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   Abstract: It has been preliminary researched that function series and power series in 4 

mathematical analysis course. There are some basic properties and the basic conclusion in the 5 

courses. This article is based on the basic theory and properties, for them to make further 6 

in-depth study. First of all, as a necessary tool, it has introduced the two properties of definite 7 

integral, it is proved that the continuous function sequence limit problem under the definite 8 

integral, then it is defined the sequence of functions on subsets of real number set uniformly 9 

Cauchy's concept, basis on them several theorem is proved, it is obtained that results of a 10 

series of important properties of function terms. Using of these properties, power series of 11 

several important theorems are proved, which is about the important properties of the power 12 

series again. 13 

    Key words: mathematical analysis course; function series; power series; uniform 14 

convergence 15 

1. Introduction 16 

This article assumes that the reader is familiar with the basic theory of mathematical 17 

analysis course[1] and its basic results[1-7]. Basic on these theories and results, the properties of 18 

function series[8-11] is been further studied, it is obtained that the important properties of 19 

uniform convergence[12-15] and power series[16-18]. 20 

Our next theorem shows one can interchange integrals and uniform limits[1-7]. The 21 

adjective “uniform” here is important. We don't prove it, but admits it directly because in the 22 

mathematical analysis course[1] exist its proof. 23 

Discussion 1. To prove Theorem 1 below we merely use some basic facts about 24 

integration which should be familiar [or believable] even if that calculus is rusty. Specifically, 25 

we use: 26 

(a)If g and h are integrable on [a, b] and if ( ) ( )g x h x  for all x[a, b], then 27 

( ) ( )
b b

a a
g x dx h x dx  . 28 

We also use the following corollary: 29 

(b)If g is integrable on [a, b], then 30 

( ) ( )
b b

a a
g x dx g x dx   31 

Continuous functions on closed intervals are integrable, as noted mathematical analysis 32 

course[1]. 33 

2. The proof of Theorem 1 34 

Now, we begin to prove Theorem 1. 35 

Theorem 1. Let (fn) be a sequence of continuous functions on [a, b], and suppose 36 
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nf f  uniformly on [a, b]. Then 37 

lim ( ) ( )
b b

na an
f x dx f x dx


            (1) 38 

Proof. By Theorem[1-7] f is continuous, so the functions are all integrable on [a, b]. Let 39 

0  . Since nf f  uniformly on [a, b], there exists a number N such that  40 

( ) ( )nf x f x
b a


 


 for all x[a, b] and n N . 41 

Consequently n N  implies 42 

( ) ( ) [ ( ) ( )]
b b b

n na a a
f x dx f x dx f x dx f x dx      43 

| ( ) ( ) |
b b

na a
f x f x dx dx

b a

    
  . 44 

The first   follows from Discussion 1(b) applied to g= nf f  and the second   follow 45 

from Discussion 1(a) applied to g= | |nf f  and h
b a





; h happens to be a constant 46 

function, but this does no harm. 47 

The last paragraph shows that given 0  , there exists N such that  48 

( ) ( )
b b

na a
f x dx f x dx     for n N . 49 

Therefore (1) holds.  50 

Recall one of the advantages of the notion of Cauchy sequence, A sequence (sn) of real 51 

numbers can be shown to converge without knowing its limit by simply verifying that it is a 52 

Cauchy sequence. Clearly a similar result for sequences of functions would be valuable, since 53 

it is likely that we will not know the limit function in advance. What we need is the idea of 54 

“uniformly Cauchy.” 55 

3. A definition and its properties about the sequence of functions 56 

Definition 1. A sequence ( nf ) of functions defined on a set S R  is uniformly 57 

Cauchy on S if 58 

for each 0   there exists a unmber N such that 59 

( ) ( )n mf x f x    for all x S  and all ,m n N .          (3.1) 60 

Compare this definition with that of a Cauchy sequence of real numbers and that of 61 

uniform convergence. It is an easy exercise to show uniformly convergent sequences of 62 

functions are uniformly Cauchy. The interesting and useful result is the converse, just as in 63 

the case of sequences of real numbers. 64 

Theorem 2. Let ( nf ) be a sequence of functions and uniformly Cauchy on a set S R . 65 

