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SECOND DERIVATIVE MULTISTEP METHOD
WITH NESTED HYBRID EVALUATION

Abstract

This paper considers second derivative multistep methods with nested hybrid evaluation (MMNHE).
The methods derived are A-stable for step number k& = 1(1)8. The schemes have been implemented
on some stiff problems, the results obtained are compared with a second derivative linear multistep
method for stiff ordinary differential equations in Enright (1974).
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1 Introduction

Several problems in science and engineering are often modeled as ordinary differential equations
(ODEs), some of these ODEs are stiff problems arising in areas such as chemical kinetics, nuclear
reactor, control theory, quantum mechanics and electrical circuit theory. Considered in this paper, is
the numerical integration of a system of initial value problem (IVP) for stiff ODEs of the form

Y'(x)=fly(x));  ylxo) =wo € R™,  x € [z0,X] (1)

where f: R x R™ — R™ is a sufficiently differentiable function with y(z) being the unique solution
of the IVP in (1) in the interval [zq, X].

A potentially good numerical method for solving stiff systems of ODEs must have good accuracy
and an infinite region of absolute stability, (see [2], [14]), hence, A-stable methods are the good choice
for obtaining solution for stiff problems. However, the requirement of A-stability puts a severe limi-
tation on the choice of suitable linear multistep methods. This is articulated in the Dahlquist order
barrier, (see [2]) in the case of linear multistep methods (LMMs) and the Daniel-Moore conjecture
(see [1]) in the case of general multiderivative LMM. In developing schemes that possess High order
and A-stability, [5] highlighted that it is traditional to turn to Runge-Kutta methods (RKMs) or
LMM in order to obtain high order A — stable methods. Fatunla [13] highlighted unconventional
numerical integrator adopted in order to circumvent the Dahlquist order barrier. Some authors have
developed schemes for the numerical integration of stiff problems of which include: the nonlinear
multistep schemes of [6], the multiderivative multistep method of [14], [7]; Higher derivative methods
of [1], [10, 11, 12], High order A-stable methods of [9]. Kulikov and Shindin [2, 3] presented nested
implicit Runge-Kutta (IRK) formulas based on the Gauss quadrature formula with high order and
good stability properties.
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We present the multistep method with nested hybrid evaluation (MMNHE) defined as,

sk = D 0 g + b (W Fuin B favon ) + B2 (U S + U ) (2)
=0

with the recursively nested hybrid solution,

k
Yn+ov 4 = Z agl)ynJrj +h (Bfl(;i)fnJrvl + /Bl(;ijll)fnJrvl,l + ﬁlgl)fn+k) l= O(l)m -1 (3)
=0

where i
Yn+v, = Z a§'0)yn+j + h (ng)fn—i-vo + ﬁ]&O)fn+k) (4)
7=0

with the hybrid predictor y,., given by

S ool Vi + 1B fn (M)
Yn+vy = . ) (5)
S s hB Y fn WAV (M)
to obtain the solution of the IVP (1) from z,, to £n4; = x, + jh (h being the step size), where k > 1

is the step number and m = k — 1. Two case of hybrid predictors are considered and denoted as M;
and M. The hybrid values v is chosen as

1
Um:k_§’ Vi1 = , a=0,j=11k, t=11)m (6)
The Yy, 1 is the numerical approximation to the exact solution y(x,r). The advantage of the nested
hybrid methods is that implicitness is on the output solution reducing computational cost compared
to that of the Runge-kutta method (RKM), in which the implicitness is on the stages making the
resolution of the implicitness of the RKM computational intensive, compared to the nested implicit

methods. We exploit this advantage of recursively nested methods to present a new family of hybrid
methods employing this approach.

