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Abstract

This article furnishes a new and simple matrix inversion method which
makes full use of the condensation technique of the author of Alice in
Wonderland, Charles Dodgson. A special feature of this article is the
adoption of Bhaskara’s law of impending operation on zero in overcoming
the problem of division by zero whenever zero appears as a divisor in the
condensation technique of Dodgson.
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1 Introduction

Given any matrix , for instance, the 3rd order matrix,

D =

 4 1 −5
−2 3 1

3 −1 4

 ,

one knows, by the standard method of finding the minor of each element, how to
compute the cofactor matrix containing the minors with their prescribed signs,
and hence the inverse of the original matrix, obtained by dividing the transpose
of the cofactor matrix by the determinant of the original matrix. This process,
in the above instance, would run thus:
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The cofactor matrix of D is

∣∣∣∣ 3 1
−1 4

∣∣∣∣ −
∣∣∣∣−2 1

3 4

∣∣∣∣ ∣∣∣∣−2 3
3 −1

∣∣∣∣
−
∣∣∣∣ 1 −5
−1 4

∣∣∣∣ ∣∣∣∣4 −5
3 4

∣∣∣∣ − ∣∣∣∣4 1
3 −1

∣∣∣∣∣∣∣∣1 −5
3 1

∣∣∣∣ − ∣∣∣∣ 4 −5
−2 1

∣∣∣∣ ∣∣∣∣ 4 1
−2 3

∣∣∣∣


which, being evaluated, gives  13 11 −7

1 31 7
16 6 14


where ∣∣∣∣ 3 1

−1 4

∣∣∣∣
is the minor of the element 2 in row 1 and column 1 of the original matrix,
obtained by deleting all elements in row 1 and column 1;∣∣∣∣−2 1

3 4

∣∣∣∣
is the minor of the element 3 in row 1 and column 2 of the original matrix,
obtained by deleting all elements in row 1 and column 2; the other minors are
found in a similar fashion. The transpose of the cofactor matrix of D is 13 1 16

11 31 6
−7 7 14

 ,

and thus the inverse of D is

D−1 =
1

|D|
(Transpose of the cofactor matrix of D)

=
1

98

 13 1 16
11 31 6
−7 7 14

 .

This method, practicable only for the second and third orders, becomes te-
dious and painful when it is adopted in computing the inverses of higher–order
matrices.

Another method, more efficient, of computing the inverses of matrices is
that due to Jordan, often called Gauss–Jordan method. This method involves
setting up the n×2n matrix

[
D I

]
and applying elementary row operations

to this matrix to convert the left half to the identity matrix I. Clearly, in doing
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this, the right half will be converted to a matrix; that is, the inverse matrix D−1

will automatically be constructed in the right half as the left half is converted
to the identity.

The cardinal aim of this paper is to introduce a novel method of computing
the inverses of matrices. This approach makes use of the well-known condensa-
tion method of Charles Dodgson.

The rest of this paper is structured into two sections. Because some under-
standing of the theory of Dodgson’s condensation of determinants is required to
compute the inverses of matrices to which this paper is mainly devoted, we will
discuss Dodgson’s condensation first, and Section 2 is set up for this purpose.
Section 3 deals with the use of Dodgson’s condensation in computing the in-
verses of matrices. It is assumed that the reader is familiar with the elementary
theorems of matrices and determinants.

2 Dodgson’s Condensation

Dodgson’s condensation consists of the following steps or rules:

1. Employ the elementary row and column operations to rearrange, if neces-
sary, the given nth order matrix such that there are no zeros in its interior.
The interior of a matrix is the minor formed after the first and last rows
and columns of the matrix have been deleted.

2. Evaluate every 2nd order determinant formed by four adjacent elements.
The values of the determinants form the (n− 1)st order matrix.

3. Condense the (n − 1)st order matrix in the same manner, dividing each
entry by the corresponding element in the interior of the nth order matrix.

4. Repeat the condensation process until a single number is obtained. This
number is the value of the determinant of the nth order matrix.

To make the method clear, we consider the matrix in Section 1: 1 3 −2
2 1 4
3 5 −1

 .

