = −x2+2nx−3x
2

ln q + ([x]q2 − x) ln(1− q2) + L(n) + [x]q2 ln[n+ 1]q2 + rn(x),
where L(x) = ln f(x+ 1) and rn(x) → 0 as n → ∞,

(P) f(x+ n) = q−
x2+2nx−3x

2 (1− q2)
[x]

q2
−x

[n]
[x]

q2

q2
f(n)tn(x),

where tn(x) → 1 as n → ∞.

A qs-PG function f satisfying these properties is equal to cΓ̃q(x),for some constant c.



Proof. .
(a) (P ) ⇔ (L). We have

(P ) ⇔ f(x+ (n+ 1)) = q−
x2+2nx−3x

2 (1− q2)
[x]

q2
−x

f(n+ 1)[n+ 1]
[x]

q2

q2
tn+1(x),

tn+1(x) → 1

⇔ ln f(x+ (n+ 1)) = −x2 + 2nx− 3x

2
ln q + ([x]q2 − x) ln(1− q2) + ln f(n+ 1)

+[x]q2 ln[n+ 1]q2 + ln tn+1(x), tn+1(x) → 1

⇔ L(x+ n) = −x2 + 2nx− 3x

2
ln q + ([x]q2 − x) ln(1− q2) + L(n)

+[x]q2 ln[n+ 1]q2 + rn(x), rn(x) → 0

⇔ (L).

(b) (C) =⇒ (P ). Let m < x ≤ m+1, where m = 0, 1, 2, ... For any natural n, n+m− 1 < n+m <
n+ x ≤ n+m+ 1. The convexity of ln f gives us ( we write Lm = ln f(n+m))

Lm − Lm−1

n+m− (n+m− 1)
≤ ln f(n+ x)− ln f(n+m)

(n+ x)− (n+m)
≤ Lm+1 − Lm

(n+m+ 1)− (n+m)

⇔ (x−m) ln ˜[n+m− 1]q ≤ ln
f(n+ x)

f(n+m)
≤ (x−m) ln ˜[n+m]q

⇔ ˜[n+m− 1]
x−m

q ≤ f(n+ x)

˜[n+m− 1]q
˜[n+m− 2]q...[̃n]qf(n)

≤ ˜[n+m]
x−m

q

⇔ ˜[n+m− 1]
x

qTm ≤ f(n+ x)

f(n)
≤ ˜[n+m]

x

qTm

˜[n+m− 1]
m

q

˜[n+m]
m

q

,

where Tm =
˜[n+m−1]q

̂[n+m−2]q...[̃n]q

˜[n+m−1]
m

q

= q
m(m−1)

2
[n+m−1]

q2
[n+m−2]

q2
...[n]

q2

[n+m−1]m
q2

.

Therefore, we have

lim
n→+∞

qnx f(n+ x)

f(n)
=

q−
x2−3x

2

(1− q2)x
,

by the squeezing theorem. If we let

tn(x) =
q

x2+2nx−3x
2 f(n+ x)

(1− q2)
[x]

q2
−x

f(n)[n]
[x]

q2

q2

,

then

f(n+ x) = q−
x2+2nx−3x

2 (1− q2)
[x]

q2
−x

f(n)[n]
[x]

q2

q2
tn(x),

where tn(x) → 1 as n → ∞. This proves that f satisfies (P ).

(c) (P ) =⇒ (C). From the uniqueness part of the proof of the Theorem 1.1 we have

f(x) = f(1) limn→+∞ q−
(x−1)(x−2)

2 (1− q2)
[x]

q2
−x

Γn,q(x).

Using the fact that the limit function of a convergent sequence of convex functions is convex, it

suffices to show that ln
(
q−

(x−1)(x−2)
2 (1− q2)

[x]
q2

−x
Γn,q(x)

)
is convex.

Now

ln

(
q−

(x−1)(x−2)
2 (1− q2)

[x]
q2

−x
Γn,q(x)

)
= − (x− 1)(x− 2)

2
ln q + ([x]q2 − x) ln(1− q2)

+[x]q2 ln[n]q2 + ln([n]q2 !)− ln[x]q2 − ...− ln[x+ n]q2 .



Therefore, we have(
ln

(
q−

(x−1)(x−2)
2 (1− q2)

[x]
q2

−x
Γn,q(x)

))′

= (−x+
3

2
) ln q +

(
−2

ln q

1− q2
q2x − 1

)
ln(1− q2)

+

(
−2

ln q

1− q2
q2x ln[n]q2

)
+

2 ln q

1− q2
q2x

[x]q2
+ ...

+
2 ln q

1− q2
q2(x+n)

[x+ n]q2
.

And so(
ln

(
q−

(x−1)(x−2)
2 (1− q2)

[x]
q2

−x
Γn,q(x)

))′′

= − ln q − 4
(ln q)2

1− q2
q2x(ln(1− q2) + ln

1− q2n

1− q2
)

+4
(ln q)2

1− q2
[
q2x[x]q2 + q4x

1−q2

[x]2
q2

+ ...

+
q2(x+n)[x+ n]q2 + q4(x+n)

1−q2

[x+ n]2
q2

]

= − ln q − 4
(ln q)2

1− q2
q2x(ln(1− q2n))

+4
(ln q)2

1− q2
[
q2x[x]q2 + q4x

1−q2

[x]2
q2

+ ...

+
q2(x+n)[x+ n]q2 + q4(x+n)

1−q2

[x+ n]2
q2

].

Then(
ln

(
(1− q)[x]q−xΓn,q(x)

))′′
> 0.

This completes the proof.
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