$A \subseteq$ Sg-continuity in Topological ordered spaces

3 Abstract

Semi generalized closed set in a Topological space was introduced by P.Bhattacharya and B.K.Lahiri in 1987. A subset A of a topological space (X,τ) is a semi generalized closed (sg-closed) set if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi open in (X,τ) . Some authors introduced the notion of sg-continuity in topological spaces. The same notion can be extended to topological ordered spaces. A topological ordered space is a topological space together with a partial order. In this paper, we introduce and study the notion of semi generalized increasing continuous function (sgi-continuous function), semi generalized decreasing continuous function (sgd-continuous function) and semi generalized balanced continuous function (sgb-continuous function) and study the relationships between them.

Mathematics subject classification: 54A05

Key words: topological ordered space, increasing set, decreasing set, balanced set and semi generalized closed set.

16 1. Introduction

The study of topological ordered spaces (TOS) was introduced by L.Nachbin [2]. It is a triple (X, τ, \leq) where τ is a topology and \leq is a partial order on X. Let (X, τ, \leq) be a TOS. For any $x \in X$, $[x, \to] = \{y \in X \mid x \leq y\}$ and $[\leftarrow, x] = \{y \in X \mid y \leq x\}$. A subset A of a TOS (X, τ, \leq) is increasing if A = i[A] and decreasing if A = d[A] where $i[A] = \bigcup_{a \in A} [a, \to]$ and $d[A] = \bigcup_{a \in A} [\leftarrow, a]$. The complement of an increasing set is a decreasing set and vice versa.

A subset of a TOS (X, τ, \leq) is balanced set if it is both increasing and decreasing.

24 2. Preliminaries

In the present paper (X, τ) represents a non-empty topological space on which no separation axioms are assumed unless otherwise mentioned. For a subset A of (X, τ) , the closure is the intersection of all closed sets containing A and semi-closure is the intersection of all semi-closed sets containing A. They are denoted by cl(A) and scl(A) respectively.

