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Nonlinear Saturation Controllers for suppression the Vibration of Nonlinear 

Spring Pendulum 

 

Abstract 

In this work, we apply the Averaging Method to obtain the theoretical results. The 

Nonlinear Saturation Controller (NSC) is proposed to decrease the vacillations of the studied 

system. We investigate the stability of the system nigh the resonance condition applying the 

frequency response equations. Numerically, the effects of diversified controller’s parameters on 

the basic system behavior are studied. The emulation results are attained by utilizing Matlab and 

Maple programs.  
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1. Introduction 

One of the most important engineering problems is vibration control. Many methods have 

been developed for suppression the vibration using active or passive controllers. It is worth to be 

mentioned that several control techniques are used to regulate the reaction of a system such like: 

passive control, semi active control, active control, and hybrid control. In the work [1], Kamel et 

al presented the vacillation and stability of the nonlinear spring pendulum which was depicting 

the roll motion of a ship. They studied the influences of the linear controller on the fundamental 

system subject to multi parametric stimulation. Zhou and Chen [2] used two procedures of ship 

example under sinusoidal harmonic stimulation to investigate the response and constancy of the 

system. They got the equation of bifurcation response close to the collection resonance case in 

the existence of internal resonance of the studied system. 

 Lee et al. [3-5] studied the demeanor of the Spring Pendulum system subordinated to 

single-harmonic-excitation force. The concluded results elucidated that the system had an 

extremely complicated attitude which include Hopf bifurcations and jump phenomena. Not that 

only, they also discovered that the approximation with the 2nd - order gave more perfect 

harmonization with the fundamental system than the 1st – order did. Song et al [6] scrutinized the 

oscillation reaction of the spring mass damper system with an agitated parametrically pendulum 

suspended to the mass by using the harmonic balance method. Furthermore, they illustrated the 

unstable motion zone of the system which gotten from the 3rd - order approximation to become 

completely coordinated with which acquired from numeral computation. Eissa et al [7–11] 

applied diversified controllers on the simple and the spring pendulums which showing the sway 

motion of the ship then; they studied the effects of them. They subjected the two procedures 
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under single-harmonic- stimulation force then they studied the action of the transversal and linear 

toned absorbed controllers on the existing vibrations. Structural damping treatment is one of the 

exemplary passive vibrations control near that had been utilized in the practical structural 

engineering, but active damping had also enticed the interesting of considerable number of 

investigators [12–14]. 

 The researchers in the work [15], EL-Sayed and Bauomy subjected a nonlinear dynamic 

system to multi-parametric-stimulation forces then they investigated the effectiveness of time- 

delay controller on the existent vibrations. And they applied the averaging method to drive the 

system’s frequency response equations. Hamed and Amer [16] introduced a research for (NSC) 

controller which had been utilized to repress the vibrated amplitude of a structural dynamic 

model assuming non- linear composite beam. They had a great result by utilizing the saturation 

for frustrating the vacillation of their non-linear system. Warminski,J. et al. [17] introduced 

experimental and numerical surveys of four kinds of controllers utilized to non- linear beam 

models. Validation of distinct control designs is estimated utilizing numeral simulations in 

matlab-simulink program software. The mathematical results for non- linear dynamic system 

with NSC are acquired utilizing multiple scale method. The numerical and analytical 

interpretation for NSC submits the effect of most substantial parameters on the efficiency of the 

control of a non- linear established paradigm for an extensive domain of frequency of stimulation 

and peak scale of amplitude. The consequences for a solo beam system display which (PPF) and 

(NSC) controllers are the most influential for supposed provisions of the established paradigm. 

Saeed et al [18] used saturation-based controller with time delay in active extinction of 

nonlinear beam vibrations. They found that the time delays append to the response neoteric 

control keys through contraction the bandwidth of the controller’s frequency. They mathematical 

solutions were in a great agreement with the numerical ones. Saeed and El-Gohary [19] modified 

the model of saturation controllers which added to the system through quadratic nonlinearity 

coupling. They investigated the leverage of time delays on the system’s stability and controller’s 

behavior. Ashour and Nayfeh [20] had used a non- linear controller as a vacillation suppressor 

established on saturation incident influential for depression of torsional and flexural oscillations 

of the plate. The assessment of hesitancy of stimulation had been appended to the system to 

magnify the leverage of the saturation control. 

