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Nonlinear Saturation Controllers for suppression the Vibration of Nonlinear
Spring Pendulum

Abstract

In this work, we apply the Averaging Method to obtain the theoretical results. The
Nonlinear Saturation Controller (NSC) is proposed to decrease the vacillations of the studied
system. We investigate the stability of the system nigh the resonance condition applying the
frequency response equations. Numerically, the effects of diversified controller’s parameters on
the basic system behavior are studied. The emulation results are attained by utilizing Matlab and
Maple programs.
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1. Introduction
One of the most important engineering problems is vibration control. Many methods have

been developed for suppression the vibration using active or passive controllers. It is worth to be
mentioned that several control techniques are used to regulate the reaction of a system such like:
passive control, semi active control, active control, and hybrid control. In the work [1], Kamel et
al presented the vacillation and stability of the nonlinear spring pendulum which was depicting
the roll motion of a ship. They studied the influences of the linear controller on the fundamental
system subject to multi parametric stimulation. Zhou and Chen [2] used two procedures of ship
example under sinusoidal harmonic stimulation to investigate the response and constancy of the
system. They got the equation of bifurcation response close to the collection resonance case in
the existence of internal resonance of the studied system.

Lee et al. [3-5] studied the demeanor of the Spring Pendulum system subordinated to
single-harmonic-excitation force. The concluded results elucidated that the system had an
extremely complicated attitude which include Hopf bifurcations and jump phenomena. Not that
only, they also discovered that the approximation with the 2" - order gave more perfect
harmonization with the fundamental system than the 1% — order did. Song et al [6] scrutinized the
oscillation reaction of the spring mass damper system with an agitated parametrically pendulum
suspended to the mass by using the harmonic balance method. Furthermore, they illustrated the
unstable motion zone of the system which gotten from the 3" - order approximation to become
completely coordinated with which acquired from numeral computation. Eissa et al [7-11]
applied diversified controllers on the simple and the spring pendulums which showing the sway
motion of the ship then; they studied the effects of them. They subjected the two procedures
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under single-harmonic- stimulation force then they studied the action of the transversal and linear
toned absorbed controllers on the existing vibrations. Structural damping treatment is one of the
exemplary passive vibrations control near that had been utilized in the practical structural
engineering, but active damping had also enticed the interesting of considerable number of
investigators [12-14].

The researchers in the work [15], EL-Sayed and Bauomy subjected a nonlinear dynamic
system to multi-parametric-stimulation forces then they investigated the effectiveness of time-
delay controller on the existent vibrations. And they applied the averaging method to drive the
system’s frequency response equations. Hamed and Amer [16] introduced a research for (NSC)
controller which had been utilized to repress the vibrated amplitude of a structural dynamic
model assuming non- linear composite beam. They had a great result by utilizing the saturation
for frustrating the vacillation of their non-linear system. Warminski,J. et al. [17] introduced
experimental and numerical surveys of four kinds of controllers utilized to non- linear beam
models. Validation of distinct control designs is estimated utilizing numeral simulations in
matlab-simulink program software. The mathematical results for non- linear dynamic system
with NSC are acquired utilizing multiple scale method. The numerical and analytical
interpretation for NSC submits the effect of most substantial parameters on the efficiency of the
control of a non- linear established paradigm for an extensive domain of frequency of stimulation
and peak scale of amplitude. The consequences for a solo beam system display which (PPF) and
(NSC) controllers are the most influential for supposed provisions of the established paradigm.

Saeed et al [18] used saturation-based controller with time delay in active extinction of
nonlinear beam vibrations. They found that the time delays append to the response neoteric
control keys through contraction the bandwidth of the controller’s frequency. They mathematical
solutions were in a great agreement with the numerical ones. Saeed and El-Gohary [19] modified
the model of saturation controllers which added to the system through quadratic nonlinearity
coupling. They investigated the leverage of time delays on the system’s stability and controller’s
behavior. Ashour and Nayfeh [20] had used a non- linear controller as a vacillation suppressor
established on saturation incident influential for depression of torsional and flexural oscillations
of the plate. The assessment of hesitancy of stimulation had been appended to the system to
magnify the leverage of the saturation control.

