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Abstract 
 

It has been preliminary researched that function series and power series in mathematical analysis course. 
There are some basic properties and the basic conclusion in the courses. This article is based on the basic 
theory and properties, for them to make a further in-depth study. First of all, as a necessary tool, it has 
introduced the two properties of definite integral, it is proved that the continuous function sequence limit 
problem under the definite integral, then it is defined the sequence of functions on subsets of real number 
set uniformly Cauchy's concept, basis on them several theorem is proved, it is obtained that results of a 
series of important properties of function terms. Using of these properties, power series of several 
important theorems are proved, which is about the important properties of the power series again. 
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1 Introduction 
 
This article assumes that the reader is familiar with the basic theory of mathematical analysis course [1] and 
its basic results [1-7]. Basic on these theories and results, the properties of function series [8-11] is been 
further studied, it is obtained that the important properties of uniform convergence [12-15] and power series 
[16-18]. 
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Our next theorem shows one can interchange integrals and uniform limits [1-7]. The adjective “uniform” 
here is important. We don't prove it but admits it directly because in the mathematical analysis course [1] 
exist its proof. 
 
Discussion 1. To prove Theorem 1 below we merely use some basic facts about integration which should be 
familiar [or believable] them. Specifically, we use: 
 
(a)If g and h are integrable on [a, b] and if ( ) ( )g x h x for all x [a, b], then ( ) ( )

b b

a a
g x d x h x d x  . 

 
We also use the following corollary: 
 
(b)If g is integrable on [a, b], then 
 

( ) ( )
b b

a a
g x dx g x dx   

 
Continuous functions on closed intervals are integrable, as noted mathematical analysis course [1]. 
 

2 The Proof of Theorem 1 
 
Now, we begin to prove Theorem 1. 
 

Theorem 1. Let (fn) be a sequence of continuous functions on [a, b], and suppose nf f  uniformly on [a, 

b]. Then 
 

lim ( ) ( )
b b

na an
f x dx f x dx


                                                                                                           (1) 

 
Proof. By Theorem[1-7] f is continuous, so the functions are all integrable on [a, b]. Let 0  . Since 

nf f  uniformly on [a, b], there exists a number N such that  

 

( ) ( )nf x f x
b a


 


 for all x [a, b] and n N . 

 
Consequently n N  implies 
 

( ) ( ) [ ( ) ( )]
b b b

n na a a
f x dx f x dx f x dx f x dx      

 

| ( ) ( ) |
b b

na a
f x f x dx dx

b a

    
  . 

 

The first  follows from Discussion 1(b) applied to g= nf f  and the second   follow from Discussion 

1(a) applied to g= | |nf f  and h
b a





; h happens to be a constant function, but this does no harm. 

 
The last paragraph shows that given 0  , there exists N such that  
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( ) ( )
b b

na a
f x dx f x dx     for n N . 

 
Therefore (1) holds.  
 
Recall one of the advantages of the notion of Cauchy sequence, A sequence (sn) of real numbers can be 
shown to converge without knowing its limit by simply verifying that it is a Cauchy sequence. Clearly, a 
similar result for sequences of functions would be valuable, since it is likely that we will not know the limit 
function in advance. What we need is the idea of “uniformly Cauchy.” 
 

3 A Definition and Its Properties about the Sequence of Functions 
 
Definition 1. A sequence ( nf ) of functions defined on a set S R is uniformly Cauchy on S if 

for each 0  there exists a number N such that 
 

( ) ( )n mf x f x    for all x S  and all ,m n N .                                                                 (3.1) 

 
Compare this definition with that of a Cauchy sequence of real numbers and that of uniform convergence. It 
is an easy exercise to show uniformly convergent sequences of functions are uniformly Cauchy. The 
interesting and useful result is the converse, just as in the case of sequences of real numbers. 
 

Theorem 2. Let ( nf ) be a sequence of functions and uniformly Cauchy on a set S R . Then there exists a 

function f on S such that nf f uniformly on S. 