We compute its determinant by condensing it, applying rule 2, to
∣∣∣∣1 3
2 1

∣∣∣∣ ∣∣∣∣3 −2
1 4

∣∣∣∣∣∣∣∣2 1
3 5

∣∣∣∣ ∣∣∣∣1 4
5 −1

∣∣∣∣


which when evaluated gives [
−5 14
7 −21

]
.
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This in turn, by rule 3, is condensed to give the value, 7. Dividing this value
by the interior, 1, of the 3rd order matrix, we get 7 which is the value of the
determinant of our original 3rd order matrix.

Again, we want to compute the determinant of the 4th order matrix
2 0 −4 6
4 5 1 0
0 2 6 −1
−3 8 9 1


using Dodgson’s condensation technique. By rule 2 this is condensed into

∣∣∣∣2 0
4 5

∣∣∣∣ ∣∣∣∣0 −4
5 1

∣∣∣∣ ∣∣∣∣−4 6
1 0

∣∣∣∣∣∣∣∣4 5
0 2

∣∣∣∣ ∣∣∣∣5 1
2 6

∣∣∣∣ ∣∣∣∣1 0
6 −1

∣∣∣∣∣∣∣∣ 0 2
−3 8

∣∣∣∣ ∣∣∣∣2 6
8 9

∣∣∣∣ ∣∣∣∣6 −1
9 1

∣∣∣∣


which, when evaluated, gives  10 20 −6

8 28 −1
6 −30 15

 .

This in turn, by rule 3, is condensed into
∣∣∣∣10 20

8 28

∣∣∣∣ ∣∣∣∣20 −6
28 −1

∣∣∣∣∣∣∣∣8 28
6 −30

∣∣∣∣ ∣∣∣∣ 28 −1
−30 15

∣∣∣∣


which, being evaluated, furnishes[
120 148
−408 390

]
.

We divide each element of the above 2× 2 matrix by the corresponding element
of the interior matrix of the 4th order matrix,[

5 1
2 6

]
,

and have 
120

5

148

1

−408

2

390

6


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which gives [
24 148
−204 65

]
which, when evaluated, gives the value of 31752. Dividing this value by the
interior, 28, of the 3rd order matrix, we get 1134 which is the value of our
original 4th order matrix.

The simplest way of presenting the workings appears to be to arrange the
series of matrices one under another, as it is displayed below; it will then be
found very easy to pick out the divisors (in the interior matrices) required in
rules 3 and 4: 

2 0 −4 6
4 5 1 0
0 2 6 −1
−3 8 9 1


 10 20 −6

8 28 −1
6 −30 15


[

24 148
−204 65

]
1134.

Dodgson’s condensation method, being interesting and excellently suited to
hand–computations, is in the first place remarkable for its exceedingly great
briefness, lucidity and accuracy. It is also noteworthy as it involves the evalua-
tion of only 2nd order determinants, the elements of which are adjacent to one
another.

However, it is evident that, when zeros (which Dodgson called ciphers in his
paper [6] ) appear in the interior of the original matrix or any one of the derived
matrices, the process cannot be continued because of the emergence of division
by zero[6]. A solution to this problem, as Dodgson suggests, is to recommence
the operation by first rearranging the original matrix by transferring the top row
to the bottom or the bottom row to the top so that the zero, when it occurs,
is now found in an exterior row[6]. The merit of this solution is that “there is
only one new row to be computed; the other rows are simply copied from the
work already done”[6].

Suppose now we want to find the value of the determinant of the matrix
2 −1 2 1 −3
1 2 1 −1 2
1 −1 −2 −1 −1
2 1 −1 −2 −1
1 −2 −1 −1 2

 .
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We compute as follows: 
2 −1 2 1 −3
1 2 1 −1 2
1 −1 −2 −1 −1
2 1 −1 −2 −1
1 −2 −1 −1 2




5 −5 −3 −1
−3 −3 −3 3

3 3 3 −1
−5 −3 −1 −5


 −15 6 12

0 0 6
6 −6 8

 .