Our main aim of the present paper is to apply control to diminish the vacillation of the
system. This controller is NSC control. Averaging technique is used to get the mathematical
analysis. Some testaments concerning the diversified parameters of the fundamental system are
notified and the influences of the NSC controllers on the system's demeanor will be studied
numerically.



2. Mathematical model
The differential equations of motion characterizing the oscillations of the non- linear spring
pendulum with NSC controllers could be expressed as the next form:

X+2ecx+ @' x+ax’ +ea,x’ —(L+x)¢° + @ (1—cos @) = &° f, cos(2t) + ey,u’ 1)
A+ x)’ @+ 2ec,p+ 2+ x)xp+ @, (L+ x)sing = &° f, cos(L2,t) + &y, V° (2)
U+ 26,0+ wiu = eAux (3)
U+ 2610+ /v = L, vp (4)

Where c;,z; (j=1,2) are the spring pendulum modes’ damping coefficients and the NSC
controllers, respectively. w,,w,,®, and o, are the spring pendulum modes’ natural frequencies
of and NSC controllers, respectively. «, and «, are the non-linear parameters f; is the external
forcing amplitudes of the fundamental system Q. is the excitation frequencies of the
fundamental system y,,, are the control signal gains and 4, A, are the feedback signal gains.

3. Mathematical analysis (Averaging method)

Applying the averaging method, the solutions for equations (1-4) from the first-order
approximate are considering as:

x=a,cos( ot +y,) (5a)
p=a,cos(w,t+y,) (5b)
u=a,cos(a,t+y,) (5¢)
v=a,cos(w,t+y,) (5d)
Where a and v, ,(n=1,2,3,4) exist as constants. Differentiate equations (5a)- (5d) we get:

X =—asin(at+y,) (6a)
¢ =—a,0,sin(wt+vy,) (6b)
u=-aw,sin(at+y,) (6¢)
v=-aq,0,sin(at+y,) (6d)

For £ = 0, relatively small, claim a, and v, ,(n =1,2,3,4) are dependent variables on time ¢ in
equations (1) - (4). Differentiating equations (5a) - (5d) once with respect to time t submits



X =a,cos(wt +y,)—asin(at +y,)—ay, sin(at +y,) (7a)
@p=a,cos(wt+y,)-a,osin(ot+y,)-ay,sin(ot +y,) (7b)
u=a,cos(at +y,)-ao,sin(ot +y,)—ay,sin(ot +y,) (7c)
v=a,cos(at+y,)-ao,sin(ot+y,)-ay,sin(ot+y,) (7d)
Comparing equations (6a) - (6d) and equations (7a) - (7d) we realize that:

a, cos(wt +y,)—ay, sin(ot +y,) =0

a,cos(wt +y,)—ay,sin(ot +y,)=0

a,cos(wt +y,)—ay,sin(wft +y,)=0

a,cos(ot+y,)—ay,sin(ot+y,)=0

Differentiating equations (5a) - (5d) once respect to time t we find:

¥ =—a,m sin(wt +y,)—-a,w cos(at +y,)—any, cos(at +v,) (8a)
¢ =—a,m,sin(wt +y,)—a,0; cos(wt +y,)— a0y, cos(ot +v, ) (8b)
il =—a,o,sin(wt +y, ) — a0 cos(at +y, ) —awy, cos(ot +y,) (8c)
U=-a,0,sin(ot+y,)-a,w0; cos(ot+y,)-a,ny,cos(ot +v,) (8d)

Substituting x,x,X,,®,d,u,u,i,v,0 and v from equations (5a) — (8d) into equations (1) — (4)
2 3

and taking into account that cos¢ =1—% ,sinp=p— ¢

3l we obtain the following:

—a,o,sin(wt +y,)—-aw’ cos(at +y,)—aoy, cos(at +y, ) - 2ec,a,0,sin (ot +v, )

+a,w] cos(wt +y, )+ a,a’ cos’ (ot +y, ) + ca,a’ cos® (wt +, )
2
—(1+a,cos(at +y, )a e} sin’ (ot +v, )+ o] [1— a- %)J

=&’ f,cos(2t) + ey,a’ cos® (wt +, ) (9a)