 
Proof. First, we have to "find" f. We begin by showing 
 

for each 0x S , the sequence 0( ( ))nf x  is a  

 
Cauchy sequence of real numbers..   
 

For each 0  , there exists N such that ( ) ( )n mf x f x   for x S  and ,m n N . 

 
In particular, we have 
 

0 0( ) ( )n mf x f x    for ,m n N . 

 

This shows 0( ( ))nf x is a Cauchy sequence, so(3.1) holds. 
 

Now for each x in S, assertion (3.1) implies lim ( )n
n

f x


 exists; this is proved in Theorem[1-7] which in the end 

depends on the Completeness Axiom. Hence we define f(x) lim ( )n
n

f x


 . This defines a function f on S such 

that nf f  uniformly on S.  
 

Now that we have “found” f, we need to prove nf f  uniformly on S. Let 0  . There is a number N 

such that 
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0 0( ) ( )
2n mf x f x


   for all x S  and all ,m n N .                                                          (3.2) 

 

Consider m N  and x S . Assertion (2) tells us that ( )nf x  lies in the open interval 

( ) , ( )
2 2m mf x f x
    

 
 for all n N . Therefore, as a easy fact, the ( ) lim ( )nn

f x f x


  lies in the 

closed interval ( ) , ( )
2 2m mf x f x
     

. In other words, 

 

( ) ( )
2mf x f x


   for all x S  and all m N . 

 

Then of course  
 

( ) ( )mf x f x    for all x S  and all m N . 

 

This shows ( )mf x f uniformly on S, as desired. 

 

Theorem 2 is especially useful for "series of functions." Let us recall what
1

k
k

a



  signifies when the ka ’s 

are real numbers. This signifies 
1

lim
n

kn
k

a



  provided this limit exists [as a real number, +∞ or -∞]. 

Otherwise the symbol 
1

k
k

a



 has no meaning. Thus the infinite series is the limit of the sequence of partial 

sums
1

n

k
k

a

 . Similar remarks apply to series of functions. A series of functions is an expression 

0
k

k

g



  or 

0

( )k
k

g x



  which makes sense provided the sequence of partial sums converges, or diverges to -∞ or +∞ 

pointwise. If the sequence of partial sums 
0

k
k

g



 converges uniformly on a set S to 

0
k

k

g



 , then we say the 

series is uniformly convergent on S. 
4. Application and examples 

Example 1. Any power series is a series of functions, since 
0

k
k

k

a x



  has the form 

0
k

k

g



  where 

( ) k
k kg x a x  for all x. 

 

Example 2. 
0 1

k

kk
k

x
g

x



   is a series of functions, but is not a power series, at least not in its present form. 

This is a series 
0

k
k

g



 where 0

1
( )

2
g x   for all x, 1( )

1

x
g x

x



 for all x, 

2

2 2
( )

1

x
g x

x



 for all x, etc. 
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Example 3. Let g be the function drawn in Fig. 1,  
 

 
Fig. 1. Please insert the fig. caption 

 

and let ( ) (4 )n
ng x g x  for all x R . Then 

0

3
( )

4

n

n
n

g x




 
 
 

  is a series of functions. The limit function f 

is continuous on R, but has the amazing property that it is not differentiable at any point! The proof of the 
non-differentiability of f is somewhat delicate [1-7].  
 
Theorems for sequences of functions translate easily into theorems for series of functions. Here is an 
example. 
 

Theorem 3. Consider a series 
0

k
k

g



  of functions on a set S R . Suppose each kg  is continuous on S 

and the series converges uniformly on S. Then the series 
0

k
k

g



  represents a continuous function on S. 

Proof. Each partial sum 
1

n

n k
k

f g


  is continuous and the sequence ( nf ) converges uniformly on S. Hence 

the limit function is continuous by Theorem [1-7]. 
 