We cannot continue the operation because of the zero which occurs in the interior
of the derived 3rd order matrix. Division by zero will occur. So we rearrange
the original 5th order matrix by moving the top row to the bottom and moving
all the other rows up once, and recommence the operation:

1 2 1 −1 2
1 −1 −2 −1 −1
2 1 −1 −2 −1
1 −2 −1 −1 2
2 −1 2 1 −3



−3 −3 −3 3

3 3 3 −1
−5 −3 −1 −5

3 −5 1 1


 0 0 6

6 −6 8
−17 8 −4


[

0 12
18 40

]
36.

There is another means of overcoming this problem of zero divisor without
recommencing the condensation process. It is the use of Bhaskara’s law of
impending operation on zero which is discussed in the papers. This is done
by first adding the zero 0 to one of the elements of the 2 × 2 matrix whose
evaluation gives rise to the zero in the interior matrix. Thus we write

2 −1 2 1 −3
1 2 1 −1 2
1 −1 −2 −1 −1
2 1 −1 −2 −1
1 −2 −1 −1 2


6




5 −5 −3 −1
−3 −3 −3 3
3 3 3 + 0 −1
−5 −3 −1 −5


 −15 6 12

0 −0 6 + 0
6 −6− 0 8 + 5

2 · 0

 .

 −5 · 0 −12− 10 · 0

2 · 0 72 + 8 · 0− 3 · 02

2(3 + 0)

 .

The determinant of the matrix is therefore

1

−0

[
−5 · 0

(
72 + 8 · 0− 3 · 02

2(3 + 0)

)
+ 2 · 0(12 + 10 · 0)

]
which becomes

5

(
72 + 8 · 0− 3 · 02

2(3 + 0)

)
− 2(12 + 10 · 0).

Omitting 0 as it merely represents absolute nothing gives

5

(
72

2(3)

)
− 2(12)

which is equal to 36.

3 Inverses of Matrices

In this section, I shall teach how to calculate, by means of a new method, the
inverses of matrices of not only the second and third orders, but also the fourth
and fifth orders. This method uses Dodgson’s condensation and computes the
inverse of any n× n matrix D as demonstrated in the following rules:

1. Form the four-quadrant matrix by putting D in four quadrants:[
D D
D D

]
.

2. Form the interior matrix of the four-quadrant matrix by deleting the first
and last rows and columns of the four-quadrant matrix.

3. Apply Dodgson’s condensation by condensing the interior matrix of the
four-quadrant matrix to matrix of the next lower order and continue the
process until a matrix of the same order as D is obtained, that is an n×n
matrix.
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If n is odd, the final n × n matrix formed is the cofactor matrix of D. If n is
even and we give each element of the final n × n matrix formed its prescribed
sign, the resulting matrix is the cofactor matrix of D.

It is interesting to note that the determinant of D can be easily obtained
from the above process. Apply the condensation one more time. We get an
n − 1 × n − 1 matrix. If n is odd, then the n − 1 × n − 1 matrix formed is a
matrix consisting of only the determinant of D as its elements. If n is even and
we give each element of the n− 1×n− 1 matrix formed its prescribed sign, the
resulting matrix consists of only the determinant of D as its elements.

To illustrate the ease with which this method is used to obtain the inverse
of matrices, we begin with the simplest case, the 2nd order matrix

D =

[
2 4
−1 7

]
.

By rule 1 we write the four-quadrant matrix as
2 4 2 4
−1 7 −1 7
2 4 2 4
−1 7 −1 7


and by rule 2 we get the interior matrix of the four-quadrant matrix as[

7 −1
4 2

]
.

We give the elements of this matrix their prescribed signs since the original
matrix is of even order, and we obtain the cofactor matrix as[

7 −(−1)
−4 2

]
which gives [

7 1
−4 2

]
which, being transposed, becomes[

7 −4
1 2

]
.

The inverse of the original matrix is, therefore,

D−1 =
1

18

[
7 −4
1 2

]
where the value 18 is the determinant of the original matrix.
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We now compute by means of this new technique the inverse of the 3 × 3
matrix:

D =

 4 1 −5
−2 3 1
3 −1 4

 .