Then there exists a function f on S such that nf f  uniformly on S. 66 
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Proof. First we have to “find” f. We begin by showing 67 

for each 0x S  the sequence 0( ( ))nf x  is a  68 

Cauchy sequence of real numbers..          (3.2) 69 

For each 0  , there exists N such that ( ) ( )n mf x f x    for x S  and ,m n N . 70 

In particular, we have 71 

0 0( ) ( )n mf x f x    for ,m n N . 72 

This shows 0( ( ))nf x  is a Cauchy sequence, so(3.1) holds. 73 

Now for each x in S, assertion (3.1) implies lim ( )n
n

f x


 exists; this is proved in 74 

Theorem[1-7] which in the end depends on the Completeness Axiom. Hence we define 75 

f(x) lim ( )n
n

f x


 . This defines a function f on S such that nf f  uniformly on S.  76 

Now that we have “found” f, we need to prove nf f  uniformly on S. Let 0  . 77 

There is a number N such that 78 

0 0( ) ( )
2n mf x f x


   for all x S  and all ,m n N .          (3.2) 79 

Consider m N  and x S . Assertion (2) tells us that ( )nf x  lies in the open interval 80 

( ) , ( )
2 2m mf x f x
    

 
 for all n N . Therefore, as a easy fact, the ( ) lim ( )nn

f x f x


  lies 81 

in the closed interval ( ) , ( )
2 2m mf x f x
     

. In other words, 82 

( ) ( )
2mf x f x


   for all x S  and all m N . 83 

Then of course  84 

( ) ( )mf x f x    for all x S  and all m N . 85 

This shows ( )mf x f  uniformly on S, as desired. 86 

Theorem 2 is especially useful for “series of functions.” Let us recall what 
1

k
k

a



  87 

signifies when the ka ’s are real numbers. This signifies 
1

lim
n

kn
k

a



  provided this limit exists 88 

[as a real number, +∞ or -∞]. Otherwise the symbol 
1

k
k

a



  has no meaning. Thus the infinite 89 
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series is the limit of the sequence of partial sums 
1

n

k
k

a

 . Similar remarks apply to series of 90 

functions. A series of functions is an expression 
0

k
k

g



  or 

0

( )k
k

g x



  which makes sense 91 

provided the sequence of partial sums converges, or diverges to -∞ or +∞ pointwise. If the 92 

sequence of partial sums 
0

k
k

g



 converges uniformly on a set S to 

0
k

k

g



 , then we say the 93 

series is uniformly convergent on S. 94 

4. Application and examples 95 

Example 1. Any power series is a series of functions, since 
0

k
k

k

a x



  has the form 96 

0
k

k

g



  where ( ) k

k kg x a x  for all x. 97 

Example 2. 
0 1

k

kk
k

x
g

x



   is a series of functions, but is not a power series, at least not 98 

in its present form. This is a series 
0

k
k

g



  where 0

1
( )

2
g x   for all x, 1( )

1

x
g x

x



 for all x, 99 

2

2 2
( )

1

x
g x

x



 for all x, etc. 100 

Example 3. Let g be the function drawn in Fig. 1,  101 

 102 

Fig. 1 103 

and let ( ) (4 )n
ng x g x  for all x R . Then 

0

3
( )

4

n

n
n

g x




 
 
 

  is a series of functions. The 104 

limit function f is continuous on R, but has the amazing property that it is not differentiable at 105 

any point! The proof of the non-differentiability of f is somewhat delicate[1-7].  106 

Theorems for sequences of functions translate easily into theorems for series of 107 
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functions. Here is an example. 108 

Theorem 3. Consider a series 
0

k
k

g



  of functions on a set S R . Suppose each kg  109 

is continuous on S and the series converges uniformly on S. Then the series 
0

k
k

g



  110 

represents a continuous function on S. 111 

Proof. Each partial sum 
1

n

n k
k

f g


  is continuous and the sequence ( nf ) converges 112 

uniformly on S. Hence the limit function is continuous by Theorem[1-7]. 113 

Recall the Cauchy criterion for series 
1

k
k

a



  given in paper[1-7] : 114 

For each 0   there exists a number N such that 115 

n m N   implies 
n

k
k m

a 


 .          (*) 116 

The analogue for series of functions is also useful. The sequence of partial sums of a 117 

series 
0

k
k

g



  of functions is uniformly Cauchy on a set S if and only if the series satisfies the 118 