(1+a,cos(wt +y, ))2 (—a,0,sin(w,t +y,) - a,0; cos(wt +y,) - a,my, cos(at +y,))
—2zc,a,0,sin(myt +y, ) +2(1+a,cos(wt +v, ) )(ao sin(wt +v, ) )(a,0,sin( ot +y, ))

+a! (1+ a, cos(mt + l//l))((p—(g—j)
=&’ f,cos(2,t) +y,a; cos’ (ot +v,) (9b)
—a,o,sin(at +y, ) - a0y, cos(ot +y, ) - 2eua,o,sin( ot +y,)
= eAa,a, cos(at +y, )cos(wt +y,) (9c)
—a,o,sin(wt +v,)-a,0, cos(at +v,) - 2eu,a,0,sin(ot +y, )
= eA,a,a, cos(wt +y, )cos(at +v,) (9d)
Using equations (7a) — (7d) we get:
2

2
ol . o
% sm(a)ll“+z,//1)-|r1—a1
1 1

a, =—¢c,a, + £c,a, cos (2mt + 2y, ) + sin (3wt +3y,)

2

aa . o, a,a’
+——=sin(at + —Lsin(2mt +2 —Lsin(4mt +4
4o, ( ’ V/l) 4o, ( l//l) 8601 ( l//l)
2 _2 2 _2 2 _2
—azzﬂsin(a)lt +y, )+ aAfzﬂsin((a)l + 2wt +(y, +2p,)) + czzﬁsin((a)l —2w,)t+(y, —2y,))
a)l a)l a)l
2 _2 2 2
—Msin(Zwlt +2p, )+ 4990 ——225in( (20, + 20,)t + (2p, + 2,))
4a)1 8w,
2 _2
L 4 az) 2 SIn((Za) —2w,)t+Qy, —2y,))+ (z‘faa))z sin(wt +y,)

il 1
2 _2 2 _2
+ 2% sin (@, + 20)t +(y, + 207,) ) + 222 sin (@, - 20,)t + (v, - 2,))
8(01 80)1

2

2
-L flsin((a)l+.Ql)t+z//1)—25—wflsin((a)l—.Ql)t+ ) - ;/10)3s1n(a)t+z//l)

_ G sm((a) +20 )t +(y, +2p,)) - 2 sm((a) —20)t+(y, —2y,)) (10a)
1 a)l

i)
2 2

%cos(a)lt +y, )+ jl—alcos((—a)l)t +(-,))

1 a)l

ay, =—ec,a sin( 2wt + 2y, )+

3

2 3 3
5 s (s )+ 5% S5 o 21) S5 con )

1 1 1

a,
azclo2 a; o}
——22cos(mt + gz/l)+£—wzcos((a)1 —20,)t+(y, - 2y,))

20, )



2 _2 2 _2 2 _2
+ azﬂcos((a)l +20)t+(y, +2y,)) - 4L | GLO,
4o, 4a 4o,

1 1 1

cos(2m,t +2y,)

2 2
_alaza)Z COS(ZCOlt"'ZWl) a182 2 COS((ZC() -2w )t+(2W1 ZV/Z))

4o, @,
2 2
+ algzwz cos((2e, + 2w,)t + 2y, + 2y,) ) - 24 cos(at +y,)
o
a)ZaZl 2 2 '

——22cos((20, — 2wt +(2y, —2y,) ) + ag—azcos((Za)l +2w,)t+ 2y, +2y,))

8601 @,

2 2

_Z ficos((2 -t —y,)- £ ficos((2 + o)t +y, )+ ;/1603 cos(wt +y, )

1 1 1

Zl 2 cos((a) —20)t+(y, —2p,))+ s cos((a) +20)t+(y, +2y,)) (10b)
@

1 a)l

a, = % sin(2awt + 2y, ) - ec,a, + £c,a, cos(2m,t + 2y, )+ 2c,a,a, cos(wt +y, )
—ec,a,a, cos((o, — 2wt +(y, —2p,)) - ec,a,a, cos((@, + 20t +(y, + 2y,))

Zall

+a,a,0,sin(ot +y, ) ——2=2sin((o, + 20,)t + (v, + 2y,))

sin (2t +2y,)