2 Local truncation error and Order

The general form of the local truncation error of the MMNHE (2), (3), (4), (5) and (6) are:

LTE, = y anrk (Z a; $n+] (7]& )y/($n+k) + Bz(JT,Z)y/(LEn—I—Um))

12 (9 @) + U i) ) (D)

LTEb = y($n+vl+1) — <

<.
I Mk
o

o Dy(nis) +h (ﬁf)?y'(xnﬂl)

+Bvl 2 /(xn+vzf1) +/81(gl)y,('rn+k)>> (8)

LTE, = y(tniv,) - (i V(i) + b (BOY (@nsa) + By <xn+k>)) (9)

J=0



LTE;=vy xn-&-vo (Z Q. xTH-] + h/Bk (anrk)) (10)

LTE, = y(Zniv,) — (Za( Yy(@nts) +hB Yy ($n+k))+h2)\](€l)f/(y(l‘n-i-k))) (11)

respectively. The Taylor’s series expansion of (7), (8), (9), (10) and (11) about =, gives the error
constants of the MMNHE in (2), (3), (4) and (5) as

Ytk = Y(@nik) = Cyh WPy () + O(WP?) (12)
b
Yntvyy — y(xn+vl+1) = C(—glthrlqurl(xn) + O(thrQ) (13)
Yn+v, — y(xn+v1) = Cﬁ-}zlhr+1 T—H( n) + O(hr+2) (14)
CEQR 1y (@) + O(h*42) (M)
Ynt+vo — Y(Tntuy) = (15)
Ct(j_)lhtJrlytJrl(wn) + O(ht*?) (M)
respectively, where CI() +)1, C;l_?l, Cﬁfr)l, Cs(i)l and C’;i)l are the principal error constants of (2), (3), (4)

and (5) respectively, with orders p, ¢, r, sand t givenas p=k+3,¢q=k+3,r=k+2,s=k+1
and t = k + 2 respectively.

: (a) _ (@) _ (@ _ o ... (a) _ (a)
Theorem 1. [6] Given Cy’ =0, C;" =0, Cy’ =0, , Cp =014 Cpy
constant Cz(fk)l of (2) is given as

# 0 the principal error

a 1 m m — m
Cyh = TR (kp“ — (p+ DB A — (p+ 1R — p(p + DA QL™
k-1 (16)
—p(p+1) pIQ ijﬂa )
7=0
and the method is of order p.
Proof. Expanding (7) using the Taylor’s series expansion about x,, gives
Lly(en), ] = Cg”y(wn) + C” hyf (wn) + C47Ry" (@) + -+ + CLOMPyP (@) an
O PP (2,) + O(hPH2)
where the constants C,S“) are given as
k-1
cl =1 o™ (18)
j=0
k-1
o =k-p I (19)
j=0
k-1 1
Oy = Sk —vnBT) — k™ — " — ) = 37 %™ (20)
j=0

k—1 k—1
a 1 m m . m . m
C'?() ) = 30 (k: 3v (m) 3/7<:27,(~C ) _ 6]4:(2,(g ) _ 6va(m) — ]2a(. ) _ Z ]3045- )) (21)



1 _ m —92(m —20(m
C’;(aa):p'<kp_(p)v% LB — (k1™ — plp — R0 — plp — 1)t 200

k-1 (22)
_ Z]‘paém)>
j=0
replacing p with p + 1 in (21) gives (15). O
Theorem 2 [6] Given C(b) =0, C’fb) =0, C’éb) =0, -, C’éb) =0, if C’é?l # 0. The principal error
constant C¥ o1 Oof (3) is given as
b 1 1 (i
ot = ) (v?:f — (g + DRBY — (g + 1 85, — (g + )iy - Zﬂ“ >) (23)
and the nested hybrid method is of order q.
Theorem 3 [6] Given C(c) =0, Cfc) =0, Céc) = ,C9 =, if Cri)l # 0. The principal error
constant C'9 w1 of (4) is given as
() 1 r1 r5(0) Y g0
) = o | — (r+1)k"B) — (r+ 1w Z] (24)
and the hybrid method is of order r.
Theorem 4. [6] Given C(()d) =0, Cfd) =0, Céd) = C’(d) =0,ifC +1 # 0. The principal error
constant Cglr)l of (5) is given as
(d) 1 -
_ s+1 s s+1
CS+1 = m <'U0 (3 + 1 k Bk J:ZO.? ) (25)
and the hybrid predictor is of order s.
Theorem 5 [6] Given C(e) =0, Cl(e) =0, C'Qe) =0, -, C’( =0, i C +1 # 0. The principal error
constant C {1 of (5) is given as
1 k
e ~1 14 (—1 . —1
ol = S <vé+1 (t+ DEBTY — e+ DETIATY =St el )) (26)
§=0

and the hybrid predictor is of order t.