Cauchy criterion [uniformly on S]:  119 

For each 0   there exists a number N such that 120 

n m N   implies ( )
n

k
k m

g x 


 . for all x S           (**) 121 

Theorem 4. If a series 
0

k
k

g



  of functions satisfies the Cauchy criterion uniformly on a 122 

set S, then the series converges uniformly on S by Theorem 2. 123 

Here is a useful corollary. 124 

Theorem 5 (M-test). Let (Mk) be a sequence of nonnegative real numbers where 125 

kM   . If ( )k kg x M  for all x in a set S, then kg  converges uniformly on S. 126 

Proof. To verify the Cauchy criterion on S, let 0  . Since the series kM  127 

converges, it satisfies the Cauchy criterion in Definition[1-7]. So there exists a number N such 128 

that  129 

n m N   implies 
n

k
k m

M 


 . 130 

Hence if n m N   and x is in S, then 131 
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( ) | ( ) |
n n n

k k k
k m k m k m

g x g x M 
  

      132 

Thus the series 
0

k
k

g



  satisfies the Cauchy criterion uniformly on S, and Theorem 4 shows it 133 

converges uniformly on S. 134 

Example 4. Show 
1

2 n n

n

x





  represents a continuous function f on (-2, 2), but the 135 

convergence is not uniform. 136 

Solution. This is a power series with radius of convergence 2. Clearly the series does not 137 

converge at x=2 or at x=-2, so its interval of convergence is (-2, 2). 138 

Consider 0 2a   and note  139 

1 1

2
2

n
n n

n n

a
a

 


 

   
 

   140 

converges. Since 141 

2 2
2

n
n n n n a
x a      

 
for [ , ]x a a  , 142 

the Theorem 5 (M-test) shows the series converges uniformly to a function on [-a, a]. By 143 

Theorem 3 the limit function f is continuous at each point of the set [-a, a]. Since a can be 144 

any number less than 2, we conclude f represents a continuous function on (-2, 2). 145 

Since we have sup{| 2 | | ( 2, 2)} 1n nx x     for each n, the convergence of the series 146 

cannot be uniform on (-2, 2) in view of the next example. 147 

Example 5. Show that if the series ng  converges uniformly on a set S, then 148 

 limsup | ( ) | 0nn
g x x S


  .            (1) 149 

Solution. Let 0  . Since the series ng  satisfies the Cauchy criterion, there exists 150 

N such that  151 

n m N   implies ( )
n

k
k m

g x 


  for all x S . 152 

In particular, 153 

n N  implies | ( ) |ng x   for all x S . 154 

Therefore 155 

n N  implies  sup | ( ) |ng x x S   . 156 

This establishes (1). 157 
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5. Properties of power series 158 

Now we begin to study the properties of the power series. 159 

Theorem 6. Let 
0

n
n

n

a x



  be a power series with radius of convergence 0R   160 

[possibly R   ]. If 10 R R  , then the power series converges uniformly on 1 1[ , ]R R  161 

to a continuous function. 162 

Proof. Consider 10 R R  . A glance at Theorem[1-7] shows the series 
0

n
n

n

a x



  and 163 

0

| | n
n

n

a x



  have the same radius of convergence, since   and R are defined in terms of 164 

| |na . Since 1| |R R , we have 1
0

| | n
n

n

a R




  . Clearly we have 1| | | |n n
n na x a R  for all x in 165 

1 1[ , ]R R , so the series 
0

n
n

n

a x



  converges uniformly on 1 1[ , ]R R  by the Theorem 5 166 

(M-test). The limit function is continuous at each point of 1 1[ , ]R R  by Theorem 3. 167 