221 1Sln((a) -2t +(y, - 21//2))—%

al 42 “ Sln((2a) +2w,)t +(2y, +21//2)) al 24 Sln((2a) -2t + 2y, - 21//2))

3 3

+szazsin(2a)2t+ ZWZ)—%sin(Za)thr 21//2)—%Sin(4602t+41//2)

_44 = L sin((@, +20,)t +(y, + 2y7,)) + "1 A% sin (o, - 20,)t +(p, - 2p,))]
a1428 2 sm((a) +20 )t +(y, + 21//2)) algé 2 sm((a) +4w)t + (v, +41//2))
a0, . a4®,a, _ao0gq, .
+ 9% sin(at +y, ) - 28 sm((co -2 )l‘Jr(l//1 2y,)) % sin(wt +y, )
algé 2 sm((a) —4o)t+ (v, -y, ) ((a) +0 )t+1//2)
fsin((o,-2)t+y,)- i fsin((@,+ o, + )t +(y, +v,))
a)Z 2
& . as’ . .
fsin((@, -, -2t +(y, —v,))- fsin((o,+ o, - 2))t+y, +v,))
a)Z a)Z
_2a&’

: €7,4
o fsin((@, -, + 2t +(y, —y,))+ 2;)“s1n(a)t+w2)

2 2



7/; 4 sm((a) +20,)t + (v, +21//4)) 7;)4 sm((a) —20,)t+(y, - 21//4))
2 2
2
—‘gj/zzﬂsin((a)l+a)2)t+(wl+wz) 7/22 L 4sm((a) )t +(y, —v,)
a)Z a)Z
2 2
—gﬁﬂsin((a)l +0,+20,)t+(y, +y, + 21//4)—87/2—611(1“sin((co1 +o,-20,)t+(y, +y, — 21//4)
@, 40)2
+ &4 sm((a) o, +20)t+(y, —v, +2y,)
4o,
_graa,
44 =2t sin((o, - o, - 20t + (v, —v, -2y, )] (11a)
4o,
ay, = % - %cos(szt +2y, ) —¢c,a, sin(2w,t + 2y, )
+a,ec,a,sin((2m, + 0t + 2y, +y,)) +aec,a, sin((Rw, — o)t + 2y, —y,))
Zal 1 2a1 1

—=—2cos((o, —2w,)t +(w, —2y,)) — 222 cos ((@, + 20t + (v, + 2p,))

Zal —22cos((2m, — 2w )t +(2y, — 2y,))— 2a1 —=2cos((2m, + 2wt + 2y, + 2y,))

wa od 3w,a’ a)a3 w,a
+—224+—22cos(2wt+2y,)——2%2——22cos(2w,t +2y,)——22cos(4a,t+4
2 2 ( 2 V/Z) 48 2 ( 2 1//2) 48 ( 2 l//z)
—%cos(a)ltﬂ//l) a4, 2cos((a) —2w,)t+(y, —2y,)
3
~4d i @ cos((@, — 20 )t +(y, — 2y, )+ Mcos(a)ltﬂul)
al 2 2 al 2 2
o 22 cos((w, —2w,)t +(y, — 2y,)) + ” 22 cos((a, + 20t +(y, +2y,))]
a1926 2cos((w, — 4w )t +(y, —4y,)) + alg% 2 cos((a, + 4wt +(y, +4y,))

2

f,cos((a, —Qz)t+a,y2)+287f2 cos((w, + 2t +y,)

a)Z 2

_Las fzcos((a)l—a)z—Qz)t+(1//l—w2)—2:ll—gf2cos((a)l—coz+.(22)t+(w1—1//2)
.

2 2

_2a¢’ 2a,6°
. frcos((o, +w, - 2t +(y, +vy, ) - 4; freos((@,+ @, + 2t +(y, +v,)]
2 2
;/2 4 cos(a) t+y, )+ 51/2 4 cos((a) —2w)t+(y,—2y,))
)

2 2



+ % cos((a) +20)t+(y, +2y,))- 722(11 4 Cos((a) o)t +(y,—v,))
o,

2 a)Z

2
—Mcos((wl+a)2)t+(x//l+y/2)) a4,
a)z 4 2
87/2 1 4

4o,

87/2 1 4
i)