3 The Derivation of the MMNHE

For a fixed step number k£ > 1 and with the hybrid points v as defined in (6), then setting up the order
conditions in (16), (23), (24), (25) and (26) gives appropriately the respective methods for a varying
k. For each k = 1(1)9, the v = (vo,v1,v2, -+ , V) is computed from (6), whose results is given in
table 1.



Table 1: Given values for v at each k.

k v = (vo, V1,02, ,Um)
T
| o
2 Aia)
5 63§,ITI’§)7
4 (6, &> 2+ 3)
5 150 70 39 10 7
327162 87 42
G 383 19T 05 A7 23 1T
64 ° 327162 8 47 2
- 805 447 223 11T 55 27 I3
b b b b ) b
3 16 > 8
3 2047 1023 11 255 127 63 31 15
256 7 128 » 64 ° 32 16 87 4 2
9 | (2807, 2SI 575 8T 113 T1 35 17
5127 256 128 ° 647 32 16 8 47 2

3.1 Method of order p=4, s=2, t=3; k=1
Setting k = 1 in (16), (25) and (26), the method is derived as;

1 1 1
2
Yn+1 =Yn + hfnp1 + R <—3f,/1+5 - 6frlz+1> Cs = 720 (27)
with the hybrid predictor given as
%yn + %ynJrl - %hfnJrl Cs = 4718 (M)

§Yn + §Ynt1 — ghfast + 16h2 flia Ci = — 351 (M)

3.2 Method of order p=5, r=4, s=3, t=4; k=2
Setting k =2 in (16), (24),(25) and (26), the method is derived as;

1 92 32 58 20 8 31
n = — 57 Yn 7 Yn h|— ~1Jn h2 e Iy = 2
Ynt2 = Tgpln T gpUnitt (91fn+§ o1/ “) * < 917n+3 91f"+2> C = 131000 2%

with the hybrid method

1 9 477 3 15 11
Un+i = ~gig¥n t Jog¥nl T ppg¥ntz t h<—8fn+1 - 256fn+2> 5= 21920 (30)
where the hybrid predictor is given as
—g?’ﬁyn + 614yn+1 + %yn—&-Q — %hfnu Cy = ﬁ (M)
_ﬁyn + %Gymrl + %ywﬂ - %hfn+2 + %hQ 7{L+2 05 - _40’;60 (MZ)( )
31
3.3 Method of Order p=6, q=6, r=>5, s=4, t=>5; k=3
Setting k£ = 3 in (16), (23), (24), (25) and (26), the method is derived as;
124 351 | 112212 [ 51840 oot 55830 P
Int3 = 100879 ~ 15697771 T 109879 Y2 1098797 7+3 T 1098797 "3
1728 6822 2127
p2 (8 222 g — =2 (32
( 99897n+3 ~ Toos79” "*3) "= 30766120 %)
with the recursive hybrid
3477 128995 | 2115585 | 77372535
Yn+3 = 107408327" T 8148166477 T 10740832772 T 8148166473
(614520 - 192000 £ o 4852755 £ 104823 (33)
1273151774 1273151775 407408327 "3 T 18251892736



581 4323 L 23639 | 12830741
Int it T 648038477 T 13202567 T 2160128772 T 12060768 Y13

924 47047 34727
il —f o=t 4
(4219fn+2§ T 31601287 3) s = ~So73720880 Y
and the hybrid predictor y,, , 23 defined as
8
35 161 L 345 | 47495 805 n 161 (35)
IntZ T am7en T Te3sa T g192Ynt? T qg1m it T g1 R M5 T 960144
for the case My, and
35 161 345 | 2348185
Un+2 = 5308247 T 26214471 T 65536772 T 2350206778
47495 805 ., 161
ki Og= ———— (36
~ 303216/ + 131072 e 6 osso012 O0)

for the case M. The higher order methods are obtained similarly.