Recall the Cauchy criterion for series 
1

k
k

a



  given in paper [1-7] : 

 
For each 0  there exists a number N such that 
 

n m N   implies
n

k
k m

a 


 .          (*) 

The analogue for series of functions is also useful. The sequence of partial sums of a series 
0

k
k

g



  of 

functions is uniformly Cauchy on a set S if and only if the series satisfies the Cauchy criterion [uniformly on 
S]:  
For each 0   there exists a number N such that 
 

n m N   implies ( )
n

k
k m

g x 


 . for all x S           (**) 
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Theorem 4. If a series 
0

k
k

g



 of functions satisfies the Cauchy criterion uniformly on a set S, then the series 

converges uniformly on S by Theorem 2. 
 
Here is a useful corollary. 
 

Theorem 5 (M-test). Let (Mk) be a sequence of nonnegative real numbers where kM   . If 

( )k kg x M  for all x in a set S, then kg  converges uniformly on S. 

 

Proof. To verify the Cauchy criterion on S, let 0  . Since the series kM  converges, it satisfies the 

Cauchy criterion in Definition[1-7]. So there exists a number N such that  
 

n m N   implies 
n

k
k m

M 


 . 

 
Hence if n m N   and x is in S, then 
 

( ) | ( ) |
n n n

k k k
k m k m k m

g x g x M 
  

    
 

 

Thus the series 
0

k
k

g



  satisfies the Cauchy criterion uniformly on S, and Theorem 4 shows it converges 

uniformly on S. 
 

Example 4. Show 
1

2 n n

n

x





  represents a continuous function f on (-2, 2), but the convergence is not 

uniform. 
 
Solution. This is a power series with radius of convergence 2. Clearly the series does not converge at x=2 or 
at x=-2, so its interval of convergence is (-2, 2). 
 
Consider 0 2a   and note  
 

1 1

2
2

n
n n

n n

a
a

 


 

   
 

 
 

 
converges. Since 
 

2 2
2

n
n n n n a
x a      

 
for [ , ]x a a  , 

 
the Theorem 5 (M-test) shows the series converges uniformly to a function on [-a, a]. By Theorem 3 the 
limit function f is continuous at each point of the set [-a, a]. Since a can be any number less than 2, we 
conclude f represents a continuous function on (-2, 2). 
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Since we have sup{| 2 | | ( 2, 2)} 1n nx x     for each n, the convergence of the series cannot be 

uniform on (-2, 2) in view of the next example. 
 

Example 5. Show that if the series ng  converges uniformly on a set S, then 

 

 lim sup | ( ) | 0n
n

g x x S


  .                                                                                                    (1) 

 

Solution. Let 0  . Since the series ng  satisfies the Cauchy criterion, there exists N such that  

 

n m N   implies ( )
n

k
k m

g x 


  for all x S . 

 
In particular, 
 

n N  implies | ( ) |ng x   for all x S . 

 
Therefore 
 

n N  implies  sup | ( ) |ng x x S   . 

 
This establishes (1). 
 

5 Properties of Power Series 
 
Now we begin to study the properties of the power series. 
 

Theorem 6. Let 
0

n
n

n

a x



  be a power series with radius of convergence 0R   [possibly R   ]. If 

10 R R  , then the power series converges uniformly on 1 1[ , ]R R  to a continuous function. 
 

Proof. Consider 10 R R  . A glance at Theorem[1-7] shows the series 
0

n
n

n

a x



  and 

0

| | n
n

n

a x



  have the 

same radius of convergence, since   and R are defined in terms of | |na . Since 1| |R R , we have 

1
0

| | n
n

n

a R




  . Clearly we have 1| | | |n n
n na x a R  for all x in 1 1[ , ]R R , so the series 

0

n
n

n

a x



  

converges uniformly on 1 1[ , ]R R  by the Theorem 5 (M-test). The limit function is continuous at each 

point of 1 1[ , ]R R  by Theorem 3. 

 

Corollary 7. The power series n
na x converges to a continuous function on the open interval 1 1( , )R R . 