2

cos((a) —(@, - 20 )t +y, - (v, - 2y,))
cos((a) +(@, =20 )t +y, +(y, - 2'//4))

cos((a) —(@, +20 )t +y, - (v, +2y,))

2
87/214

4o,

“2 17 cos((o, + (@, + 20 )t +y, + (v, +2y,)) (11b)
haa,
4

3

a, = —&u,a, + g,a, cos(2at + 2y, ) +

L chaa,

4a)3

2 tsin((2a, + @)t + 2y, + )

—=sin((2e, - o)t + 2y, —v,)) (12a)

gﬂ’la?; al
2

3

ay, = —gua,sin( 2wt + 2y, ) - cos (ot +v,)
_ha,a

—="cos((w,— 2wt +(y, —2y,) - £Aa,q,
a)3 4 3

gl£a4a2 sm((Za) +o)t+Q2y, + 1//2))

@,

1=t cos((@, + 20t +(y, + 2y, (12b)

a, =—&u,a, + £14,a, cos (2wt + 2y, ) -

G, i (20, - )t + Ry, )] (13a)

4o,

. . A,
ay, =—&ua,sin(2w,t +2y, ) - %% s (ot +y,)

20,

glaa ela.a

;a;‘ 2[cos((w, —2w,)t + (v, —2y,)) - ;a;: 2cos((w, + 20 )t +(y, +2y,))] (13b)

We can get the averaging equations conforming to simultaneous primary and internal 1:2
resonance by presenting the detuning parameters (o,,0,,0,,0,) according to

1 1 .
0 =w+¢e0,,02,=0,+¢&0,,0, = Ea)1 +&0,,0, = sz +¢&o, , keeping only the constant terms

and slowly changing parts in equations (10a) — (13b). So, we’ll have

a = ; 71 . sin(6,) - ec,q, (14a)
1
) 2
ay, = 380{ AL A f,cos6, +%cos(<93) (14b)
8w, 4o 4o

1 1 l 1



a, o i/ ;2“ sin(6,) - ec,a, (15a)
ay, = % —;—:fz cosd, + %cos(@) (15b)
a, =—suaq, —%sin(@) (16a)
ay, = —ﬁ% cos(6,) (16b)
a, =—eu,a, + ﬁsin(@) (17a)
ay, = —%ws(@) (17b)

Where 6, =y, -o.T ,6,=y,-0,T ,0,=y,-20,1, -2y, ,0,=y,-20,1 -2y,
4. Stability Analysis

The stability for this system in equations (1)—(4) is checked at our selective case of resonance
coincides to the invariant points of equations (14a) — (17b), that will be gotten by putting

a =6 =0.
That is
Zl 2sin(6,) - ec,q, (18a)
1 a)l
3 2 2 2 2
a,o, = (3880;2)611 - af;a)z j— 2850 f,cosf, +Ticos(t93) (18b)
1 1 1
_&n4 : sin(0,)—-¢c,a, (19a)
2a)2 4o,
“3w,a; & gy, a:
ao,=—=*=*———f cosf, +—*=cos(f 19b
272 48 2@2 f; 2 40)2 ( 4) ( )
glaa .
0=—sua,———>—sin(04 20a
#h% 20, +4¢0, ( 3) (202)
1 gla,a,
a,c,=—a,c,+———=—cos(6 20b
% TN 50 + o, (2,) (200)
eLaa, .
0= —&H,a, +ﬁ51n(9‘1) (213.)
ela,a
a,o,=—a 242 cos(é 21b
4% 2 «T2 2w, +4¢0, ( 4) (210)



From Eqgs (20a) to (21b) we get:

. 4duo,
sin(g,)=—"—"= (22a)
Aq,
4o, (03 - ;Jlj
cos(6,) = o (22b)
sin(6,) = % (23a)
2a2

1
0'4—50'2

&L,
For the practical case, a, # 0, substituting by equations (22a) to (23b) and squaring equations

(18a), (18b), then taking the squared results in a computation process, likewise equations (19a),
(19b), equations (20a), (20b) and equations (21a), (21b) deduce the following frequency
response equations:

4o, (
cos(6,) = (23b)

