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ABSTRACT

This paper utilizes perturbation and asymptotic techniques to discuss and obtain, analytically, the
buckling modes and buckling load of a harmonically imperfect column lying on an elastic foundation that
has cubic — quintic nonlinearity. Two slightly different approaches are here utilized. In the first approach,
the perturbation parameter is a component of the displacement while in the second approach, the
perturbation is a component of the load. In the final assessment, results from both approaches are seen
to be in good agreement. The results are however observed to be implicit in the load parameter and are
valid asymptotically as long as these perturbation parameters are small relative to unity.

KEYWORDS: Infinitely Long Columns, Nonlinear Elastic Foundation, Static Buckling, Perturbation
Technique, Asymptotic Analysis.

1. INTRODUCTION

In this paper, a perturbation scheme in asymptotic series expansions is developed in determining the
static buckling load and buckling modes of an infinitely long but harmonically imperfect column lying on
a cubic — quintic nonlinear elastic foundation where the column is trapped by a static load of magnitude
P. It is to be recalled that, as far as investigations concerning columns are concerned, majority of the
existing research findings have tended to favour columns lying on nonlinear cubic elastic foundations [1,
2, 3] to the exclusion of most other nonlinear elastic foundations. In this study, we intend to stretch the
analysis to the case where the foundation has a cubic — quintic nonlinearity.

We remark that investigations on columns lying on cubic — quintic non — linear elastic foundations are
rare, for reasons, perhaps, attributed to the inherent excessive nonlinearity which makes any analytical
solution of the problem difficult and cumbersome. However, it is to be recalled that Elishakoff [4] had
earlier studied the buckling of similar columns lying on cubic foundations as well as those lying on
qguadratic — cubic non — linear elastic foundations. It is our intention in this analysis to extend Elishakoff’s
analysis to the case of a column lying on cubic — quintic non — linear elastic foundations.

Generally, investigations on buckling, both static and dynamic, have tended to attract and occupy a
prominent attention amongst the research community for a long time now. In this respect, mention is
here made of an investigation by Reda and Forbes [5], Priyadarsini et al. [6], Chitra and Priyadarsini [7],
Mcshane et al. [8], Kolakowski [9, 10] and Patil et al. [11], among others.

2. GOVERNING EQUATION

The normal displacement W (X) of the column, subjected to the applied load P, satisfies the non —
homogeneous equation

da*w
dxz’

d*w

El x4

2
+2PS2 4 W + kW3 — ks WS = —2P —w<X<ow (21

where |w(x) | < wasx — +oo,

In general, we demand that the displacement w(x) be bounded for all values of x.



Here X is the spatial coordinate, El is the bending stiffness, where E and | are Young’s modulus and
moment of inertia respectively and W is the twice differentiable stress — free harmonic imperfection.
The cubic — quintic nonlinear elastic foundation exerts a force per unit length given by kW +
ak,W3 — B1ksW? on the column, while @ and f; are the imperfection — sensitivity factors which are
to be carefully chosen so that the column becomes imperfection — sensitive and k;, k, and k5 are
positive constants. In this formulation, we have neglected all nonlinearities greater than quintic while all
nonlinear derivatives are neglected.

In order to nondimensionalize the equation, the following nondimensional quantities are now assumed.
1 1

x= (@) w= (2w w=e(@fw p=(B55), P=22k):

[

Here, € and A satisfy the inequalities 0 < € < 1,0 < A < 1, and the nondimensional form of the

equation is
d*w d?w s s dzw
W+2/1W+ w+ aw —IBW = _ZAEW’ —oo<x <o (22)

In general, the amplitude of imperfection € satisfies the inequality |6 | <« 1, but in this analysis we shall
let e satisfy 0 < € < 1.

We shall solve the equation in two slightly different approaches whereby, in the first approach, we
adopt the perturbation and asymptotic parameter as a component of displacement whereas in the
second approach, we adopt the perturbation parameter as a component of the applied load. In this

=2
latter case, we shall let =1 — % , for 0 < £ K 1, where 1 is the nondimensional load amplitude. In

both cases, we aim at first determining a uniformly valid asymptotic expression of the normal
displacement subsequent upon which the static buckling load A, is next determined. The static buckling
load Ag, as in [1 — 3], is defined as the maximum value of the load amplitude A that emanates from the
origin of the load — displacement graphical configuration of the loading system. It is to be recalled that
perturbation techniques in the load and displacement parameters used in this work were judiciously
utilized by Amazigo [2] when he investigated the buckling of an infinitely long column with harmonic
imperfection lying on a non — linear cubic elastic foundation. His method is hereby extended to study
the case of a column lying on a cubic — quintic non — linear elastic foundation.