Corollary 7. The power series n
na x converges to a continuous function on the open 168 

interval 1 1( , )R R . 169 

Proof. If 0 ( , )x R R   then 0x  1 1( , )R R  for some 1R R . The theorem shows the 170 

limit of the series is continuous at 0x .  171 

We emphasize that a power series need not converge uniformly on its interval of 172 

convergence though it might. 173 

We are going to differentiate and integrate power series term-by-term, so clearly it 174 

would be useful to know where the new series converge. The next lemma tells us. 175 

Lemma 8. If the power series 
0

n
n

n

a x



  has radius of convergence R, then the power 176 

series 177 

1

0

n
n

n

na x





  and 1

0 1
nn

n

a
x

n




   178 

also have radius of convergence R. 179 
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Proof. First observe the series 1

0

n
n

n

na x





  and 

0

n
n

n

na x



  have the same radius of 180 

convergence: since the second series is x times the first series, they converge for exactly the 181 

same values of x. Likewise 1

0 1
nn

n

a
x

n




   and 
0 1

nn

n

a
x

n



   have the same radius of 182 

convergence. 183 

Next recall R
1


  where 1/limsup | | n

na  . For the series 
0

n
n

n

na x



 , we consider  184 

1/ 1/ 1/limsup( | |) limsup | |n n n
n nn a n a . 185 

By Theorem[1-7], we have 1/lim 1nn   so 1/limsup( | |) n
nn a   by Theorem[1-7]. Hence the 186 

series 
0

n
n

n

na x



 has radius of convergence R. 187 

For the series 
0 1

nn

n

a
x

n



  , we consider 
1/

| |
limsup

1

n

na

n
 
  

. It is easy to show 188 

1/lim( 1) 1nn   ; therefore 
1/

1
lim 1

1

n

n
    

. Hence by Theorem[1-7] we have 189 

1/
| |

limsup
1

n

na

n
    

, so the series 
0 1

nn

n

a
x

n



   has radius of convergence R. 190 

Theorem 9. Suppose 
0

( ) n
n

n

f x a x




  has radius of convergence 0R  . Then 191 

1

0
0

( )
1

x nn

n

a
f t dt x

n







  for | |x R .             (1) 192 

 193 

Proof.  We fix x and assume 0x  ; the case 0x   is similar. On the interval [x, 0], 194 

the sequence of partial sums 
0

n
k

k
k

a t

  converges uniformly to f(t) by Theorem 6. 195 

Consequently, by Theorem 1 we have 196 

0 0

0

( ) lim
n

k
kx xn

k

f t dt a t dt




   
 
   197 

1 10

0 0

0
lim lim

1

k kn n
k

k kxn n
k k

x
a t dt a

k

 

 
 

 
    

   198 
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1

0 1
kk

k

a
x

k






 
           (2) 199 

The second equality is valid because we can interchange integrals and finite sums; this is a 200 

basic property of integrals[1-7]. Since 
0

0
( ) ( )

x

x
f t dt f t dt   . Eq. (2) implies Eq.(1). 201 

The theorem just proved shows that a power series can be integrated term-by-term inside its 202 

interval of convergence. Term-by-term differentiation is also legal. 203 

Theorem 10. Let 
0

( ) n
n

n

f x a x




  have radius of convergence 0R  .  Then f is 204 

differentiable on ( , )R R  and 205 

1

1

'( ) n
n

n

f x na x






   for | |x R .          (1) 206 

The proof of Theorem 9 was a straightforward application of Theorem 1 but the direct 207 

analogue of Theorem 1 for derivatives is not true[1-7]. So we give a devious indirect proof of 208 

the theorem. 209 

Proof. We begin with series 1

1

( ) n
n

n

g x na x






  and observe this series converges for 210 

| |x R  by Lemma 8. Theorem 9 shows that we can integrate g term-by-term: 211 

00
1

( ) ( )
x n

n
n

g t dt a x f x a




    for | |x R . 212 

Thus if 10 R R  , then 213 

1

( ) ( )
x

R
f x g t dt k


   for 1| |x R , 214 

where k is a constant; in fact,  215 

1
0 ( )

x

R
k a g t dt


   . 216 

Since g is continuous, one of the versions of the Fundamental Theorem of Calculus[1-7] shows 217 

f is differentiable and '( ) ( )f x g x . Thus 218 

'( ) ( )f x g x 1

1

n
n

n

na x






  for | |x R .  219 

Example 6. Recall 220 

0

1

1
n

n

x
x






  for | | 1x  .          (1) 221 
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Differentiating term-by-term, we obtain 222 