Proof. If 0 ( , )x R R   then 0x  1 1( , )R R  for some 1R R . The theorem shows the limit of the series 

is continuous at 0x .  



 
 
 
 
 
 
 

8 
 
 

We emphasize that a power series need not converge uniformly on its interval of convergence though it 
might. 
 
We are going to differentiate and integrate power series term-by-term, so clearly it would be useful to know 
where the new series converge. The next lemma tells us. 
 

Lemma 8. If the power series 
0

n
n

n

a x



  has radius of convergence R, then the power series 

 

1

0

n
n

n

na x





  and 1

0 1
nn

n

a
x

n




 
 

 
also have radius of convergence R. 
 

Proof. First observe the series 1

0

n
n

n

na x





  and 

0

n
n

n

na x



  have the same radius of convergence: since the 

second series is x times the first series, they converge for exactly the same values of x. Likewise 

1

0 1
nn

n

a
x

n




   and 
0 1

nn

n

a
x

n



   have the same radius of convergence. 

 

Next recall R
1


  where 1/limsup | | n

na  . For the series 
0

n
n

n

na x



 , we consider  

 
1/ 1/ 1/limsup( | |) limsup | |n n n

n nn a n a . 

 

By Theorem[1-7], we have 1/lim 1nn   so 1/limsup( | |) n
nn a   by Theorem[1-7]. Hence the series 

0

n
n

n

na x



 has radius of convergence R. 

 

For the series 
0 1

nn

n

a
x

n



  , we consider 

1/
| |

limsup
1

n

na

n
 
  

. It is easy to show 
1/lim( 1) 1nn  ; 

therefore 

1/
1

lim 1
1

n

n
    

. Hence by Theorem[1-7] we have 

1/
| |

limsup
1

n

na

n
    

, so the series 

0 1
nn

n

a
x

n



   has radius of convergence R. 

 

Theorem 9. Suppose 
0

( ) n
n

n

f x a x




  has radius of convergence 0R  . Then 

 

1

0
0

( )
1

x nn

n

a
f t dt x

n







  for | |x R .                                                                                         (1) 
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Proof.  We fix x and assume 0x  ; the case 0x   is similar. On the interval [x, 0], the sequence of partial 

sums 
0

n
k

k
k

a t

  converges uniformly to f(t) by Theorem 6. Consequently, by Theorem 1 we have 

 

0 0

0

( ) lim
n

k
kx xn

k

f t dt a t dt




 
  

 
 

 
 

1 1
0

0 0

0
lim lim

1

k kn n
k

k kxn n
k k

x
a t dt a

k

 

 
 

 
    

 
 

 

1

0 1
kk

k

a
x

k






 
           (2) 

The second equality is valid because we can interchange integrals and finite sums; this is a basic property of 

integrals[1-7]. Since 
0

0
( ) ( )

x

x
f t dt f t dt   . Eq. (2) implies Eq.(1). 

 
The theorem just proved shows that a power series can be integrated term-by-term inside its interval of 
convergence. Term-by-term differentiation is also legal. 
 

Theorem 10. Let 
0

( ) n
n

n

f x a x




  have radius of convergence 0R  .  Then f is differentiable on 

( , )R R  and 

 

1

1

'( ) n
n

n

f x na x






   for | |x R .                                                                                                  (1) 

 
The proof of Theorem 9 was a straightforward application of Theorem 1 but the direct analogue of Theorem 
1 for derivatives is not true[1-7]. So we give a devious indirect proof of the theorem. 
 

Proof. We begin with series 1

1

( ) n
n

n

g x na x






  and observe this series converges for | |x R  by Lemma 

8. Theorem 9 shows that we can integrate g term-by-term: 
 

00
1

( ) ( )
x n

n
n

g t dt a x f x a




    for | |x R . 