3. SOLUTION OF (2.2) USING DISPLACEMENT AS PERTURBATION PARAMETER
Since the imperfection is harmonic, we let
W = cos nx, n=1,23,.. (3.1
Assuming that the displacement must be in the shape of imperfection, we let

w(x) = cosnx, (3.2)



The equation satisfied by the perfect linear structure is

d*w d?*w
W-I_ZAW-*— w=20 (33)

The resultant equation when (3.2) is substituted in (3.3) is
(n*-2n?2+1) =0, A= i(n4 +1) (3.4)
2n?
The least value of 4 in (3.4) is obtained when n = 1 and for this the classical buckling load A is
Ac=1 (3.5)
For the solution of (2.2), it is necessary to let
w(x) = écosx + v(x) (3.6)

It is here assumed that the average value of v(x) cos x vanishes over the interval of definition of x, that
is

< v(x)cosx >=10 (3.7)

where, < --- > denotes the average of v(x)cosx.Thus, with w known, & is uniquely defined.

Let

v(x) = i EMvp, Ae = i EMQm (3.8)
m=2 m=1

In order to solve (2.2), using (3.2), equations (3.8) are now substituted into (2,2) and thereafter, we
equate the coefficients of powers of € to get

0(&): 2(1 — A)cosx =2Q;cosx 3.9
. d*v, d?v,
0(&%): Mv, = P + 221 2t ve= 2Q, cosx (3.10)
0(&%): Mvy = 2Q3cosx —acosdx (3.11)
0(&"): Mv, = 2Q,cosx — 3av, cos®x (3.12)
0(&%): Mvs = 2Qs cos x — 3av; cos? x — 3av, cos x + f cos® x (3.13)
0(£%): Mvg = 2Qg cos x — 3av, cos* x — 6av,v; cosx + 58 v,cos*x (3.14)
0(£7): Mv, = 2Q; cosx — a[3vs cos? x + 6v,v, cos x + 3vZ cosx] + Brzcos*x (3.15)



etc.
From (3.9), it is easily seen that
Q=(010-4), v, =0 (3.16)
On using the condition (3.7), it is seen that
Q:=0, v, (3.17)

On simplification, equation (3.11) becomes

3a a
Mv; = (2Q3 - T) coSx — ZCOS 3x (3.18)

On using the condition (3.7) on (3.18), it easily follows that

3a

0= (3.19)

After solving the remaining equation in (3.18), we have

_ —acos 3x 320
Vs T 81— 91 (320)
From (3.12), it easily follows that
Q4 = U4 == 0 (321)

Equation (3.13) is next simplified to yield (using (3.17))

My = (20, + 22+ 3a” L (BE, 3a” 3
vs = {205+ 5t =0 )OS T (16 T Terar —ony ) O 3F

2
+ ( p L) cos 5x (3.22)

16 3201 -9

On applying (3.7) in (3.22), this yields

_1(58 3a? 393
% = ‘z<?+m> (3.23)

The solution of the remaining equation in (3.22) is

1 3a? cos 3x 1 ) 3a? cos 5x 394
s = §<ﬂ T a- 9,1)> ((41 — 9,1)) * a( Pt 9/1)> ((313 — 25,1)) (3-24)

After substituting in (3.14), we get

Qs = vs=0 (3.25)



Next, we substitute in (3.15) and simplify to get

von = |2 3a A1+ a? +5ﬁ N 38 3a<A +A2>] 3
v7 = 2@ =512 T 1281 —on2 osXT I7g — o (AT )|eosex

f 3a A a?
* [E‘?{(AZ )+ 256(41 — 9)2 }] cos >x

2
n [ﬁ _3a {Az + a—}] cos 7x (3.26a)