    Our main aim of the present paper is to apply control to diminish the vacillation of the 

system. This controller is NSC control. Averaging technique is used to get the mathematical 

analysis. Some testaments concerning the diversified parameters of the fundamental system are 

notified and the influences of the NSC controllers on the system's demeanor will be studied 

numerically. 
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2. Mathematical model 

The differential equations of motion characterizing the oscillations of the non- linear spring 

pendulum with NSC controllers could be expressed as the next form: 

2 2 3 2 2 2 2

1 1 1 2 2 1 1 1
2 1 1                  ( ) ( cos ) cos( )x c x x x x x f t u                      (1)  

2 2 2 2

2 2 2 2 2
1 2 2 1 1               ( ) ( ) ( )sin cos( )x c x x x f t v                                     (2) 

2

1 3 1
2    u u u ux                                                                                                               (3) 

2

2 4 2
2     v v v v                                                                                                               (4)  

Where , ( 1,2)j jc j   are the spring pendulum modes’ damping coefficients and the NSC 

controllers, respectively. 
1 2 3, ,    and 

4  are the spring pendulum modes’ natural frequencies 

of and NSC controllers, respectively. 
1  and 

2  are the non-linear parameters jf  is the external 

forcing amplitudes of the fundamental system 
j  is the excitation frequencies of the 

fundamental system 
1 2,   are the control signal gains and 

1 2,   are the feedback signal gains.                                                                                                 

3.  Mathematical analysis (Averaging method) 

     Applying the averaging method, the solutions for equations (1-4) from the first-order 

approximate are considering as: 

 1 1 1
  cosx a t                                                                                                                    (5a) 

 2 2 2
   cosa t                                                                                                                   (5b) 

 3 3 3
  cosu a t                                                                                                                    (5c) 

 4 4 4
  cosv a t                                                                                                                   (5d) 

Where n
a and 1 2 3 4 ,( , , , )

n
n  exist as constants. Differentiate equations (5a)- (5d) we get: 

 1 1 1 1
    sinx a t                                                                                                               (6a) 

 2 2 2 2
     sina t                                                                                                             (6b) 

 3 3 3 3
    sinu a t                                                                                                              (6c) 

 4 4 4 4
    sinv a t                                                                                                             (6d) 

For 0  ,  relatively small, claim n
a and 1 2 3 4 ,( , , , )

n
n  are dependent variables on time t in 

equations (1) - (4). Differentiating equations (5a) - (5d) once with respect to time t submits  
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     1 1 1 1 1 1 1 1 1 1 1
            cos sin sinx a t a t a t                                                    (7a) 

     2 2 2 2 2 2 2 2 2 2 2
             cos sin sina t a t a t                                                (7b) 

     3 3 3 3 3 3 3 3 3 3 3
            cos sin sinu a t a t a t                                                  (7c) 

     4 4 4 4 4 4 4 4 4 4 4
            cos sin sinv a t a t a t                                                 (7d) 

Comparing equations (6a) - (6d) and equations (7a) - (7d) we realize that:  

   1 1 1 1 1 1 1
0       cos sina t a t                                                                                     

   2 2 2 2 2 2 2
0       cos sina t a t                                                                                   

   3 3 3 3 3 3 3
0       cos sina t a t                                                                                    

   4 4 4 4 4 4 4
0       cos sina t a t                                                                                   

Differentiating equations (5a) - (5d) once respect to time t we find: 

     2

1 1 1 1 1 1 1 1 1 1 1 1 1
              sin cos cosx a t a t a t                                           (8a) 

     2

2 2 2 2 2 2 2 2 2 2 2 2 2
               sin cos cosa t a t a t                                      (8b) 

     2

3 3 3 3 3 3 3 3 3 3 3 3 3
              sin cos cosu a t a t a t                                        (8c) 

     2

4 4 4 4 4 4 4 4 4 4 4 4 4
              sin cos cosv a t a t a t                                      (8d) 