- **Definition 2.1.** A subset A of a topological space (X, τ) is a semi-open set [5] if
- 30 $A \subseteq cl(int(A))$ and a semi-closed set if $int(cl(A)) \subseteq A$.
- **Definition 2.2.** A subset A of a topological space (X, τ) is a sg-closed set [1] if $scl(A) \subseteq U$
- 32 whenever $A \subseteq U$ and U is semi-open in (X, τ) .
- **Definition 2.3.** A subset A of a topological ordered space (X, τ, \leq) is a sgi-closed (resp.
- sgd-closed, sgb-closed) set [4] if A is sg-closed and increasing (resp. decreasing, balanced).
- 3. Sg-continuity in Topological ordered spaces
- We define new types of semi generalized continuous functions in topological ordered spaces.
- A function $f:(X,\tau_1)\to (Y,\tau_2)$ is sg-continuous [1] if $f^{-1}(V)$ is sg-closed whenever V is a
- 38 closed set in Y.
- 39 The following notions are introduced in a topological ordered space.
- **Definition 3.1.** A function $f:(X,\tau,\leq) \to (Y,\tau^1,\leq^1)$ is
- 41 (1) a semi generalized increasing continuous function (briefly sgi-continuous) if $f^{-1}(V)$
- 42 is a sgi-closed set in X whenever V is an i-closed set in Y.
- 43 (2) a semi generalized decreasing continuous function (briefly sgd-continuous) if $f^{-1}(V)$
- is a sgd-closed set in X whenever V is a d-closed set in Y.
- 45 (3) a sg-balanced continuous function (briefly sgb-continuous) if $f^{-1}(V)$ is a sgb-closed
- set in X whenever V is a b-closed set in Y.
- 47 The following examples support the above definitions.
- 48 **Example 3.2.** Let $X = Y = \{a, b, c\}, \tau_8 = \{\phi, X, \{a, b\}\}, \leq_3 = \{(a, a), (b, b), (c, c), (a, b), (a, c)\}$
- 49 $\leq_4 = \{(a,a),(b,b),(c,c),(a,b),(c,a),(c,b)\}$. Then (X,τ_8,\leq_3) and (Y,τ_8,\leq_4) are topological
- ordered spaces. The i-closed sets in Y are ϕ , X and sgi-closed sets in X are ϕ , X, $\{c\}$, $\{b,c\}$.
- Define $f: X \to Y$ as f(a) = b, f(b) = c and f(c) = a then, f is a sgi-continuous function.
- **Example 3.3.** Let $X = Y = \{a, b, c\}, \quad \tau_7 = \{\phi, X, \{a\}, \{b\}, \{b, c\}, \{a, b\}\} \}$
- 53 $\leq_7 = \{(a,a),(b,b),(c,c),(b,a)\}, \leq_8 = \{(a,a),(b,b),(c,c)\}, \text{ Then, } (X,\tau_7,\leq_7) \text{ and } (Y,\tau_8,\leq_8) \text{ are } \{(a,a),(b,b),(c,c)\}, \text{ Then, } (X,\tau_7,\leq_7) \text{ and } (Y,\tau_8,\leq_8) \text{ are } \{(a,a),(b,b),(c,c)\}, \text{ Then, } (X,\tau_7,\leq_7) \text{ and } (Y,\tau_8,\leq_8) \text{ are } \{(a,a),(b,b),(c,c)\}, \text{ Then, } (X,\tau_7,\leq_7) \text{ and } (Y,\tau_8,\leq_8) \text{ are } \{(a,a),(b,b),(c,c)\}, \text{ Then, } (X,\tau_7,\leq_7) \text{ and } (Y,\tau_8,\leq_8) \text{ are } \{(a,a),(b,b),(c,c)\}, \text{ Then, } (X,\tau_7,\leq_7) \text{ and } (Y,\tau_8,\leq_8) \text{ are } \{(a,a),(b,b),(c,c)\}, \text{ Then, } (X,\tau_7,\leq_7) \text{ and } (Y,\tau_8,\leq_8) \text{ are } \{(a,a),(b,b),(c,c)\}, \text{ Then, } (X,\tau_7,\leq_7) \text{ and } (Y,\tau_8,\leq_8) \text{ are } \{(a,a),(b,b),(c,c)\}, \text{ Then, } (X,\tau_7,\leq_7) \text{ and } (Y,\tau_8,\leq_8) \text{ are } \{(a,a),(b,b),(c,c)\}, \text{ Then, } (X,\tau_7,\leq_7) \text{ and } (Y,\tau_8,\leq_8) \text{ are } \{(a,a),(b,b),(c,c)\}, \text{ Then, } (X,\tau_7,\leq_7) \text{ and } (Y,\tau_8,\leq_8) \text{ are } \{(a,a),(b,b),(c,c)\}, \text{ Then, } (X,\tau_7,\leq_7) \text{ and } (Y,\tau_8,\leq_8) \text{ are } \{(a,a),(b,b),(c,c)\}, \text{ Then, } (X,\tau_7,\leq_7) \text{ and } (Y,\tau_8,\leq_8) \text{ are } \{(a,a),(b,b),(c,c)\}, \text{ Then, } (X,\tau_7,\leq_7) \text{ and } (Y,\tau_8,\leq_8) \text{ are } \{(a,a),(b,b),(c,c)\}, \text{ Then, } (X,\tau_7,\leq_7) \text{ and } (Y,\tau_8,\leq_8) \text{ are } \{(a,a),(b,b),(c,c)\}, \text{ Then, } (X,\tau_7,\leq_7) \text{ and } (Y,\tau_8,\leq_8) \text{ are } \{(a,a),(b,b),(c,c)\}, \text{ Then, } (X,\tau_7,\leq_7) \text{ and } (Y,\tau_8,\leq_8) \text{ are } \{(a,a),(b,b),(c,c)\}, \text{ Then, } (X,\tau_7,\leq_7) \text{ and } (Y,\tau_8,\leq_8) \text{ are } \{(a,a),(b,b),(c,c)\}, \text{ Then, } (X,\tau_7,\leq_7) \text{ and } (Y,\tau_8,\leq_8) \text{ are } \{(a,a),(b,b),(c,c)\}, \text{ Then, } (X,\tau_8,\leq_8) \text{ are } \{(a,a),(b,b),(c,c)\}, \text{ Then, }$
- topological ordered spaces. The d-closed sets in Y are $\phi, X, \{c\}$ and sgd-closed sets in X are
- 55 $\phi, X, \{c\}, \{b, c\}$. Define $f: X \to Y$ as f(a) = b, f(b) = a and f(c) = c then, f is a
- sgd-continuous function.