4 Stability of the method (2)
The stability of the MMNHE (2) is investigated using the scalar test problem

Y (z) = My(z) x>0, Re()) <0 (37)
The resultant stability polynomial of the MMNHE (2) for using the first case of hybrid predictor M;

is given by

M =z gk 4 B (Ry (w, 2)| = 22 [k + Q0 (Ry(w,2) | (38)

7=0
k
+ 208, Za w! + 208, w" + z@(}g) Zag_l)wj + zﬁ( Dok
J=0 J=0
k
+ zﬁv: 22) Za( Dl + zﬂ wh + z,BvO (Z a§_1)wj + zﬂ,g_l)wk (39)
Jj=0 J=0

while the resultant stability polynomial of the MMNHE (2) for the second hybrid predictor My is
given by

"t — 2 [t 4 B (Ra(w, )| — 2 [ w4+ QU (Raw, 2))] - (40)

Um

h(w,2) =w =) «

where

k k
Z ago)w] + zﬁ(o)w + zﬁ Z aﬁ._l)wj + zﬂ,g_l)wk + z2)\§€_1)wk
i—=0 =

J J
k k '
Zago w’ + zﬁ wh + zﬁvo Zag-fl)wj + Z,B,(;l)wk + 22)\,(;1)11)]“



Definition 1. [13] The MMNHE (2) is zero stable if for a fixed value k, the roots (w;, j = 1(1)k) of
the first characteristics polynomial p(k,w) defined as

plk, w) = w* — ). w’ (42)

satisfies that |w;| < 1, with the roots |w;| = 1 being simple.
Definition 2. [13] The region of absolute stability of the MMNHE (2) is the set
UV={zeC:|wj<1,j=1(1)k}

that is; if the root of wj, j = 0(1)k of (38) are less or equal to one in absolute value, such that those
of magnitude one are not repeated.

Definition 3. [13] The MMNHE (2) is A-stable if the region of absolute stability includes the
entire left half of the z—plane (i.e.z € C7).

Definition 4. [13] The MMNHE (2) is A(«a)-stable for some o € [0, 3) if the wedge

So ={z:|Arg(—2)| < o,z # 0}

is contained in its region of absolute stability.

We are interested on the A-stable methods, we investigate the stability of MMNHE (2) whose stability
polynomial is stated in (38) and (40) by the boundary locus. Using the first case of hybrid predictor
(M7), the MMNHE (2) is A-stable for 1 < k < 8 and A(89.5°)-stable for k& = 9, but A-stable for
2 < k < 6 when investigated with the second case of hybrid predictor (Mz) as shown in table 2. Due
to the intensive computations involved, we are unable to proceed beyond k£ = 9, and therefore unable
to ascertain at which k instability sets in in the method (2).

Table 2: Angle of absolute stability of the MMNHE

k | MMNHE case M; | MMNHE case M,
1 90Y 890
2 90Y 909
3 90Y 909
4 900 909
5 900 90°
6 900 90°
7 900 800
8 900 89.20
9 89.59 89.59

5 Implementation and Numerical Results

The implementation of the MMNHE derived is considered. In implementing the MMNHE, we are
faced with solving a system of non-linear equations in 4,1, in which we shall resolve by applying the
Newton-Raphson scheme;

s+1 S s - s
?JL:k:} = y7[l-]‘rk —J (yr[w]rk) F (y7[’b-]i-k) (43)



where

F<y7[f-]‘rk = <Z " y7[f—]i-ﬂ h<’ylgzm)f[ k + /B f’ﬂ-‘r’Um)

=0

+h? <Q(m £ ampll )) (44)
and J (yq[j_k) is the Jacobian matrix obtained from (45), which is given as

S 6 S
i) = 5, F ) (45)

Our starting values for (44) is obtained from the second derivative explicit Euler scheme [6]

h2
Ynt1 = Yn + hfn+ ?fr/z (46)

The MMNHE of order p = 4 and the second derivative linear multistep method (SDLMM)[14] is
implemented and compared with the results of the BDF (MATLAB odelbs) and exact solution where
available on the following problems.

Problem 1 van der Pol equation [1].