Substituting   , , , , , , , , , ,x x x u u u v v  and v  from equations (5a) – (8d) into equations (1) – (4) 

and taking into account that 

2 3

1
2 3

 
     cos , sin

! !
 we obtain the following: 

       2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2                   sin cos cos sina t a t a t c a t  

     2 2 2 3 3

1 1 1 1 1 1 1 1 2 1 1 1
             cos cos cosa t a t a t   

   
2

2 2 2 2

1 1 1 2 2 2 2 2
1 1 1

2


     

 
       

 
( cos ) sin ( )

!
a t a t      

 2 2 2

1 1 1 3 3 3
      cos( ) cosf t a t                                                                                       (9a) 
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2

2

1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2
1                  cos sin cos cosa t a t a t a t

          2 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2
2 2 1                 sin cos sin sinc a t a t a t a t

  
3

2

2 1 1 1
1

3


      cos ( )

!
a t                   

 2 2 2

2 2 2 4 4 4
      cos( ) cosf t a t                                                                                     (9b) 

     3 3 3 3 3 3 3 3 3 1 3 3 3 3
2              sin cos sina t a t a t                                                                                         

            
   1 3 1 3 3 1 1

      cos cosa a t t                                                                              (9c) 

     4 4 4 4 4 4 4 4 4 2 4 4 4 4
2              sin cos sina t a t a t                  

   2 4 2 4 4 2 2
      cos cosa a t t                                                                               (9d) 

Using equations (7a) – (7d) we get:  

     
2 2

1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1 1

2 2 3 3
2 4

 
       

 
       cos sin sin

a a
a c a c a t t t

     
2 3 3

1 1 2 1 2 1

1 1 1 1 1 1

1 1 1

2 2 4 4
4 4 8

  
     

  
     sin sin sin
a a a

t t t

     
2 2 2 2 2 2

2 2 2 2 2 2

1 1 1 2 1 2 1 2 1 2

1 1 1

2 2 2 2
2 4 4

  
         

  
         sin sin ( ) ( ) sin ( ) ( )
a a a

t t t

   
2 2 2 2

1 2 2 1 2 2

1 1 1 2 1 2

1 1

2 2 2 2 2 2
4 8

 
     

 
     sin sin ( ) ( )
a a a a

t t

   
2 2 2 2

1 2 2 2 2

1 2 1 2 1 1

1 1

2 2 2 2
8 4

 
     

 
     sin ( ) ( ) sin
a a a

t t

   
2 2 2 2

2 2 2 2

1 2 1 2 1 2 1 2

1 1

2 2 2 2
8 8

 
       

 
       sin ( ) ( ) sin ( ) ( )
a a

t t

     
22 2

1 3

1 1 1 1 1 1 1 1 1 1

1 1 1
2 2 2

 
       

  
       sin ( ) sin ( ) sin

a
f t f t t

   
2 2

1 3 1 3

1 3 1 3 1 3 1 3

1 1

2 2 2 2
4 4

 
       

 
       sin ( ) ( ) sin ( ) ( )
a a

t t                     (10a) 

     
2 2

1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1

2 2
2 4

 
       

 
        sin cos cos ( ) ( )

a a
a c a t t t

     
2 3 3 3

1 1 2 1 2 1 2 1

1 1 1 1 1 1

1 1 1 1

3
3 3 2 2 4 4

4 8 2 8

   
     

   
      cos ( ) ( ) cos cos
a a a a

t t t

   
2 2 2 2

2 2 2 2

1 1 1 2 1 2

1 1

2 2
2 4

 
     

 
     cos cos ( ) ( )
a a

t t
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2 2 2 2 2 2

2 2 1 2 2 1 2 2

1 2 1 2 2 2

1 1 1

2 2 2 2
4 4 4

  
     

  
      cos ( ) ( ) cos
a aa aa

t t

   
2 2 2 2

1 2 2 1 2 2

1 1 1 2 1 2

1 1

2 2 2 2 2 2
4 8

 
     