8 2 256(41 — 91)2

where,

A = ! + 3a” 3.26b

1732041 -92) B 41 —92 (3:26b)
2

42 = 5413 - 259) <23 - 9,1> (3.26¢)

The condition (3.7) as applied to (3.26a) yields
L3, o _3F 3.26d
=217z 128(41 — 91)2 8 (3:26d)

The solution of the remaining equation in (3.26a) yields
1738 3a(A +A2)](c053x)+1ﬁ 3a 2 +A1+ a’ ( cos 5x )
V1= ole T2\ T e Zoa) 2|2 T 2 \ P2 T2 T 256(41 —92)2 )| \313 — 252

N 1[p  3a A2 a? ( cos 7x ) 3.7
218 2 256(4-1—9/1)2 1201 — 492 (3.27)

Following (3.6), we can now write

o a§3c053x+ L[1 N 3a? <c053x>+ 1 25 + 3a? ( cos 5x )
W= Ecosx 8(41—9/1) o E7A abrrpercyy Avepery) Al Gy per-yy ACT

Az)] ( cos 3x )
2 41 —-941
N 2 A1 A a’ ( cos 5x )
2 A 256(41 —921)2 /| \313 — 251
N B 3a Az a? ( cos 7x ) N 328
8 212 T 25601 —onz(|\1201 =492 (3.28)
Similarly, we have (from (3.8))
B 3a8% &% (58 3a? & [3a (A a’ 58
Ae=ed -+ —g—- 7(? T 3201- 9,1)> 7 [7{7 T 1281 - 9,1)2} N ?]
+ o (3.29)



To determine the static buckling load Ag, we, as in [1 — 3], use the condition

a_ 0 3.30
and get
9as?  5&; 3a? 58
(1=45) + 8 2 32(41—9A)+8 0 (3:31)
On solving, this yields
[ 1
9a | 512(1—-14) |
=2
& = 1- |1+ (3.32)
40 {L+%}l 405¢2 {L+%}I
32(41-915) 8 [ 32(41-915) 8 J
and
1
% 2
H=— ; 141+ 222Gl | (33
S — 2 - 2 .
2v/10 _ 32 5B 2f 3¢ 5B
40 {32(41—9/15) o }[ 405a {32(41—915) 8} J

The static buckling load A is now obtained by evaluating (3.29) at A = A and substituting for S'SZ and &

from (3.32) and (3.33) respectively and this yields

) § 30 _ 3a? 58
Jse = & |(1-45) + 852{{?‘53(m+?)

+ 3+ ) 2| @

4. SOLUTION OF (2.2) WITH LOAD COMPONENT AS PERTURBATION PARAMETER

Here, we shall let

2

€
/1=1—7, 0<ex1

In this case, equation (2.2) becomes

dw _d*w  d*w s .

P +2dx2 - T2 + w4+ aw® - fw> =
Let

w(x) = becosx + u(x), 0<b<1
Further let

(4.1)

d?*w
—22e 7 (4.2)
(4.3)



(00 oo

u(x) = Z eMUp, Ae = Z E™Ym (4.4)

m=2 m=1

Substituting for terms in (4.2) and equating the coefficients of powers of ¢, yields

d*u, d?u,
0(¢): Nu; = It + 22 T2 + u, = 2y; cosx (4.5)
0(s%?): Nu, = 2y,cosx (4.6)
0(£3): Nuz = —bcosx — ab®cos3 x + 2y cos x (4.7)
4 dZuZ 72 2
0(e*): Nuy = 2 3b“u, acos” x + 2y, cos x (4.8)
5 d’us oy 2 T2 75 05
0(¢°): Nug = e 3b°ujz acos” x — 3baus cosx + f b°cos® x + 2yscos x  (4.9)
d?u, _ _
0(£%): Nug = Frea a{3b2u, cos? x + 6bu,u; cos x — u3}
— 6av,v3 cosx + 58 u,b*cos*x +2y, cos x (4.10)
d2u5 — —
0(¢7): Nu, = e a{3b?us cos? x + 3bu, cos x(u? + 2uyuy)+3udus}
+ 5B uzb*cos*x +2y, cos x (4.11)

etc.
We shall still use the same orthogonality condition as (3.7). Thus, from (4.5), we get
y1 =0, u; =0 (4.12a)
From (4.6), we get
Y2 =0, u; =0 (4.12b)

