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Abstract

In this work we are interested by giving new characterizations of the symmetric ¢-Gamma
function and show that there are intimately related. For that, some special g-calculus technics

are used.
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1 Introduction

In literature the characterizations of the well known Gamma function are studied by many authors
[1, 2] and [3]. As same as the Gamma function, the characterization of the g-Gamma function was
studied by Elmonser, Brahim and Fitouhi in [4], they proved the following results:

Theorem 1.1. The ¢-Gamma function is the unique function f(x) > 0 on ]0,+o0[ that satisfies
the following properties:

a) f(1) =1

b)f(z+1) = [z]of(z)

c)f(x+n)=01- q)[z]‘l*’cf(n)[n]gx]qtn(x), where tn(z) = 1 as n — oo.

The second theorem gives the relationship between three different characterizations of the g-Gamma
function:

Theorem 1.2. For a q-PG function f, the following properties are equivalent:

(C) In f is convex on ]0, +oo],

(L)L(n+ @) = (2], — 2)In(1 - g) + L(n) + oln(n + 1) + ra(a),

where L(z) =1In f(x 4+ 1) and rn(x) — 0 as n — oo,

(P) f(@+n) = (1= @)= f(m)n)y "t (a),

where tp(z) — 1 as n — 0.

A q-PG function f satisfying these properties is equal to cI'q(x), for some constant c.

where the a ¢-PG function ( pre-g-gamma function) is a positive function f on ]0, +o00[ satisfying
the functional equation f(z + 1) = [z]qf(x).
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A generalization of the g-gamma function, called symmetric g-Gamma function, was introduced
and studied by K. Brahim and Yosr Sidomou in [6].

In the present paper, we continue the study of this function by giving some new characterizations
and prove that they are intimately related.

2 Notations and Preliminaries

We recall some usual notions and notation used in the g-theory [7, 8, 9] and [10]. Throughout this
paper, we assume ¢ €0, 1][.

For a € C, the ¢-shifted factorials are defined by

(a;9)0 =1, (a;q9)n = 1:[(1 — aqi) =(1-a)(1-aq)...(1— aq"il), n=12,... (2.1)
(a59)00 = H(l —aq'). (2.2)
We also denote ) Z;
_1—q
[%]q ey z€C, (2.3)
_¢-qF -
[z], = PR eC, (2.4)
=TT, = (@@
[n]q! kl;[l[k]q 1—qn eN. (2.5)
and .
! =[], neN (2.6)

k=1
One can see that

[2], = ¢~ Val,e (2.7)

q

3 The symmetric ¢-Gamma function:

The ¢-Gamma function I'q(z), a g-analogue of Euler’s gamma function, was introduced by Thomae
[11] and later by Jackson [12] as the infinite product:

(4:9)(1 =)' "

Falw) = (4% @) e

,x >0, (3.1)
where ¢ is a fixed real number 0 < ¢ < 1.

Recently, K. Brahim and Yosr Sidomou [6] introduced the symmetric g-Gamma function as follows:

~ (2—1)(2—2)
Fq(z) = q_ 2 FqQ(Z), , 2 > O7q > qu 75 1, (32)
where
| e -g)t, if 0<g<1,
Pq(z) = (qil,qfl)oo 1 1—a m(m2—1) i 1 (33)
m( —q) “q , 1 g>1

1

They proved that it is symmetric under the interchange q <> ¢~ and satisfies a g-analogue of the

Bohr-Mollerup theorem for g # 1:



Theorem 3.1. Let ¢ >0, ¢ # 1. The only function f € C?((0,00)) satisfying the conditions:
(@) ) =1.

) fx+1) =[z] f(z) .

(c) %Logf(a:) > |Logq| for positive x,

is the symmetric ¢-Gamma function.