1
2

1

1

(1 )
n

n

nx
x







  for | | 1x  . 223 

Integrating (1) term-by-term, we get 224 

1

0
0

1 1
log (1 )

1 1

xn
e

n

x dt x
n t






   
    225 

1

1
log (1 ) n

e
n

x x
n





    for | | 1x  .          (2) 226 

Replacing x by-x, we find 227 

2 3 4

log (1 )
2 3 4e

x x x
x x       for | | 1x  .          (3) 228 

It turns out that this equality is also valid for x=1[see Example 7], so we have the interesting 229 

identity 230 

1 1 1 1 1
log 2 1

2 3 4 5 6e                  (4) 231 

In Eq. (2) set 
1m

x
m


 . Then 232 

1

1 1 1 1
log 1 log log

n

e e e
n

m m
m

n m m m





                
     

  233 

Hence we have 234 

1 1

1 1 1
log

n

e
n n

m
m

n n m

 

 

   
 

   for all m. 235 

Here is yet another proof that 
1

1

n n





  .  236 

To establish (4) we need a relatively difficult theorem about convergence of a power 237 

series at the endpoints of its interval of convergence. 238 

Let 
0

( ) n
n

n

f x a x




  be a power series with finite positive radius of convergence R. If 239 

the series converges at x=R, then f is continuous at x=R. If the series converges at x=R, then f 240 

is continuous at x=-R. 241 

Example 7. As promised, we return to (3) in Example 1: 242 

2 3 4

log (1 )
2 3 4e

x x x
x x       for | | 1x  . 243 

For x=1 the series converges by the Alternating Series Theorem[1-7]. Thus the series represents 244 

a function f on (-1, 1] that is continuous at x=1 by Abel’s theorem. The function log (1 )e x  245 
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is also continuous at x=1 so the functions agree at x=1. [In detail, if (xn) is a sequence in (-1, 1) 246 

converging to 1, then (1) lim ( )nn
f f x


   lim log 1 log 2e n e

n
x


   .] Therefore we have  247 

1 1 1 1 1
log 2 1

2 3 4 5 6e        . 248 

Example 8. Recall 
0

1

1
n

n

x
x






  for | | 1x  . Note that at x=-1 the function 

1

1 x
 is 249 

continuous and takes the value 
1

2
. However, the series does not converge for x=-1, so Abel’s 250 

theorem does not apply.  251 

The point of view in our extremely brief introduction to power series has been: For a 252 

given power series n
na x , what can one say about the function ( ) n

nf x a x ? This point 253 

of view was misleading. Often, in real life, one begins with a function f and seeks a power 254 

series that represents the function for some or all values of x. This is because power series, 255 

being limits of polynomials, are in some sense basic objects. 256 

If we have  257 

0

( ) n
n

n

f x a x




  for | |x R , 258 

then we can differentiate f term-by-term forever. At each step, we may calculate the kth 259 

derivative of f at 0, written ( ) (0)kf . It is easy to show ( ) (0) !k
kf k a  for 0k  . This tells 260 

us that if f can be represented by a power series, then that power series must be 261 

( )

0

(0)

!

k
k

n

f
x

k




 . This is the Taylor series for f about 0. Frequently, but not always, the Taylor 262 

series will agree with f on the interval of convergence.  263 

 264 

6. Conclusions 265 

    From the above, we have seen that the properties of the power series are very perfect, it 266 

is an extremely rare class of function series; in addition, Cauchy criterion has played 267 

important role. Using Cauchy criterion as a tool, not only can derive many properties of 268 

number series, it can also be derived a lot of properties of function series in the deep level. In 269 

addition, the limit thought is never less important tool in our study. 270 

 271 
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