By rule 1 we write the four-quadrant matrix as
4 1 −5 4 1 −5
−2 3 1 −2 3 1
3 −1 4 3 −1 4
4 1 −5 4 1 −5
−2 3 1 −2 3 1
3 −1 4 3 −1 4

 ,

and by applying rule 2 we get the 4 × 4 interior matrix of the four-quadrant
matrix as 

3 1 −2 3
−1 4 3 −1
1 −5 4 1
3 1 −2 3


which, by rule 3, becomes the cofactor matrix 13 11 −7

1 31 7
16 6 14


which, after famously undergoing transposition, becomes 13 1 16

11 31 6
−7 7 14

 .

Here we must not give signs to the elements since the original matrix is of odd
order, and we must stop condensation at this point since the derived matrix is
of the same order as the original matrix D. We now compute the determinant
of D as follows:

|D| = 1

4

∣∣∣∣ 13 11
1 31

∣∣∣∣ = 98.

Notice also that

|D| = 1

3

∣∣∣∣ 11 −7
31 7

∣∣∣∣ = 98,

|D| = 1

−5

∣∣∣∣ 1 31
16 6

∣∣∣∣ = 98,

|D| = 1

4

∣∣∣∣ 31 7
6 14

∣∣∣∣ = 98.
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Thus the inverse of D is

D−1 =
1

98

 13 1 16
11 31 6
−7 7 14

 .

Clearly, the computation of the inverse of 2×2 and 3×3 matrices by employ-
ing Dodgson’s condensation is simple and systematic and does not involve the
liability of dividing by elements in the interiors of the matrices, thereby escaping
the cipher problem of division by zero. This new method, therefore, deserves
utmost consideration and absolute attention of all as the 2×2 and 3×3 matrices
are the most common matrices employed in texts and by students and teachers
of mathematics, science and engineering. Thus, the Author strongly recommend
this new method for hand–computation of inverses of matrices worldwide.

Let us now compute the inverse of the 3× 3 matrix,

D =

 0 3 0
4 1 6
1 4 0

 .

By rule 1 we write the four-quadrant matrix as
0 3 0 0 3 0
4 1 6 4 1 6
1 4 0 1 4 0
0 3 0 0 3 0
4 1 6 4 1 6
1 4 0 1 4 0

 ,

and by applying rule 2 we get the 4 × 4 interior matrix of the four-quadrant
matrix as 

1 6 4 1
4 0 1 4
3 0 0 3
1 6 4 1

 ,

which, by rule 3, becomes the cofactor matrix , −24 6 15
0 0 3

18 0 −12


which in its turn, after being transposed, becomes −24 0 18

6 0 0
15 3 −12

 .

We stop the condensation process and start the computation of the determinant
of D. Since, of the four elements in the interior of the 4 × 4 interior matrix of

10



the four-quadrant matrix, only one element is non–zero, there is, therefore, only
one way of finding the determinant of D from the cofactor matrix, namely, the
evaluation in which the divisor is the element, 1. Thus the determinant of D is

|D| = 1

1

∣∣∣∣ 6 15
0 3

∣∣∣∣ = 18.

and its inverse is

D−1 =
1

18

 −24 0 18
6 0 0

15 3 −12

 .

We now turn to the computation of the inverse of the 4× 4 matrix,
−2 3 4 7

6 2 4 4
3 −3 6 3
2 1 4 2

 .

We write the four–quadrant matrix as

−2 3 4 7 −2 3 4 7
6 2 4 4 6 2 4 4
3 −3 6 3 3 −3 6 3
2 1 4 2 2 1 4 2
−2 3 4 7 −2 3 4 7

6 2 4 4 6 2 4 4
3 −3 6 3 3 −3 6 3
2 1 4 2 2 1 4 2


and obtain its interior matrix as

2 4 4 6 2 4
−3 6 3 3 −3 6

1 4 2 2 1 4
3 4 7 −2 3 4
2 4 4 6 2 4
−3 6 3 3 −3 6

 .