In [4], the author proved the following relation

Iy(z) = lim (1—¢q)la—* [n]a” ! x>0 (3.4)
R C P A P |

Using the relation (3.2) and (3.4) , we derive the following relation:

[#] 2 |
F(e)= lim g (1)) 2 el 2 [n] 2" [n]g2!
= e e [z]g2[z + 1] g2...[z + n],2

, >0,0<g¢g<1.  (3.5)

4 Characterization of the ¢-Gamma function:

As it is proved in [4] and [5] we establish new characterizations of the symmetric g-Gamma function.
The first characterization is given by the following theorem:

Theorem 4.1. The symmetric ¢-Gamma function T, (z) is the unique function f(z) > 0 on]0, +o0]
that satisfies the following properties:

W f)=1

b)f(x+1) = [z], f ()

c)f(zr+n)= q*%fﬂﬁ (1- q2)[’”]q27w[n][q€]q2 f(n)tn(x), where tp(z) — 1 as n — oo.
Proof. .

First we prove that I'y(z) satisfies conditions (a), (b) and (c).

From Theorem 3.1, the symmetric ¢-Gamma function satisfies the condition (a) Iy(1) = 1, and the

condition (b) T'q(z + 1) = [2],I'¢(2).

—

As a consequence of the two properties, we get I'y(n) = [n — 1!

(c) Let sn(x) = ) Lol2) o] 5—on )
q 2 (1—¢%) 79" " Tnq(2)

[z] 2
[n]ng [n] 2!

[ac]q2 [x+1]q2m[ac+n]q2 - qnm+x—lmqmq‘“ ﬁ]q ’

[n]lwlqz il
where I'y, 4(z) = e 1

_(e=1)(z=2)
2

then T'g(z) = sn(2)q (1— ¢ 7T, (2) and limp_ oo sn(z) = 1.

For n € N and z > 0, we apply (b) n times to get



Tyz+n) = [g+n—1]..[z+1][z],Tq)

— [2] 2
1 1) (x— n| .4 [n] !
R I P T
nr+x—1
[z +n], gretetz] [z + 1], [z + n],
7w2+2nz731 T —x [#] 2~
= ¢ 2 (=g n] LT (n)t (@),
(] ~ 22 nr—3x ~
Where t,(z) = ¢° [i:k] su(@). Thus, Ty(z +n) = ¢ 5 (1 = @) ],y Ty (n)t (2)
xT ’ﬂq

and t,(z) — 1 as n — 4o0.

To show uniqueness, we assume f(z) is a function that satisfies (a), (b) and (c). From properties
(a) and (b), we have

—~

f(n)=[n-1]L% (4.1)
fatn)=lz+n—1] [z +n—2, [z +1], [, f(2). (4.2)
Combining (4.1),(4.2) and (c) together, we have

] o ——
2242nz—3ac [n]qzq [n— 1](1!

f@) = o (A=)

— tn(z)
[x+n—1],[z+n-2]..[z+1][z],

_ (=) (=@=2)
2

= g 1— A2 =T, (2).50(2),
where sp(z) = qm%tn () — 1 as n — +oo. Therefore f(z) = I'y(z) and hence f is uniquely
"lq

determined. This completes the proof.

5 Relationship between Characterizations

In what follows, we will adopt the terminology of the following definition.

Definition 5.1. A function f is said to be a ¢s-PG function ( pre-symmetric-g-gamma function),
if f is positive on ]0, +oo[ and satisfies the functional equation

flz+1) = [z], f ().
In the previous section we showed that the property
224 2nz—3z x
flatn) =g FE 1= el 5 () ()
characterizes the g-gamma function. In this section we will give three properties which are equivalent
to one another for a gs-PG function and characterize the symmetric g-gamma function.

Theorem 5.1. For a q-PG function f, the following properties are equivalent:
(C) In f is convex on ]0, +o0],
2

(L)L(n+ ) = —Z2222=32 In g 4 ([z],2 — 2) In(1 — ¢°) + L(n) + [z],2 In[n + 1] 2 + 7 (2),
where L(z) =1In f(x 4+ 1) and rn(x) — 0 as n — oo,

oz nz—3x z] o—zx [=]
(P) fl+n)=q & (1-¢)" "] 27 f(n)ta(2),
where tn(z) = 1 as n — co.
A qs-PG function f satisfying these properties is equal to cI'q(x),for some constant c.