Equation (4.7) simplifies to

_ 3ab? ab3
Nus; =|2y;—b — 2 cosx — e cos3x (4.13)
Application of (3.7) in (4.13) yields
_ 12 b+ ab’ 4.14
V3 = 2 7 (4.14a)

The solution of the remaining equation in (4.13) is



ab3
Uz = EV) cos3x (4.14b)

Substituting for u, in (4.8) yields
Ya = 0, Uy = 0 (415)

Substituting for u,and u; in (4.9) gives

Nugs = Agcosx + Ajpcos3x + A4 cos5x (4.16a)
where,
Ag = UL +2 3ab? 4.16b
9 = 16 Vs 128 (4. )
a = fb°> 9ab® 3ab® a = fb°>  3ab® i16
W=\ T3z T Tes ) 11T \16 128 (4.160)

On account of (3.7), we observe that Aq = 0. This yields

_ 1(3ab®> 11Bb° 117
¥s=2\128 " " 16 (4.17a)
The remaining equation in (4.16a) is solved to get
Aipcos3x Aqqcos5x
= — 4.17b
s ( 8§ ' 24 ) (4.17b)
On substituting for relevant terms in (4.10), we obtain
Ye = 0, Ug = 0 (4.18)
After substituting for terms in (4.11) and simplifying, the equation becomes
Nu, = Aj,cosx + Aq3cos3x + Ayucos5x + Ajscos7x (4.19)
where,
po = 15apb’ P 3b*Ay  3a?b’ 420
27 [T512 AT %1716 2048 (4.200)
94, 3b%4, 3bAy4 15aBb”
Az = [ 8 { 16 + 18 + oTE (4.20b)
25444 3b%4,; 3b%*As 3a?b’) S5apb’
_ — 4.2
14 [ r “{ 28 ' 16 1024 256 (4.20¢)



_ [(3abAy;  3a®b7)  5apb’ 1204
5 48 4096 512 (4.20d)
From the orthogonality condition (3.7) as applied to (4.19), we get
_ 1[15aBb”  (3b*Ay 3a’b’ 121
V7= T2 sz 16 2048 (421
The solution of the remaining equation in (4.19) is
1143 cos3x Aq4 cos5x Az cos7x
wy = —= 13 14 Lt (4.22)
21(41—-92) (313 —-254) (1201 —492)
From (4.3) and (4.4), we write
_ &3ab3cos3x Ajgcos3x Ay cos5x
_ _ s (410 11
wlx) = be + —— ( 8 24 )
€7 A3 cos 3x Aq4 cOs5x Az cos7x
——[ - - o ] + o (4.23)
2 1(41-91) (313 —254) (1201 —4921)

Similarly, we have, from (4.4),

N _ be? 1+3a52 5555(3a 113) b%e7 [15aBb> 34 3a?b® N 124
€= 4 2 \128 16 2 | 512 16 2048 (4.24)

2

To determine the buckling load Ag, we employ (3.30), which yields

3be? 3ab?\ 5b%d/3a 11B\ 7b%eé[15apb® 34 3a?b®
14 ( _ )— @l —0 (425)
2 4 2 \128 16 2 512 16 2048

At this stage, we shall give the result in two levels of approximation. First, if we take only the first two
termsin (4.25), we get

3be? - 3ab?\ 5bSed ( 3a 11;3) _ 0 126
2 4 2 \128 16/~ (4.26a)
where &g is the value of ¢ at static buckling. This gives
. 1
, 3 1+30;b B 1 3 1+3o;b 2
ST\ mE_s ) ST R (5\TE_se (4:26b)
16 128 16 128
Now, on evaluating (4.24) at buckling, where 1 = Ag, we get
1
3 3ab —
o1 v LA\ 3ab?\ (o, (118 3ay
ise=gs(6) (e | |17 ) - 20 (G —izg) +8ef] 4270
16 128

10



where,

150(,855+ {3,49 30(21_)5}]
a —_—

A16(’15):[ 512 16 2048

(4.27b)

and where (4.273, b) are evaluated at where 4 = A;. If we take the three terms in (4.25) then, we can
write the whole equation as