We employ Dodgson’s condensation and obtain the following:
24 −12 −6 −24 24
−18 0 0 9 −18
−8 20 −18 8 −8

4 −12 50 −22 4
24 −12 50 −22 4



−36 0 −18 −72
−90 0 81 72

4 112 2 −48
60 168 −222 −216

 .
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We give the elements of this matrix their prescribed signs since the original
matrix is of even order, and we obtain the cofactor matrix as

−36 0 −18 72
90 0 −81 72
4 −112 2 48

−60 168 222 −216

 .

The determinant of D is

|D| = 1

9

∣∣∣∣ −18 −72
81 72

∣∣∣∣ = 504.

and its inverse is

D−1 =
1

504


−36 90 4 −60

0 0 −112 168
−18 −81 2 222

72 72 48 −216

 .

This method is exceedingly simple and lucid, but it may be rendered even
more palpable to the eye by arranging the series of matrices one under another,
as it is displayed below; it will then be found very easy to culled the divisors
from the matrices: 

−2 3 4 7
6 2 4 4
3 −3 6 3
2 1 4 2




−2 3 4 7 −2 3 4 7
6 2 4 4 6 2 4 4
3 −3 6 3 3 −3 6 3
2 1 4 2 2 1 4 2
−2 3 4 7 −2 3 4 7
6 2 4 4 6 2 4 4
3 −3 6 3 3 −3 6 3
2 1 4 2 2 1 4 2




2 4 4 6 2 4
−3 6 3 3 −3 6
1 4 2 2 1 4
3 4 7 −2 3 4
2 4 4 6 2 4
−3 6 3 3 −3 6




24 −12 −6 −24 24
−18 0 0 9 −18
−8 20 −18 8 −8
4 −12 50 −22 4
24 −12 50 −22 4


12




−36 0 −18 −72
−96 0 81 72

4 112 2 −48
60 168 −222 −216

 .

We take the computation of the determinant of another 4× 4 matrix. This
is to teach us how we may handle cases wherein zero appears in the interior of
the matrix derived directly from the four-quadrant matrix. Suppose the matrix

1 2 3 −1
2 1 0 1
2 1 −1 1
1 2 3 5

 .

We find the determinant as follows:

1 2 3 −1 1 2 3 −1
2 1 0 1 2 1 0 1
2 1 −1 1 2 1 −1 1
1 2 3 5 1 2 3 5
1 2 3 −1 1 2 3 −1
2 1 0 1 2 1 0 1
2 1 −1 1 2 1 −1 1
1 2 3 5 1 2 3 5




1 0 1 2 1 0
1 −1 1 2 1 −1
2 3 5 1 2 3
2 3 −1 1 2 3
1 0 1 2 1 0
1 −1 1 2 1 −1

 .

We add, based on Bhaskara’s law of zero, the zero 0 (this notation is used to dif-
ferentiate it from the non-interior 0) to the interior zero and apply condensation
as usual: 

1 0 1 2 1 0
1 −1 1 2 1 −1
2 3 5 1 2 3
2 3 −1 1 2 3
1 0 1 2 1 0
1 −1 1 2 1 −1




−1 1 0 0 −1
5 −8 −9 3 5
0 −18 6 0 0

2 · 0− 3 3 + 0 −3 −3 −3
−1− 0 0 + 1 0 0 −1


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
−3 −9 0 3
−30 −42 −18 0

12 · 0− 18 6 · 0− 36 −18 0
2 · 0 + 3 3 · 0 + 3 0 3

 .

We omit 0 since it represents nothing. Thus, we have the matrix
−3 −9 0 3
−30 −42 −18 0
−18 −36 −18 0

3 3 0 3


which, giving its elements their prescribed signs, becomes

−3 9 0 −3
30 −42 18 0
−18 36 −18 0
−3 3 0 3

 .

Thus the inverse is

1

18


−3 30 −18 −3
9 −42 36 3
0 18 −18 0
−3 0 0 3

 .

3.1 Proof of the Validity of the New Approach

We now proceed to give a proof of the validity of this new method. In doing so,
we shall take the following steps in computing the cofactor matrix of the n× n
matrix D by means of the new method:

1. Form the cofactor matrix consisting of the cofactors or minors in determi-
nant form.

2. Rearrange the elements in the determinants, the minors, such that

(a) for every row, from left to right, the 2nd, 3rd, 4th, . . ., (n − 1)st
columns of each determinant are the respective 1st, 2nd, 3rd, . . .,
(n− 2)nd columns of the next determinant.