Proof. .
(a) (P) < (L). We have

224 2nz—3z

(P) & fatm+1))=q F 1= ) fn 4 n+ 157 b (@),
tn+1(1}) —1

2 —_
—W Ing + ([el,z — ) In(1 — %) +In f(n + 1)

+z] 2 Infn 4+ 12 + Intni1 (x), tnta(z) = 1

2 J—
—W Ing + (el — ) In(1 — ¢2) + L(n)

+[z] 2 Infn 4+ 1] 2 + ro(x), ra(z) — 0
< (D).

(b) (C) = (P). Let m < x < m+1, where m = 0,1,2, ... For any natural n, n+m—1<n+m <
n+x <n+m+ 1. The convexity of In f gives us ( we write L., = In f(n + m))

< Inf(z+(n+1)=

& L(x+n)=

Ly — Lip—1 <lnf(n+x)flnf(n+m) < Lpt1— L
n+m—(n+m-—1) — (n+x)—(n+m) “(n+m+1)—(n+m)
e fln+=) e
@(m—m)ln[n—i—m—l]qglnmS(m—m)ln[n—i—m}q
P i P S 5 ) BE— e
[n+m—1] [n+m—2],..[n], f(n)

f(n+z) R [n—l—m—l]q

& n+m—1] Tn < <[n+m],Tn——,

where T — [nTr?niuq/[nj?n?z}qm[Z]q _ qm(w;l) [ntm—1] 2 [n+m—2] o...[n] 2
m [n+m71];n [n+m71];r§
Therefore, we have
.'02—3m
hm qnz f(n + 1') = q ’ )
n—r+oo f(n) (1-¢?)"

by the squeezing theorem. If we let

m2+271173m

q 2 f(n+x)
(1= g)a =" f(n) ] 5

q

tn(z) =

then
z242nz—3z

_ z] o—x [x]
fnta)y=q 2 (1= f)[n] 27 ta(2),
where t,(z) — 1 as n — oco. This proves that f satisfies (P).

(c¢) (P) = (C). From the uniqueness part of the proof of the Theorem 1.1 we have
) (e—D(-2) ol o
f@) = F)limn s poo g™ 2 (1672 T g (a).

Using the fact that the limit function of a convergent sequence of convex functions is convex, it
suffices to show that In (q_w (1— q2)[z]q2_IFn,q(oc)) is convex.
Now

(z—1)(z—2)

_(@=D(z=2) 2 o
m@ . (wabzrwmﬂ = 5 Ig+(gp — o)1 - ¢)

+[z] 2 In[n]2 4 In([n],2!) — In[z],2 — ... — Infz 4 n]g.



Therefore, we have

(z—1)(z—2) !
(0 (=@ @) = ot P (2 1) m - )

Ing o 2lng ¢
-2 1
- ( 1—¢2? n[n]q2> Tiog [z]q2

2z

2Ingq qZ(IJr")

1—@?[z+n],e’

And so

(1) (z—2) - ! - -
(ln (([%(1 — %)l an,q(m))> = —lng— 4(11n_q;2 ¢*(In(1 —¢*) +1In 11 _qq2

4x

(ng? ¢"lely + 555
Azl 3
1—g¢g [m]qz

2(z+n 4(z+n)
q ( )[x+n}q2+q1,q2

[z +n]2,

(Ing)?

1—¢q?

_|_

]

= —lng—4 ¢ (In(1 — ¢*"))

7 4x
Jna)? @l + 55

g B

+ ...

4(z+n)
q2(9€+n)[x+n}q2 + ‘Zliqz ]

[z + n]iz

Then
12

(ln ((1 - q)[x]q_xf‘n,q(x))) > 0.

This completes the proof.
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