 
     cos cos ( ) ( )
a a a a

t t

   
2 2 2 2

1 2 2 2 2

1 2 1 2 1 1

1 1

2 2 2 2
8 4

 
     

 
     cos ( ) ( ) cos
a a a

t t

   
2 2 2 2

2 2 2 2

1 2 1 2 1 2 1 2

1 1

2 2 2 2 2 2 2 2
8 8

 
       

 
       cos ( ) ( ) cos ( ) ( )
a a

t t  

     
22 2

1 3

1 1 1 1 1 1 1 1 1 1

1 1 1
2 2 2

 
       

  
       cos ( ) cos ( ) cos

a
f t f t t     

   
2 2

1 3 1 3

1 3 1 3 1 3 1 3

1 1

2 2 2 2
4 4

 
       

 
       cos ( ) ( ) cos ( ) ( )
a a

t t                   (10b) 

     2 2

2 2 2 2 2 2 2 2 2 2 2 1 1 1
2 2 2 2 2

2


        


      sin cos cos
a

a t c a c a t c a a t

   2 2 1 1 2 1 2 2 2 1 1 2 1 2
2 2 2 2                cos ( ) ( ) cos ( ) ( )c a a t c a a t

   2 1 1

2 1 1 1 1 1 2 1 2
2 2

2


           sin sin ( ) ( )

a a
a a t t

   
2

2 1 1 1 2 1

1 2 1 2 1 1
2 2 2 2

2 2

 
          sin ( ) ( ) sin

a a a a
t t

   
2 2

1 2 1 1 2 1

1 2 1 2 1 2 1 2
2 2 2 2 2 2 2 2

4 4

 
              sin ( ) ( ) sin ( ) ( )

a a a a
t t

     
3 3

2 2 2 2 2 2

2 2 2 2 2 2
2 2 2 2 4 4

2 24 48

  
          sin sin sin

a a a
t t t

   1 2 2 1 2 2

1 2 1 2 1 2 1 2
2 2 2 2

4 4

 
              sin ( ) ( ) sin ( ) ( ) ]

aa aa
t t

   
3 3

1 2 2 1 2 2

1 2 1 2 1 2 1 2
2 2 4 4

48 96

 
              sin ( ) ( ) sin ( ) ( )

a a a a
t t

     
3 3 3

1 2 2 1 2 2 1 2 2

1 1 1 2 1 2 1 1
2 2

96 48 96

  
              sin sin ( ) ( ) sin

a a a a a a
t t t

   
3 2

1 2 2

1 2 1 2 2 2 2

2

4 4
96 2

 
      


      sin ( ) ( ) sin ( )
a a

t f t

   
22

1

2 2 2 1 2 2 1 2

2 2

2

2 4


       

 
       sin ( ) sin ( ) ( )

a
f t f t

   
2 2

1 1

1 2 2 1 2 1 2 2 1 2

2 2

2 2

4 4

 
         

 
         sin ( ) ( ) sin ( ) ( )
a a

f t f t

   
2 2

1 2 4

1 2 2 1 2 2 2

2 2

2

4 2

 
      

 
      sin ( ) ( ) sin
a a

f t t
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2 2

2 4 2 4

2 4 2 4 2 4 2 4

2 2

2 2 2 2
4 4

 
       

 
       sin ( ) ( ) sin ( ) ( )
a a

t t

   
2 2

2 1 4 2 1 4

1 2 1 2 1 2 1 2

2 2
2 2

 
       

 
       sin ( ) ( sin ( ) (
a a a a

t t

   
2 2

2 1 4 2 1 4

1 2 4 1 2 4 1 2 4 1 2 4

2 2

2 2 2 2
4 4

 
           

 
           sin ( ) ( sin ( ) (
a a a a

t t  

 
2

2 1 4

1 2 4 1 2 4

2

2 2
4


     


     sin ( ) (
a a

t

 
2

2 1 4

1 2 4 1 2 4

2

2 2
4


     


     sin ( ) ( ]
a a

t                                                                    (11a) 

   2 2 2 2

2 2 2 2 2 2 2 2
2 2 2 2

2 2

 
     


    cos sin
a a

a t c a t

   1 2 2 2 1 2 1 1 2 2 2 1 2 1
2 2 2 2                sin ( ) ( ) sin ( ) ( )a c a t a c a t