(b) for every column, from top to bottom, the 2nd, 3rd, 4th, . . ., (n −
1)st rows of each determinant are the respective 1st, 2nd, 3rd, . . .,
(n− 2)nd rows of the next determinant.

3. Write all the columns of the elements of all the determinants without
repeating any column.

If these steps are carefully taken, it will be found that the new matrix formed
is the interior of a matrix formed by putting D in four quadrants, adjacent to
one another.
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3.1.1 Derivation for 2× 2 Matrix

Let us first take the simplest case, the 2× 2 matrix:

D =

[
a11 a12
a21 a22

]
.

If we compute the cofactors of the elements of this matrix by the method of
finding the complementary minor of each element, we obtain the cofactor matrix[

a22 −a21
−a12 a11

]
which, except for the prescribed signs of the cofactors, is the interior of the
matrix, 

a11 a12 a11 a12
a21 a22 a21 a22
a11 a12 a11 a12
a21 a22 a21 a22

 ,

formed by putting D in four quadrants, adjacent to one another.

3.1.2 Derivation for 3× 3 Matrix

Secondly, let us take the 3× 3 matrix:

D =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 .

We find the cofactor matrix by method of minors and get

∣∣∣∣a22 a23
a32 a33

∣∣∣∣ − ∣∣∣∣a21 a23
a31 a33

∣∣∣∣ ∣∣∣∣a21 a22
a31 a32

∣∣∣∣
−
∣∣∣∣a12 a13
a32 a33

∣∣∣∣ ∣∣∣∣a11 a13
a31 a33

∣∣∣∣ − ∣∣∣∣a11 a12
a31 a32

∣∣∣∣∣∣∣∣a12 a13
a22 a23

∣∣∣∣ − ∣∣∣∣a11 a13
a21 a23

∣∣∣∣ ∣∣∣∣a11 a12
a21 a22

∣∣∣∣


.

We rearrange the elements of each determinant in the cofactor matrix above,
such that for every row, from left to right, the 2nd column of each determinant
is the 1st column of the next determinant. Thus we have the cofactor matrix of
D rearranged as

∣∣∣∣a22 a23
a32 a33

∣∣∣∣ ∣∣∣∣a23 a21
a33 a31

∣∣∣∣ ∣∣∣∣a21 a22
a31 a32

∣∣∣∣
−
∣∣∣∣a12 a13
a32 a33

∣∣∣∣ − ∣∣∣∣a13 a11
a33 a31

∣∣∣∣ − ∣∣∣∣a11 a12
a31 a32

∣∣∣∣∣∣∣∣a12 a13
a22 a23

∣∣∣∣ ∣∣∣∣a13 a11
a23 a21

∣∣∣∣ ∣∣∣∣a11 a12
a21 a22

∣∣∣∣


.
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Again, we rearrange the elements of each determinant, such that for every col-
umn, from top to bottom, the 2nd row of each determinant is the 1st row of the
next determinant. So we have the cofactor matrix rewritten as

∣∣∣∣a22 a23
a32 a33

∣∣∣∣ ∣∣∣∣a23 a21
a33 a31

∣∣∣∣ ∣∣∣∣a21 a22
a31 a32

∣∣∣∣∣∣∣∣a32 a33
a12 a13

∣∣∣∣ ∣∣∣∣a33 a31
a13 a11

∣∣∣∣ ∣∣∣∣a31 a32
a11 a12

∣∣∣∣∣∣∣∣a12 a13
a22 a23

∣∣∣∣ ∣∣∣∣a13 a11
a23 a21

∣∣∣∣ ∣∣∣∣a11 a12
a21 a22

∣∣∣∣


.

