
1

Study for Uniform Convergence and Power1

Series2

3

Abstract: It has been preliminary researched that function series and power series in4
mathematical analysis course. There are some basic properties and the basic conclusion in the5
courses. This article is based on the basic theory and properties, for them to make further6
in-depth study. First of all, as a necessary tool, it has introduced the two properties of definite7
integral, it is proved that the continuous function sequence limit problem under the definite8
integral, then it is defined the sequence of functions on subsets of real number set uniformly9
Cauchy's concept, basis on them several theorem is proved, it is obtained that results of a10
series of important properties of function terms. Using of these properties, power series of11
several important theorems are proved, which is about the important properties of the power12
series again.13

Key words: mathematical analysis course; function series; power series; uniform14
convergence15

1. Introduction16

This article assumes that the reader is familiar with the basic theory of mathematical17
analysis course[1] and its basic results[1-7], basic on these theories and results, The properties18
of function series[8-11] is been further studied, it is obtained that the important properties of19
uniform convergence[12-15] and power series[16-18].20

Our next theorem shows one can interchange integrals and uniform limits[1-7]. The21
adjective “uniform” here is important. We don't prove it, but admits it directly because in the22
mathematical analysis course[1] exist its proof.23

Discussion 1. To prove Theorem 1 below we merely use some basic facts about24
integration which should be familiar [or believable] even if your calculus is rusty. Specifically,25
we use:26

(a)If g and h are integrable on [a, b] and if ( ) ( )g x h x for all x[a, b], then27

( ) ( )
b b

a a
g x dx h x dx  .28

We also use the following corollary:29
(b)If g is integrable on [a, b], then30

( ) ( )
b b

a a
g x dx g x dx 31

Continuous functions on closed intervals are integrable, as noted mathematical analysis32
course[1].33

2. The proof of Theorem 134

Now, we begin to prove Theorem 1.35
Theorem 1. Let (fn) be a sequence of continuous functions on [a, b], and suppose36
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nf f uniformly on [a, b]. Then37

lim ( ) ( )
b b

na an
f x dx f x dx


  (1)38

Proof. By Theorem[1-7] f is continuous, so the functions are all integrable on [a, b]. Let39

0  . Since nf f uniformly on [a, b], there exists a number N such that40

( ) ( )nf x f x
b a


 


for all x[a, b] and n N .41

Consequently n N implies42

( ) ( ) [ ( ) ( )]
b b b

n na a a
f x dx f x dx f x dx f x dx    43

| ( ) ( ) |
b b

na a
f x f x dx dx

b a
    
  .44

The first  follows from Discussion 1(b) applied to g= nf f and the second  follow45

from Discussion 1(a) applied to g= | |nf f and h
b a





; h happens to be a constant46

function, but this does no harm.47
The last paragraph shows that given 0  , there exists N such that48

( ) ( )
b b

na a
f x dx f x dx    for n N .49

Therefore (1) holds.50
Recall one of the advantages of the notion of Cauchy sequence, A sequence (sn) of real51

numbers can be shown to converge without knowing its limit by simply verifying that it is a52
Cauchy sequence. Clearly a similar result for sequences of functions would be valuable, since53
it is likely that we will not know the limit function in advance. What we need is the idea of54
“uniformly Cauchy.”55

3. A definition and its properties about the sequence of functions56

Definition 1. A sequence ( nf ) of functions defined on a set S R is uniformly57

Cauchy on S if58
for each 0  there exists a unmber N such that59

( ) ( )n mf x f x   for all x S and all ,m n N .          (1)60

Compare this definition with that of a Cauchy sequence of real numbers and that of61
uniform convergence. It is an easy exercise to show uniformly convergent sequences of62
functions are uniformly Cauchy. The interesting and useful result is the converse, just as in63
the case of sequences of real numbers.64

Theorem 2. Let ( nf ) be a sequence of functions and uniformly Cauchy on a set S R .65