   2 1 1 2 1 1

1 2 1 2 1 2 1 2
2 2 2 2

2 2

 
              cos ( ) ( ) cos ( ) ( )

a a a a
t t

   
2 2

2 1 1 2 1 1

1 2 1 2 1 2 1 2
2 2 2 2 2 2 2 2

4 4

 
              cos ( ) ( ) cos ( ) ( )

a a a a
t t

     
3 3 3

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2

3
2 2 2 2 4 4

2 2 48 12 48

    
            cos cos cos

a a a a a
t t t

   1 2 2 1 2 2

1 1 1 2 1 2
2 2

2 4

 
          cos cos ( ) (

aa aa
t t

   
3

1 2 2 1 2 2

1 2 1 2 1 1

2
2 2

4 48

 
          cos ( ) ( cos

aa aa
t t

   
3 3

1 2 2 1 2 2

1 2 1 2 1 2 1 2
2 2 2 2

24 24

 
              cos ( ) ( ) cos ( ) ( ) ]

aa aa
t t

   
3 3

1 2 2 1 2 2

1 2 1 2 1 2 1 2
4 4 4 4

96 96

 
              cos ( ) ( ) cos ( ) ( )

aa aa
t t

   
2 2

2 2 2 2 2 2 2 2

2 2
2 2

 
     

 
     cos ( ) cos ( )f t f t

   
2 2

1 1

2 1 2 2 1 2 2 1 2 2 1 2

2 2

2 2

4 4

 
         

 
         cos ( ) ( cos ( ) (
a a

f t f t

   
2 2

1 1

2 1 2 2 1 2 2 1 2 2 1 2

2 2

2 2

4 4

 
         

 
         cos ( ) ( cos ( ) ( ]
a a

f t f t

   
2 2

2 4 2 4

2 2 2 4 2 4

2 2

2 2
2 4

 
     

 
     cos cos ( ) ( )
a a

t t                                                                             
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2 2

2 4 2 1 4

2 4 2 4 1 2 1 2

2 2

2 2
4 2

 
       

 
       cos ( ) ( ) cos ( ) ( )
a a a

t t

   

 

 

2 2

2 1 4 2 1 4

1 2 1 2 1 2 4 1 2 4

2 2

2

2 1 4

1 2 4 1 2 4

2

2

2 1 4

1 2 4 1 2 4

2

2 2
2 4

2 2
4

2 2
4

 
         

 


     




     



         

     

     

cos ( ) ( ) cos ( ( )) ( )

cos ( ( )) ( )

cos ( ( )) ( )

a a a a
t t

a a
t

a a
t

                                              

 

 
2

2 1 4

1 2 4 1 2 4

2

2 2
4


     


     cos ( ( )) ( )
a a

t

                                                              

(11b)  

   1 3 1

3 1 3 1 3 3 3 3 1 3 1

3

2 2 2 2
4


       


       cos sin ( ) ( )

a a
a a a t t                 

 1 3 1

3 1 3 1

3

2 2
4


   


   sin ( ) ( )
a a

t                                                                                (12a)                                                                                                                                                                                                                                                   

   1 3 1

3 3 1 3 3 3 1 1

3

2 2
2


     


    sin cos

a a
a a t t              

   1 3 1 1 3 1

1 3 1 3 1 3 1 3

3 3

2 2 2 2
4 4

 
       

 
       cos ( ) ( cos ( ) (
a a a a

t t                   (12b)                                                                                                                                                        

   2 4 2

4 2 4 2 4 4 4 4 2 4 2

4

2 2 2 2
4


       


       cos sin ( ) ( )

a a
a a a t t             

 2 4 2

4 2 4 2

4

2 2
4


   


   sin ( ) ( ) ]
a a

t                                                                            (13a)

   2 4 2

4 4 1 4 4 4 2 2

4

2 2
2


     


    sin cos

a a
a a t t         

   2 4 2 2 4 2

2 4 2 4 2 4 2 4

4 4

2 2 2 2
2 2

 
       