2,2 4 3 2 2)? 2 2
gt L, , o . EV 4 3ea,a; —2a,a;w, geaya; .
—f =¢&cial +———+| — + sin(6,
4a)ffl v 160)12 [ e 8w, 20, (%)
2 3_ 2 2
+—g;/ % (—alal + 36,0, ~2a,0,0, Jcos(&s) (24a)
, 8w,
& g'yla; 3wa) &eaya
e f7 :T;)Z“+gzcjaj +(—a20'2 — 428 2] + f2ai 24 sin(0,)
2 2 2
£7,4, 3o,q;
+——=* —a o0, ——== |cos(& 24b
20, [ 22 48 @) (240)
2
g//l1a1 2 2 l 2
— 1 | =¢u+(o.—=0 24c¢
[26{)1+46‘(73j #+ (o 2 ) (240)
2
ela, - 1
—22 | =¢u+(o,-=0 24d
(2w2+4504] # +(o, 2 ) (249)

5. Nonlinear solution

The stability for this system was specified by examining the eigenvalues of the right-hand
sides of equations (14a) — (17b) which represent as the Jacobian matrix. The equipoise solution is
approximately stable as long as the corresponding eigenvalue’s real part is negative. If not, the
corresponding result is unstable. To deduce the stability criteria, we just need to check the

demeanor of insignificant perturbations from the stabilized-case solutions a,,and @ ;.
So, we suppose the following:
an = anO + anl’ en = 0n0 + enl !

10



a,=a, 0=0, (25)
Where a,,0, are the solutions of equations (14a) — (17b) and a,,6, are known as
perturbations which are presumed to be very small compared witha,, € ,. Replacing equation
(25) into equations (14a) — (17b) and conserving the linear expressions in a_ ,6 6 only. We
obtain;

i &? gy, @ er.(2a,), .
a, =-eca, - 2_0)1](; (COS 010 )011 - ﬁ;o (COS 930 )031 - 14—60130(5111 ‘930 )a3l (269)
2 2 2
911 = (_ﬂ + 95052% - Lo Jau - Lo a, — : f;(Sil’l 010 )911
a, 8m 4,0 20, © 2a,0,
87/la320 3 gyla30
+ siné, )0, ———2(coséb,, )a 26b
4a10601 ( 30) 31 2a10a)l ( 30) 31 ( )
i &? ey, &y, ;.
a, =—&c,a, — 20 f,(cos6,))6, — ﬁ:"(cos 0,0)0,, — j:‘)(sm 6,,)a, (27a)
. o, 9w g . gy, as . gy,a
0,=|-——+-—=|a, - sind, )0, + —*(sind, )0, — —(cos0f, )a 27b
21 azo 48 ] 21 2 o0, fz( 20) 21 4a20a)2 ( 40) 41 2(120602 ( 40) 41 ( )
a, =| —eu, + A% Gin 0, JaSl + Mf—;:am(cos 6,,)0,, + gj‘l—z”sin 0,4, (28a)
3 3 3
6, =| -2 s o 0, |a, + %(Sin 6,) 0, — %(cos 0, )a, (28b)
a, 4a,o, 4o, 4a, m,
a, =| —eu, + % Gin 0, la, + M(cos 0,,)6,, + %(sin 6,,)a, (29a)
4o, 4o, 4o,
0, = O 8 cosl, |a, + %(sin 6,)6, — %(cos 6,,) s, (29b)
a40 4a40 a)A 4'0)4 40774
Now let us put the eigenvalues of the above system of equations in the following form:
E+SE +S,E°+5,E°+S,E + 5.8 +S,E7 +S.E+S, =0 (30)

If and only if the real part of the eigenvalue, which obtained from Eigen equation (30), is
negative, then the solution is stable; otherwise, the solution is going to be unstable. The
necessary and sufficient conditions for all the roots of Eq. (30) will be calculated corresponding
to the Routh-Hurwitz criterion.

s, 1. 0 0 0 0 0 O
s, S, S, 1 0 0 0 O
S, S, S, S, S, 1 0 0O
D — S7 SG SS S4 SS SZ Sl l (31)
0 S, S, S, S S, S, S,
O 0 0 S, S, S S S,
O 0 0 0 0 S, S, S,
O 0 0 0 0 0O 0 S

11



UNDER PEER REVI EW

6. Numerical Solutions

The basic system with NSC controllers which expressed in the differential equations form
(1-4) was solved by applying Rung—Kutta 4™ order method numerically. The emulation results

are attained by utilizing MATLAB 7.14 (R2013a).