- 57 **Example 3.4.** Let $X = Y = \{a,b,c\}, \tau_8 = \{\phi, X, \{a,b\}\}, \tau_9 = \{\phi, X, \{b\}, \{c\}, \{b,c\}\}\}$
- 58 $\leq_1 = \{(a,a),(b,b),(c,c),(a,b),(b,c),(a,c)\}, \leq_5 = \{(a,a),(b,b),(c,c),(a,c),(b,c)\}$
- Then, (X, τ_8, \leq_5) and (Y, τ_9, \leq_1) are topological ordered spaces. The b-closed sets in Y
- are ϕ , X and sgb-closed sets in X are ϕ , X. Define $f: X \to Y$ as f(a) = b, f(b) = c
- and f(c) = a. Then, f is a sgb-continuous function.

4. Independency of the functions

- 63 Remark 4.1: The notions sgi-continuity and sgd-continuity are independent as seen in the
- 64 following example.
- **Example 4.2:** Let $X = Y = \{a, b, c\}, \tau_8 = \{\phi, X, \{a, b\}\}, \leq_3 = \{(a, a), (b, b), (c, c), (a, b), (a, c)\}$
- 66 $\leq_4 = \{(a,a),(b,b),(c,c),(a,b),(c,a),(c,b)\}$. Then, (X,τ_8,\leq_3) and (Y,τ_8,\leq_4) are topological
- ordered spaces. The i-closed sets in Y are ϕ , X and sgi-closed sets in X are ϕ , X, $\{c\}$, $\{b,c\}$.
- Define $f: X \to Y$ as f(a) = a, f(b) = c and f(c) = b then f is a **sgi-continuous function**.
- The d-closed sets in Y are ϕ , X, $\{c\}$ and the sgd-closed sets in X are ϕ , X, $\{a,c\}$. Then f is
- 70 not a sgd-continuous function.
- 71 If we take $X = Y = \{a,b,c\}, \tau_8 = \{\phi, X, \{a,b\}\}, \leq_4 = \{(a,a),(b,b),(c,c),(a,b),(c,a),(c,b)\},$
- 72 $\leq_5 = \{(a,a), (b,b), (c,c), (a,c), (b,c)\}$. Then, (X, τ_8, \leq_4) and (Y, τ_8, \leq_5) are topological ordered
- spaces. The i-closed sets in Y are $\phi, X, \{c\}$ and sgi-closed sets in X are ϕ, X . Define
- 74 $f: X \to Y$ as f(a) = a, f(b) = a and f(c) = c. Then, f is a **not a sgi-continuous**
- function. The d-closed sets in Y are ϕ , X and sgd-closed sets in X are ϕ , X, $\{a,c\}$, $\{c\}$. Then,
- 76 f is a sgd-continuous function.
- 77 Remark 4.3: The notions sgi-continuity and sgb-continuity are independent as seen in the
- 78 following example.
- 79 **Example 4.4:** In the topological ordered spaces (X, τ_8, \leq_4) and (Y, τ_8, \leq_5)
- 80 where $X = Y = \{a,b,c\}, \tau_8 = \{\phi, X, \{a,b\}\}, \leq_4 = \{(a,a), (b,b), (c,c), (a,b), (c,a), (c,b)\}$ and
- 81 $\leq_5 = \{(a,a),(b,b),(c,c),(a,c),(b,c)\}$, the i-closed sets in Y are $\phi, X, \{c\}$ and sgi-closed sets
- 82 in X are ϕ , X. Define $f: X \to Y$ as f(a) = a, f(b) = a and f(c) = c. Then, f is a **not a**
- 83 sgi-continuous function. The b-closed sets in Y are ϕ , X and sgb-closed sets in X are
- 84 ϕ, X . Then, f is a sgb-continuous function.