,[3b 5b*e? 7b%ed
2 A17 TAlg - 2 A19 —_ 0 (428a)
where,
s = 1+3a52 B (113 3a> _ [15aBb® i 349 3a’b® 1.28h
17 4 ) 7187 16 128/’ 7 512 16 2048 (4.28D)
Then, we can recast (4.28a) simply as
Clg‘;'l - ng‘g - C3 = O (4‘29(1)
where,
7b? 5b* 3b
G = TA19, Cy = TA18: C3 = 71417 (4.29b)
The solution of (4.29a) is
5b%A 84A A
2 18 17419
= —|1-— 4.30
&= A, T Z5peaz, (4.300)

1 T ana a4 E
& = bf (A19> 1— |1+ m (43019)

The static buckling load in this case is determined using (4.24) at A = A5 and using the values of €2 and
& as in (4.30a, b) respectively. This gives

3 _bss 1+3al32 2 <11[3 3a)+l_)215a,8135+ 34 3a?b® 131
s€T 4 2 16 128 17512 " “116 2048 (4-31)

5. ANALYSIS AND DISCUSSION OF RESULTS

95}

The results (3.34), (4.27a) and (4.31) show mathematical relationship between the Static buckling load
Ag and the imperfection parameter €. Using Q — Basic codes with b = 0.5, the results obtained from the
two methods are shown both on Tablel and Table2 as well as on Figurel and Figure2. It is clearly shown

11



that the Static buckling load, in each case, decreases with increased imperfection parameter. All results
are implicit in the load parameter A and are valid provided the perturbation parameters are small
relative to unity. It is pertinent that b satisfies the inequality 0 < b < 1. Certainly, if the values of a, 8
and b change, a new set of results will be obtained. But whatever be the values of these parameters
within the limits allowable in this work, the general trend will be the same, namely the static buckling
load A5 decreases with increase in imperfection € and vice versa. This trend is characteristic of all
imperfection sensitive structures. In particular, it is observed that as the imperfection tends to zero, Ag
asymptotically increases without bounds and as it tends to one, A5 tends to approach zero.

Though we have limited our analysis to 0 < € « 1, the same trend follows if we use —1 < € < 0.
6. Numerical and Graphical Plots

Table 1: Relationship between the Static buckling load A5 and the Imperfection parameter, e fora =1,
B =1 using Eqn. (3.34).

IMPERFECTION | Ag fora=1,B=1
PARAMETER, €

0.01 0.286212
0.02 0.285966
0.03 0.285721
0.04 0.285478
0.05 0.285236
0.06 0.284995
0.07 0.284756
0.08 0.284519
0.09 0.284283
0.1 0.284048

12
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0.286 -
0.2855 -
0.285 -
0.2845 -
0.284 -

0.2835 -

STATIC BUCKLING LOAD
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0.2825

0.01 0.02 0.03 0.04 0.05 0.06 0.07
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0.08

0.09

0.1

Figure 1: Graphical Plot of Table 1, showing the relationship between the Static buckling load A¢
and the Imperfection parameter, e fora =1, B = 1, using Eqn. (3.34).

Table 2: Relationship between the Static buckling load A and the Imperfection parameter, € for a
=1,B=1and b = 0.5, using Eqn. (4.27a).

IMPERFECTION | Agfora=1,8=1,b=0.5
PARAMETER, €

0.01 0.571931
0.02 0.285966
0.03 0.190644
0.04 0.142983
0.05 0.114387
0.06 0.095322
0.07 0.081705
0.08 0.071492
0.09 0.063548
0.1 0.057194
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0.7

>
A

0.6 -

03 -

0.2

STATIC BUCKLING LOAD

0.1

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
IMPERFECTION PARAMETER, €

Figure 2: Graphical Plot of Table 2, showing the relationship between the Static buckling load A and
the Imperfection parameter, e fora=1, B =1and b = 0.5, using Eqn. (4.27a).

7. CONCLUSION

The paper has used perturbation methods to analyze a problem in non — linear dynamical system. The
results are asymptotic and so, are valid as long as the small parameters are small relative to unity.
Moreso, the result is implicit in the load parameter. The same method and technique can be used to
analyze structurally more complex materials like cylindrical shells and plates subjected to similar loading
conditions.
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