This new arrangement of the cofactor matrix may be considered as a derived
matrix obtained by employing Dodgson’s condensation to the matrix,

a22 a23 a21 a22
a32 a33 a31 a32
a12 a13 a11 a12
a22 a23 a21 a22

 ,

which is clearly the interior of the matrix,
a11 a12 a13 a11 a12 a13
a21 a22 a23 a21 a22 a23
a31 a32 a33 a31 a32 a33
a11 a12 a13 a11 a12 a13
a21 a22 a23 a21 a22 a23
a31 a32 a33 a31 a32 a33

 ,

formed by putting D in four quadrants, adjacent to one another. This proves
the method for a 3 × 3 matrix; and similar proofs might be given for larger
matrices.

3.1.3 Derivation for 4× 4 Matrix

Lastly, let us take the 4× 4 matrix:

D =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 .
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We find the cofactor matrix by method of minors and get

∣∣∣∣∣∣
a22 a23 a24
a32 a33 a34
a42 a43 a44

∣∣∣∣∣∣ −

∣∣∣∣∣∣
a21 a23 a24
a31 a33 a34
a41 a43 a44

∣∣∣∣∣∣
∣∣∣∣∣∣
a21 a22 a24
a31 a32 a34
a41 a42 a44

∣∣∣∣∣∣ −

∣∣∣∣∣∣
a21 a22 a23
a31 a32 a33
a41 a42 a43

∣∣∣∣∣∣
−

∣∣∣∣∣∣
a12 a13 a14
a32 a33 a34
a42 a43 a44

∣∣∣∣∣∣
∣∣∣∣∣∣
a11 a13 a14
a31 a33 a34
a41 a43 a44

∣∣∣∣∣∣ −

∣∣∣∣∣∣
a11 a12 a14
a31 a32 a34
a41 a42 a44

∣∣∣∣∣∣
∣∣∣∣∣∣
a11 a12 a13
a31 a32 a33
a41 a42 a43

∣∣∣∣∣∣∣∣∣∣∣∣
a12 a13 a14
a22 a23 a24
a42 a43 a44

∣∣∣∣∣∣ −

∣∣∣∣∣∣
a11 a13 a14
a21 a23 a24
a41 a43 a44

∣∣∣∣∣∣
∣∣∣∣∣∣
a11 a12 a14
a21 a22 a24
a41 a42 a44

∣∣∣∣∣∣ −

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a41 a42 a43

∣∣∣∣∣∣
−

∣∣∣∣∣∣
a12 a13 a14
a22 a23 a24
a32 a33 a34

∣∣∣∣∣∣
∣∣∣∣∣∣
a11 a13 a14
a21 a23 a24
a31 a33 a34

∣∣∣∣∣∣ −

∣∣∣∣∣∣
a11 a12 a14
a21 a22 a24
a31 a32 a34

∣∣∣∣∣∣
∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣



.

We rearrange the elements of each determinant in the cofactor matrix above,
such that for every row, from left to right, the 2nd and 3rd columns of each
determinant are respectively the 1st and 2nd columns of the next determinant.
Thus we have the cofactor matrix of D rearranged as