On the other hand, in the spaces (X, τ_{11}, \leq_7) and (Y, τ_{11}, \leq_8) where

86
$$X = Y = \{a,b,c\}, \tau_{11} = \{\phi, X, \{c\}, \{c,b\}\}, \leq_7 = \{(a,a), (b,b), (c,c), (b,a)\}$$
 and

- 87 $\leq_8 = \{(a,a),(b,b),(c,c)\}$, the i-closed sets in Y are $\phi, X, \{a\}, \{a,b\}$ and sgi-closed sets in X
- are $\phi, X, \{a\}, \{a,b\}$. Define $f: X \to Y$ as f(a) = a, f(b) = b and f(c) = c. Then, f is a
- sgi-continuous function. The b-closed sets in Y are $\phi, X, \{a\}, \{a,b\}$ and sgb-closed sets in
- 90 X are $\phi, X, \{a,b\}$. Then, f is **not a sgb-continuous function**.
- 91 **Remark 4.5:** The notions sgd-continuity and sgb-continuity are independent as seen in the
- 92 following example.
- 93 **Example 4.6:** Consider the spaces (X, τ_{11}, \leq_8) and (Y, τ_{11}, \leq_9) where $X = Y = \{a, b, c\}$,
- 94 $\leq_8 = \{(a,a),(b,b),(c,c)\}$ and $\leq_9 = \{(a,a),(b,b),(c,c),(a,c)\}$. The b-closed sets in Y are ϕ, X
- and sgb-closed sets in X are ϕ , X, $\{a\}$, $\{b\}$, $\{a,b\}$. Define $f: X \to Y$ as f(a) = c, f(b) = b
- and f(c) = a. Then, f is a sgb-continuous function. The d-closed sets in Y are
- 97 $\phi, X, \{a\}, \{a,b\}$ and sgd-closed sets in X are $\phi, X, \{a\}, \{b\}, \{a,b\}$. Then, f is **not a sgd-**
- 98 continuous function.
- For the other part, consider the topological ordered spaces (X, τ_{11}, \leq_6)
- and (Y, τ_{11}, \leq_7) where $X = Y = \{a, b, c\}, \leq_6 = \{(a, a), (b, b), (c, c), (b, a), (a, c), (b, c)\}$
- and $\leq_7 = \{(a,a),(b,b),(c,c),(b,a)\}$. The d-closed sets in Y are $\phi, X, \{a,b\}$ and sgd-closed
- sets in X are ϕ , X, $\{b\}$, $\{a,b\}$. Define $f: X \to Y$ as f(a) = a, f(b) = b and f(c) = c. Then,
- 103 f is a **sgd-continuous function.** The b-closed sets in Y are ϕ , X, $\{a,b\}$ and sgb-closed sets
- in X are ϕ , X. Then, f is **not a sgb-continuous function.**
- 105 Conclusion:

107

108 109

110

The following results were proved in this paper.

sgi-continuity sgd-continuity sgb-continuity

- Here the symbol $A \longleftrightarrow B$ indicates A and B are independent notions.
- 111 References

126

112	[1]Bhattacharyya.P, Lahiri B.K (1987), Semi generalized closed sets in topology
113	Indian J. Pure. Appl. Math 29:375–382.
114	[2] L. Nachbin, <i>Topology and order</i> , D.Van Nostrand Inc., Princeton, New Jersey (1965).
115	[3] M.K.R.S. Veera Kumar, Homeomorphisms in topological ordered spaces, Acta Ciencia
116	Indica, XXVIII (M) (1)(2002), 67-76.
117	[4] V.V.S. Ramachnadram, B. Sankara Rao and M.K.R.S. Veera Kumar, g-closed type,
118	g*-closed type and sg-closed type sets in topological ordered spaces, Diophantus J.Math.
119	4(1) (2015), 1-9.
120	[5]. N.Levine, Semi-open sets and semi-continuity in topological spaces, Amer.
121	Math. Monthly, $70(1963)$, $36-41$. a semi-open set $[17]$ if $A \subseteq cl(int(A))$ and a semi-closed
122	set if int $(cl(A)) \subseteq A$.
123	
124	
125	