0.02 0.1
g oo > 005
= g
‘g- o < o
< TR
= —0.01 > _o0.05
—0.02 —0.1
o 500 1000 —0.02
Time
0.04 0.2
@
g 0.02 g 0.1
%- —
o @
£ T ¥
Xz =
S —-0.02 S 0.1
—0.04 —0.2
o 500 1000 —-0.04 —0.02 o 0.02 0.04
Time phi—Amplitude
Fig. 1 The fundamental system ( X , ¢ ) without controllers
0.04 0.2
0.02 0.1
= o
= o 2 0
E =
- 1
1 4
x —Do2 —0.1
—0.04 —0.2
0 200 400 600 800 1000 —0.04
Time
0.2 0.5
0.1
[+ el
E
T o z 0
< ! 1
£ o1 =
—n2 —0.5
0 200 400 600 800 1000 —0.1 0 0.1 0.2 0.3
Time phi—Amplitude
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7.1. Frequency response curve with the detuning parameter (o)

Parameters

Effect

Figures

The external forcing f;

While the value of f, was

increasing, the amplitude of
the fundamental system and
the NSC increased.

Fig.(4)

The damping coefficients c,
The natural frequencies o,

The control signal gains y,

It is noticed that the increasing
in the values of ¢, ,®, andy,

led to the decreasing in the
magnitude of amplitude of the
fundamental system and the
NSC

Fig.(5,6,7)

The detuning parameter o,

In the case of increasing the
value ofo,, the amplitude of
the fundamental system and

the NSC are shifted to the
right.

Fig.(8)

The damping coefficients z,

When the wvalue of g

increased, the magnitude of
amplitude of the fundamental
system and the NSC were
decreasing.

Figs (9)
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7.2. Frequency response curve with the detuning parameter (0,)

Parameters Effect Figures
The external forcing f, While we were increasing the values of Fig. (10)
f, the amplitude of the fundamental
system and the NSC increased
The natural frequency @, In the case of increasing the values of @, Fig. (11,15)
) o andC, , the magnitude of amplitude of the
The damping coefficient C,
fundamental system and the NSC are
decreased.
The control signal gain}, When the values of y,and t, were Fig(12,16)
increasing, the amplitude of the NSC
The damping coefficient 4, | decreased
The detuning parameter o, | In the case of increasing the value of o, Fig(13)
the amplitude of the fundamental system
and the NSC are shifted to the right.
The Feedback signal gain | ¢ we increase the value of 4, , we notice Fig(14)

Ay

that the amplitude of the system decreased
while it increased in the NSC.
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8. Conclusions

The NSC controllers for suppressing of the oscillations of the non-linear spring pendulum
have been studied. We represent the problem by non-linear ordinary differential equation system
with four-degree-of-freedom. The averaging method is used for the mathematical analysis. for
the case of primary resonance in the presence of 1:2 internal resonances, the frequency response
equations have been derived. The system’s stability has been discussed by applying the
frequency response equations and the phase plane technique. It is worth to notice that the steady-
state amplitudes of the spring pendulum with NSC controllers were reduced to about 97.8% in
both directions (X , @ ) from its value without NSC controllers.

The influences of the diversified parameters of the system are surveyed numerically. This
survey makes the frequency response curve with the detuning parameter (o) is clear due to
different parameters. And it was noticed that:

e The amplitude of the system was increasing when the value of f,increased.

e While the values of c,,m,,y, and g were increasing, the values of the amplitude
of the system decreased.

Also, we studied the effectiveness of distinguished parameters on the frequency response curve
with the detuning parameter (o, ). The most obviousness features are:

e The amplitude of the system was direct proportional to the values of f,.
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e The amplitude of the system was inverse proportional to the values of the
following parameters C,,@,,7,,4, and y,

The effectiveness of the controller Ea (Ea= steady-state amplitudes of the system without

controller/steady-state amplitudes with controller) is about 45.3 for (X ) and 40.5 for ().
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