Then there exists a function f on S such that nf f uniformly on S.66
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Proof. First we have to “find” f. We begin by showing67

for each 0x S the sequence 0( ( ))nf x is a68

Cauchy sequence of real numbers..          (1)69

For each 0  , there exists N such that ( ) ( )n mf x f x   for x S and ,m n N .70

In particular, we have71

0 0( ) ( )n mf x f x   for ,m n N .72

This shows 0( ( ))nf x is a Cauchy sequence, so(1) holds.73

Now for each x in S, assertion (1) implies lim ( )nn
f x


exists; this is proved in74

Theorem[1-7] which in the end depends on the Completeness Axiom. Hence we define75

f(x) lim ( )nn
f x


 . This defines a function f on S such that nf f uniformly on S.76

Now that we have “found” f, we need to prove nf f uniformly on S. Let 0  .77

There is a number N such that78

0 0( ) ( )
2n mf x f x 

  for all x S and all ,m n N .          (2)79

Consider m N and x S . Assertion (2) tells us that ( )nf x lies in the open interval80

( ) , ( )
2 2m mf x f x    

 
for all n N . Therefore, as a easy fact, the ( ) lim ( )nn

f x f x


 lies81

in the closed interval ( ) , ( )
2 2m mf x f x     

. In other words,82

( ) ( )
2mf x f x 

  for all x S and all m N .83

Then of course84

( ) ( )mf x f x   for all x S and all m N .85

This shows ( )mf x f uniformly on S, as desired.86

Theorem 2 is especially useful for “series of functions.” Let us recall what
1
k

k
a




87

signifies when the ka ’s are real numbers. This signifies
1

lim
n

kn k
a



 provided this limit exists88

[as a real number, +∞ or -∞]. Otherwise the symbol
1
k

k
a




 has no meaning. Thus the infinite89
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series is the limit of the sequence of partial sums
1

n

k
k
a


 . Similar remarks apply to series of90

functions. A series of functions is an expression
0
k

k
g




 or

0
( )k

k
g x




 which makes sense91

provided the sequence of partial sums converges, or diverges to -∞ or +∞ pointwise. If the92

sequence of partial sums
0
k

k
g




 converges uniformly on a set S to

0
k

k
g




 , then we say the93

series is uniformly convergent on S.94

4. Application and examples95

Example 1. Any power series is a series of functions, since
0

k
k

k
a x




 has the form96

0
k

k
g




 where ( ) k

k kg x a x for all x.97

Example 2.
0 1

k

kk
k

x g
x



 
 is a series of functions, but is not a power series, at least not98

in its present form. This is a series
0
k

k
g




 where 0

1( )
2

g x  for all x, 1( )
1
xg x
x




for all x,99

2

2 2( )
1
xg x
x




for all x, etc.100

Example 3. Let g be the function drawn in Fig. 1,101

102

Fig. 1103

and let ( ) (4 )n
ng x g x for all x R . Then

0

3 ( )
4

n

n
n

g x




 
 
 
 is a series of functions. The104

limit function f is continuous on R, but has the amazing property that it is not differentiable at105
any point! The proof of the non-differentiability of f is somewhat delicate[1-7].106

Theorems for sequences of functions translate easily into theorems for series of107
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functions. Here is an example.108

Theorem 3. Consider a series
0
k

k
g




 of functions on a set S R . Suppose each kg109

is continuous on S and the series converges uniformly on S. Then the series
0
k

k
g




110

represents a continuous function on S.111

Proof. Each partial sum
1

n

n k
k

f g


 is continuous and the sequence ( nf ) converges112

uniformly on S. Hence the limit function is continuous by Theorem[1-7].113

Recall the Cauchy criterion for series
1
k

k
a




 given in paper[1-7] :114

For each 0  there exists a number N such that115

n m N  implies
n

k
k m
a 



 .          (*)116

The analogue for series of functions is also useful. The sequence of partial sums of a117

series
0
k

k
g




 of functions is uniformly Cauchy on a set S if and only if the series satisfies the118