 
       [cos ( ) ( ) cos ( ) ( ) ]
a a a a

t t           (13b)  

We can get the averaging equations conforming to simultaneous primary and internal 1:2 

resonance by presenting the detuning parameters 
1 2 3 4

   ( , , , )  according to

1 1 1 2 2 2 3 1 3 4 2 4

1 1

2 2
                  , , ,

 

, keeping only the constant terms 

and slowly changing parts in equations (10a) – (13b). So, we’ll have 
2 2

1 3

1 1 1 3 1 1

1 1
2 4


  

 


  sin sin( )

a
a f c a

 

                                                                                 (14a)

 
2 23 2 2

1 32 1 1 2 2

1 1 1 1 3

1 1 1 1

3

8 4 2 4

  
  

   
   cos cos( )

aa a a
a f                                                            (14b)
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2 2

2 4

2 2 2 4 2 2

2 2
2 4


  

 
  sin sin( )

a
a f c a                                                                                (15a)

 
23 2

2 2 2 4

2 2 2 2 4

2 2

3

48 2 4

 
  

 


  cos cos( )

a a
a f                                                                        (15b)

 

 1 3 1

3 1 3 3

1 3
2 4


 

 
  


sin

a a
a a

 

                                                                                            (16a)

 

 1 3 1

3 3 3

1 3
2 4


 

 
 


cos

a a
a                                                                                                     (16b)

 

 2 4 2

4 2 4 4

2 4
2 4


 

 
  


sin

a a
a a                                                                                             (17a)

 

 2 4 2

4 4 4

2 4
2 4


 

 
 


cos

a a
a                                                                                                    (17b) 

Where 
1 1 1 2 2 2 3 1 3 1 3 4 2 4 1 4

2 2 2 2                      , , ,T T T T  

 4.  Stability Analysis 

 

The stability for this system in equations (1)–(4) is checked at our selective case of resonance 

coincides to the invariant points of equations (14a) – (17b), that will be gotten by putting

0 
n n
a . 

That is, 
2 2

1 3

1 1 3 1 1

1 1

0
2 4


  

 


  sin sin( )

a
f c a

 

                                                                           (18a)

 
2 23 2 2

1 32 1 1 2 2

1 1 1 1 3

1 1 1 1

3

8 4 2 4

  
  

   

 
    
 

cos cos( )
aa a a

a f                                                 (18b)

 
2 2

2 4

2 2 4 2 2

2 2

0
2 4


  

 
  sin sin( )

a
f c a                                                                           (19a)

 
23 2

2 2 2 4

2 2 2 2 4

2 2

3

48 2 4

 
  

 


  cos cos( )

a a
a f                                                                 (19b)

 

 1 3 1

1 3 3

1 3

0
2 4


 

 
  


sin

a a
a

 

                                                                                      (20a)

 

 1 3 1

3 3 3 1 3

1 3

1

2 2 4


  

 
 


cos

a a
a a                                                                                   (20b)

 

 2 4 2

2 4 4

2 4

0
2 4


 

 
  


sin

a a
a                                                                                       (21a)

 

 2 4 2

4 4 4 2 4

2 4

1

2 2 4


  

 
 


cos

a a
a a                                                                                  (21b) 
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From Eqs (20a) to (21b) we get:  

  1 3

3

1 1

4



sin
a

 

                                                                                                               (22a)

 

 
3 3 1

3

1 1

1
4

2
  




 
 

 cos
a

                                                                                                (22b)

 

  2 4

4

2 2

4 



sin
a

                                                                                                               (23a)

 

 
4 4 2

4

2 2

1
4

2
  




 
 

 cos
a

                                                                                               (23b) 

For the practical case, 0
n
a , substituting by equations (22a) to (23b) and squaring equations 

(18a), (18b), then taking the squared results in a computation process, likewise equations (19a), 

(19b), equations (20a), (20b) and equations (21a), (21b) deduce the following frequency 

response equations: 

4

1

1

22 2 4 2 23 2 2

32 2 2 2 1 1 1 32 1 1 2 2

1 1 1 1 1 32 2

1 1 1

3 2

4 16 8 2

    
  