The van der pol equation which describes oscillations in an electrical circuit.

yi(z) =ya(z)  yi(0) =2
yh(z) = a(l — yi(2))ya(z) — 1 (x)  32(0) =0 (47)
x € [0,20], h=10"% a=1

Problem 2 Non-linear chemical problem [14].

vh () = =0.04y1(x) + 10"y (2)y3(z),  %1(0) =1
vh(2) = 0.04y; (z) — 10%y2(2)ys(x) — 3 x 107y3(x),  42(0) =0 (18)
ys(@ )—3x107 2(z),  ys(0)=0
€1[0,40], h=10""
Problem 3 Singularly perturbed equation [1]
vi(2) = -2+ ) +el(@),  nO0)=1  yle) =
() = yi(2) —y2(2) —y3(x)  9a(0)=1;  ya(z) =€ " (49)
z€[0,10], h=10""
For problem 3, we imbibe the idea in [13], to compute the error using
Error =[| y(zn) — yn(2n) [loo (50)

where y,,(z,) is the numerical solution obtained from the numerical scheme and y(z,) the numerical
solution obtained from the exact solution .

5.1 Discussion of Results

Tables 3 and 4 shows the approximate numerical solution from the MMNHE, SDLMM [14] and that
of the MATLAB Odel5s, while table 5 shows the error in the numerical solution from the MMNHE
and that of the SDLMM compared with the results from the exact solution.



Table 3: Numerical results of Problem 1

MMNHE (2)

SDLMM [14]

MATLAB odelbs

0.2

1.966922636527705
-0.300829185414409

1.966937033212862
-0.300876321668260

1.966954166032711
-0.300727448286640

2.0

0.323358626938811
-1.832721119550892

0.323203828018920
-1.833147369972204

0.323312913693448
-1.832662038505209

20

2.008385577874732
-0.038632274297246

2.008388075022751
-0.041047755836553

2.008072699875731
-0.043863123302697

Table 4: Numer

ical results of Problen

n 2

MMNHE (2)

SDLMM [14]

MATLAB odel5s

0.4

<
=
8

Q@
)
8

<
Y
8

0.985168920970488
0.000033863360308
0.014797464322566

0.972298116295858
0.000031690250848
0.027670031451090

0.985171821837282
0.000033864951839
0.014794313210879

4.0

<
=
8

<
Y
8

0.905518114838754
0.000022404594026
0.094460479505148

0.858546586351834
0.000017663612186
0.141435324360984

0.905526382166127
0.000022405644091
0.094451212189781

40

<
=
8

Q@
)
8

8

N
—~~ |~ |~
— — — | — — [ — — —

<
w

0.715827588832913
0.000009185527822
0.284164228672376

0.642274129390961
0.000006794711821
0.357718768279810

0.715871511601004
0.000009187066500
0.284119301332496

The result above, shows that the MMNHE has comparable accuracy with that of the SDLMM [14]
for problem 1, but the MMNHE performs better than the SDLMM [14] for problem 2 and 3, however,
the MMNHE has comparable accuracy with that of the MATLAB odel5s for problem 2 and 3.

6 CONCLUSION

Conclusively, in this paper, a family of second derivative multistep methods with nested hybrid eval-
uation is proposed. The stability of the method is investigated using the boundary locus and the
results shows that the method is A-stable for 1 < k < 8 using the first case of hybrid predictor and
2 < k < 6 using the second case of hybrid predictor. The numerical schemes constructed was used to
implement non-linear stiff problems alongside the SDLMM discussed in [14] and the MATLAB odel5s
for Problems 1 and 2, and also compared with the exact solution of Problem 3. The results of the
MMNHE shows that the method is comparable in accuracy with the exact solution and MATLAB

odelbs.

Table 5: Numerical results of Problem 3 at x = 10

€ Error in MMNHE (2) Error in SDLMM [14]
1071 1.9997999999999e-004 9.99754620069238e-001
1072 1.9997999999999e-004 9.99754620069238e-001
1073 1.9997999999999e-004 9.99754620069238e-001
104 1.9997999999999e-004 9.99754620069238e-001
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