∣∣∣∣∣∣
a22 a23 a24
a32 a33 a34
a42 a43 a44

∣∣∣∣∣∣ −

∣∣∣∣∣∣
a23 a24 a21
a33 a34 a31
a43 a44 a41

∣∣∣∣∣∣
∣∣∣∣∣∣
a24 a21 a22
a24 a31 a32
a24 a41 a42

∣∣∣∣∣∣ −

∣∣∣∣∣∣
a21 a22 a23
a31 a32 a33
a41 a42 a43

∣∣∣∣∣∣
−

∣∣∣∣∣∣
a12 a13 a14
a32 a33 a34
a42 a43 a44

∣∣∣∣∣∣
∣∣∣∣∣∣
a13 a14 a11
a33 a34 a31
a43 a44 a41

∣∣∣∣∣∣ −

∣∣∣∣∣∣
a14 a11 a12
a34 a31 a32
a44 a41 a42

∣∣∣∣∣∣
∣∣∣∣∣∣
a11 a12 a13
a31 a32 a33
a41 a42 a43

∣∣∣∣∣∣∣∣∣∣∣∣
a12 a13 a14
a22 a23 a24
a42 a43 a44

∣∣∣∣∣∣ −

∣∣∣∣∣∣
a13 a14 a11
a23 a24 a21
a43 a44 a41

∣∣∣∣∣∣
∣∣∣∣∣∣
a14 a11 a12
a24 a21 a22
a44 a41 a42

∣∣∣∣∣∣ −

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a41 a42 a43

∣∣∣∣∣∣
−

∣∣∣∣∣∣
a12 a13 a14
a22 a23 a24
a32 a33 a34

∣∣∣∣∣∣
∣∣∣∣∣∣
a13 a14 a11
a23 a24 a21
a33 a34 a31

∣∣∣∣∣∣ −

∣∣∣∣∣∣
a14 a11 a12
a24 a21 a12
a34 a31 a12

∣∣∣∣∣∣
∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣



.

Again, we rearrange the elements of each determinant, such that for every
column, from top to bottom, the 2nd and 3rd rows of each determinant are
respectively the 1st and 2nd rows of the next determinant. So we have the
cofactor matrix rewritten as
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

∣∣∣∣∣∣
a22 a23 a24
a32 a33 a34
a42 a43 a44

∣∣∣∣∣∣ −

∣∣∣∣∣∣
a23 a24 a21
a33 a34 a31
a43 a44 a41

∣∣∣∣∣∣
∣∣∣∣∣∣
a24 a21 a22
a34 a31 a32
a44 a41 a42

∣∣∣∣∣∣ −

∣∣∣∣∣∣
a21 a22 a23
a31 a32 a33
a41 a42 a43

∣∣∣∣∣∣
−

∣∣∣∣∣∣
a32 a33 a34
a42 a43 a44
a12 a13 a14

∣∣∣∣∣∣
∣∣∣∣∣∣
a33 a34 a31
a43 a44 a41
a13 a14 a11

∣∣∣∣∣∣ −

∣∣∣∣∣∣
a34 a31 a32
a44 a41 a42
a14 a11 a12

∣∣∣∣∣∣
∣∣∣∣∣∣
a31 a32 a33
a41 a42 a43
a11 a12 a13

∣∣∣∣∣∣∣∣∣∣∣∣
a42 a43 a44
a12 a13 a14
a22 a23 a24

∣∣∣∣∣∣ −

∣∣∣∣∣∣
a43 a44 a41
a13 a14 a11
a23 a24 a21

∣∣∣∣∣∣
∣∣∣∣∣∣
a44 a41 a42
a14 a11 a12
a24 a21 a22

∣∣∣∣∣∣ −

∣∣∣∣∣∣
a41 a42 a43
a11 a12 a13
a21 a22 a23

∣∣∣∣∣∣
−

∣∣∣∣∣∣
a12 a13 a14
a22 a23 a24
a32 a33 a34

∣∣∣∣∣∣
∣∣∣∣∣∣
a13 a14 a11
a23 a24 a21
a33 a34 a31

∣∣∣∣∣∣ −

∣∣∣∣∣∣
a14 a11 a12
a24 a21 a22
a34 a31 a12

∣∣∣∣∣∣
∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣



.

This new arrangement of the cofactor matrix may be considered, removing the
prescribed signs, as a derived matrix obtained by employing Dodgson’s conden-
sation to the matrix,

a22 a23 a24 a21 a22 a23
a32 a33 a34 a31 a32 a33
a42 a43 a44 a41 a42 a43
a12 a13 a14 a11 a12 a13
a22 a23 a24 a21 a22 a23
a32 a33 a34 a31 a32 a33

 ,

which is clearly the interior of the matrix,

a11 a12 a13 a14 a11 a12 a13 a14
a21 a22 a23 a24 a21 a22 a23 a24
a31 a32 a33 a34 a31 a32 a33 a34
a41 a42 a43 a44 a41 a42 a43 a44
a11 a12 a13 a14 a11 a12 a13 a14
a21 a22 a23 a24 a21 a22 a23 a24
a31 a32 a33 a34 a31 a32 a33 a34
a11 a12 a13 a44 a11 a12 a13 a44


,

formed by putting D in four quadrants, adjacent to one another. This proves
the method for a 4 × 4 matrix; and similar proofs might be given for larger
matrices.
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