 

Thus if 10 R R  , then 
 

1

( ) ( )
x

R
f x g t dt k


   for 1| |x R , 

 
where k is a constant; in fact,  
 

1
0 ( )

x

R
k a g t dt


   . 
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Since g is continuous, one of the versions of the Fundamental Theorem of Calculus[1-7] shows f is 
differentiable and '( ) ( )f x g x . Thus 

 

'( ) ( )f x g x 1

1

n
n

n

na x






  for | |x R .  

 
Example 6. Recall 
 

0

1

1
n

n

x
x






  for | | 1x  .                                                                                                               (1) 

 
Differentiating term-by-term, we obtain 
 

1
2

1

1

(1 )
n

n

nx
x







  for | | 1x  . 

 
Integrating (1) term-by-term, we get 
 

1

0
0

1 1
log (1 )

1 1

xn
e

n

x dt x
n t






   
  

 
 

1

1
log (1 ) n

e
n

x x
n





    for | | 1x  .                                                                                               (2) 

 
Replacing x by-x, we find 
 

2 3 4

log (1 )
2 3 4e

x x x
x x       for | | 1x  .                                                                       (3) 

 
It turns out that this equality is also valid for x=1[see Example 7], so we have the interesting identity 
 

1 1 1 1 1
log 2 1

2 3 4 5 6e                                                                                                     (4) 

 

In Eq. (2) set 
1m

x
m


 . Then 

 

1

1 1 1 1
log 1 log log

n

e e e
n

m m
m

n m m m





                
     


 

 
Hence we have 

1 1

1 1 1
log

n

e
n n

m
m

n n m

 

 

   
 

   for all m. 
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Here is yet another proof that 
1

1

n n





  .  

 
To establish (4) we need a relatively difficult theorem about convergence of a power series at the endpoints 
of its interval of convergence. 
 

Let 
0

( ) n
n

n

f x a x




  be a power series with finite positive radius of convergence R. If the series converges 

at x=R, then f is continuous at x=R. If the series converges at x=R, then f is continuous at x=-R. 
 
Example 7. As promised, we return to (3) in Example 1: 
 

2 3 4

log (1 )
2 3 4e

x x x
x x       for | | 1x  . 

 
For x=1 the series converges by the Alternating Series Theorem[1-7]. Thus the series represents a function f on 

(-1, 1] that is continuous at x=1 by Abel’s theorem. The function log (1 )e x  is also continuous at x=1 so 

the functions agree at x=1. [In detail, if (xn) is a sequence in (-1, 1) converging to 1, then 

(1) lim ( )nn
f f x


   lim log 1 log 2e n en

x


   .] Therefore we have  

 
1 1 1 1 1

log 2 1
2 3 4 5 6e        . 

 

Example 8. Recall 
0

1

1
n

n

x
x






  for | | 1x  . Note that at x=-1 the function 

1

1 x
 is continuous and takes 

the value
1

2
. However, the series does not converge for x=-1, so Abel’s theorem does not apply.  

 
The point of view in our extremely brief introduction to power series has been: For a given power series

n
na x , what can one say about the function ( ) n

nf x a x ? This point of view was misleading. Often, 

in real life, one begins with a function f and seeks a power series that represents the function for some or all 
values of x. This is because power series, being limits of polynomials, are in some sense basic objects. 
 
If we have  
 

0

( ) n
n

n

f x a x




  for | |x R , 

 
then we can differentiate f term-by-term forever. At each step, we may calculate the kth derivative of f at 0, 

written 
( ) (0)kf . It is easy to show ( ) (0) !k

kf k a  for 0k  . This tells us that if f can be represented by 

a power series, then that power series must be 
( )

0

(0)

!

k
k

n

f
x

k




 . This is the Taylor series for f about 0. 

Frequently, but not always, the Taylor series will agree with f on the interval of convergence. 
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6 Conclusions 
 
From the above, we have seen that the properties of the power series are very perfect, it is an extremely rare 
class of function series; in addition, Cauchy criterion has played important role. Using Cauchy criterion as a 
tool, not only can derive many properties of number series, it can also be derived a lot of properties of 
function series in the deep level. In addition, the limit thought is never less important tool in our study. 
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