   

 
      

 
sin( )

a c a aa a a
f c a a

 
2 3 2 2

1 3 2 1 1 2 2

1 1 3

1 1

3 2

2 8

  
 

 

 
   

 
cos( )

a a a a
a                                                             (24a) 

2

2 2 2

2 2

22 2 4 3 2 24
42 2 2 2 2 2 2 2 2 4

2 2 42 2

2

3

4 16 48 2

    
  

  

 
      

 
sin( )

a a c a a
f c a a    

     
2 3

2 4 2 2

2 2 4

2

3

2 48

 
 



 
   

 
cos( )

a a
a                                                                             (24b) 

2

2 2 21 1

1 3 1

1 3

1

2 4 2


   

 

 
   

 
( )

a

 

                                                                                      (24c)

 
2

2 2 22 2

2 4 2

2 4

1

2 4 2


   

 

 
   

 
( )

a

 

                                                                                     (24d) 

 

5.  Nonlinear solution 

 

The stability for this system was specified by examining the eigenvalues of the right-hand 

sides of equations (14a) – (17b) which represent as the Jacobian matrix. The equipoise solution is 

approximately stable as long as the corresponding eigenvalue’s real part is negative. If not, the 

corresponding result is unstable. To deduce the stability criteria, we just need to check the 

demeanor of insignificant perturbations from the stabilized-case solutions 
0n
a and

0

n .  

So, we suppose the following: 

0 1 0 1
     ,

n n n n n n
a a a , 
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1 1
  ,

n n n n
a a , 

                         
                                                                                (25)

 
Where 

0 0
,

n n
a   are the solutions of equations (14a) – (17b) and  

1 1
,

n n
a   are known as 

perturbations which are presumed to be very small compared with
0 0
,

n n
a . Replacing equation 

(25) into equations (14a) – (17b) and conserving the linear expressions in 
1 1
,

n n
a  only. We 

obtain; 

     
2 2

1 30 1 30

11 1 11 1 10 11 30 31 30 31

1 1 1

2

2 4 4

 
     

  
    

( )
cos cos sin

a a
a c a f a                           (26a)

22 2

2 10 20 2 201

11 11 21 1 10 11

10 1 10 1 1 10 1

9

8 4 2 2
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                          (29b) 

Now let us put the eigenvalues of the above system of equations in the following form: 

               8 7 6 5 4 3 2

1 2 3 4 5 6 7 8 0S S S S S S S S                                          (30) 

If and only if the real part of the eigenvalue, which obtained from Eigen equation (30), is 

negative, then the solution is stable; otherwise, the solution is going to be unstable. The 

necessary and sufficient conditions for all the roots of Eq. (30) will be calculated corresponding 

to the Routh-Hurwitz criterion. 

1

3 2 1

5 4 3 2 1

7 6 5 4 3 2 1

8 7 6 5 4 3 2

8 7 6 5 4

8 7 6

8

1 0 0 0 0 0 0

1 0 0 0 0

1 0 0

1

0

0 0 0

0 0 0 0 0

0 0 0 0 0 0 0

S

S S S

S S S S S

S S S S S S S
D

S S S S S S S

S S S S S

S S S

S


                                                  (31) 
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6.  Numerical Solutions 

The basic system with NSC controllers which expressed in the differential equations form 

(1-4) was solved by applying Rung–Kutta 4th order method numerically. The emulation results 

are attained by utilizing MATLAB 7.14 (R2013a).

 

 

Fig. 1 The fundamental system ( x  ,  ) without controllers 

 

Fig.2 Response of the fundamental system with NSC controllers  
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Fig .3 Frequency response curves of: (a) the fundamental system (b) the NSC  

7.1. Frequency response curve with the detuning parameter ( 1 ) 

Parameters Effect Figures 

The external forcing 1f  While the value of 1f was 

increasing, the amplitude of 

the fundamental system and 

the NSC increased.  

Fig.(4) 

The damping coefficients 1c  

The natural frequencies 1  

The control signal gains 1  

It is noticed that the increasing 

in the values of 1 1,c   and 1  

led to the decreasing in the 

magnitude of amplitude of the 

fundamental system and the 

NSC  

Fig.(5,6,7) 

The detuning parameter 3  
 In the case of increasing the 

value of 3 , the amplitude of 

the fundamental system and 

the NSC are shifted to the 

right. 

Fig.(8) 

The damping coefficients 1  When the value of 1  

increased, the magnitude of 

amplitude of the fundamental 

system and the NSC were 

decreasing. 

Figs  (9) 
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Fig.4 Influence of 
1f (the external force) on the fundamental system and the NSC 

 

Fig.5 Influence of
1c  (the damping coefficient) on the fundamental system and the NSC 
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Fig.6 Influence of
1  (the natural frequency) on the fundamental system and the NSC 

 

Fig.7 Influence of 1  (the control signal gain) on the fundamental system and the NSC 

  

Fig.8 Influence of 3 (the detuning parameter) on the fundamental system and the NSC 
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 Fig.9 Influence of 1  (the damping coefficient) on the fundamental system and the NSC
 
 

7.2. Frequency response curve with the detuning parameter ( 2 ) 

Parameters Effect Figures 

The external forcing 2f  While we were increasing the values of  

2f  the amplitude of the fundamental 

system and the NSC increased 

Fig. (10) 

The natural frequency 2  

The damping coefficient 2c   

In the case of increasing the values of 2  

and 2c , the magnitude of amplitude of the 

fundamental system and the NSC are 

decreased.  

Fig. (11,15) 

The control signal gain 2  

The damping coefficient 2  

When the values of 2 and
 2 were 

increasing, the amplitude of the NSC 

decreased 

Fig(12,16) 

The detuning parameter 4  In the case of increasing the value of 4

the amplitude of the fundamental system 

and the NSC are shifted to the right. 

Fig(13) 

The Feedback signal gain 

2  

If we increase the value of 2  , we notice 

that the amplitude of the system decreased 

while it increased in the NSC. 

Fig(14) 
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Fig.10 Influence of
2f  (the external excitation force) on the fundamental system and the NSC 

 

Fig.11 Influence of 2  (the natural frequency) on the fundamental system and the NSC  
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Fig.12 Influence of 

2 (the control signal gain) on the fundamental system and the NSC 

 

NSCsystem and the  fundamentalthe on  )the detuning parameter(
4of  InfluenceFig.13  
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Fig.14 Influence of 
2  (the feedback signal gain) on the fundamental system and the NSC  

 

Fig.15 Influence of 
2c (the damping coefficient) on the fundamental system and the NSC  
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Fig.16 Influence of 
2 (the damping coefficient) on the fundamental system and the NSC 

8.  Conclusions 

The NSC controllers for suppressing of the oscillations of the non-linear spring pendulum 

have been studied. We represent the problem by non-linear ordinary differential equation system 

with four-degree-of-freedom. The averaging method is used for the mathematical analysis. for 

the case of primary resonance in the presence of 1:2 internal resonances, the frequency response 

equations have been derived. The system’s stability has been discussed by applying the 

frequency response equations and the phase plane technique. It is worth to notice that the steady-

state amplitudes of the spring pendulum with NSC controllers were reduced to about 97.8% in 

both directions ( x  ,  ) from its value without NSC controllers. 

The influences of the diversified parameters of the system are surveyed numerically. This 

survey makes the frequency response curve with the detuning parameter ( 1 ) is clear due to 

different parameters. And it was noticed that: 

 The amplitude of the system was increasing when the value of 1f increased.  

 While the values of 1 1 1 1, ,c and   were increasing, the values of the amplitude 

of the system decreased.  

Also, we studied the effectiveness of distinguished parameters on the frequency response curve 

with the detuning parameter ( 2 ). The most obviousness features are:  

 The amplitude of the system was direct proportional to the values of 2f . 
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 The amplitude of the system was inverse proportional to the values of the 

following parameters 2 2 2 2 2, , ,c and     

 The effectiveness of the controller Ea (Ea= steady-state amplitudes of the system without 

controller/steady-state amplitudes with controller) is about 45.3 for ( x ) and 40.5 for ( ). 
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