Cauchy criterion [uniformly on S]:119
For each 0  there exists a number N such that120

n m N  implies ( )
n

k
k m
g x 



 . for all x S (**)121

Theorem 4. If a series
0
k

k
g




 of functions satisfies the Cauchy criterion uniformly on a122

set S, then the series converges uniformly on S by Theorem 2.123
Here is a useful corollary.124
Theorem 5 (M-test). Let (Mk) be a sequence of nonnegative real numbers where125

kM   . If ( )k kg x M for all x in a set S, then kg converges uniformly on S.126

Proof. To verify the Cauchy criterion on S, let 0  . Since the series kM127

converges, it satisfies the Cauchy criterion in Definition[1-7]. So there exists a number N such128
that129

n m N  implies
n

k
k m
M 



 .130

Hence if n m N  and x is in S, then131
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( ) | ( ) |
n n n

k k k
k m k m k m
g x g x M 

  

    132

Thus the series
0
k

k
g




 satisfies the Cauchy criterion uniformly on S, and Theorem 4 shows it133

converges uniformly on S.134

Example 4. Show
1
2 n n

n
x





 represents a continuous function f on (-2, 2), but the135

convergence is not uniform.136
Solution. This is a power series with radius of convergence 2. Clearly the series does not137

converge at x=2 or at x=-2, so its interval of convergence is (-2, 2).138
Consider 0 2a  and note139

1 1
2

2

n
n n

n n

aa
 



 

   
 

 140

converges. Since141

2 2
2

n
n n n n ax a      

 
for [ , ]x a a  ,142

the Theorem 5 (M-test) shows the series converges uniformly to a function on [-a, a]. By143
Theorem 3 the limit function f is continuous at each point of the set [-a, a]. Since a can be144
any number less than 2, we conclude f represents a continuous function on (-2, 2).145

Since we have sup{| 2 | | ( 2, 2)} 1n nx x    for each n, the convergence of the series146

cannot be uniform on (-2, 2) in view of the next example.147

Example 5. Show that if the series ng converges uniformly on a set S, then148

 lim sup | ( ) | 0nn
g x x S


  .            (1)149

Solution. Let 0  . Since the series ng satisfies the Cauchy criterion, there exists150

N such that151

n m N  implies ( )
n

k
k m
g x 



 for all x S .152

In particular,153

n N implies | ( ) |ng x  for all x S .154

Therefore155

n N implies  sup | ( ) |ng x x S   .156

This establishes (1).157
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5. Properties of power series158

Now we begin to study the properties of the power series.159

Theorem 6. Let
0

n
n

n
a x




 be a power series with radius of convergence 0R 160

[possibly R   ]. If 10 R R  , then the power series converges uniformly on 1 1[ , ]R R161

to a continuous function.162

Proof. Consider 10 R R  . A glance at Theorem[1-7] shows the series
0

n
n

n
a x




 and163

0
| | n
n

n
a x




 have the same radius of convergence, since  and R are defined in terms of164

| |na . Since 1| |R R , we have 1
0
| | n
n

n
a R





  . Clearly we have 1| | | |n n
n na x a R for all x in165

1 1[ , ]R R , so the series
0

n
n

n
a x




 converges uniformly on 1 1[ , ]R R by the Theorem 5166

(M-test). The limit function is continuous at each point of 1 1[ , ]R R by Theorem 3.167

Corollary 7. The power series n
na x converges to a continuous function on the open168

interval 1 1( , )R R .169

Proof. If 0 ( , )x R R  then 0x  1 1( , )R R for some 1R R . The theorem shows the170

limit of the series is continuous at 0x .171

We emphasize that a power series need not converge uniformly on its interval of172
convergence though it might.173

We are going to differentiate and integrate power series term-by-term, so clearly it174
would be useful to know where the new series converge. The next lemma tells us.175

Lemma 8. If the power series
0

n
n

n
a x




 has radius of convergence R, then the power176

series177

1

0

n
n

n
na x





 and 1

0 1
nn

n

a x
n




 178

also have radius of convergence R.179
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Proof. First observe the series 1

0

n
n

n
na x





 and

0

n
n

n
na x




 have the same radius of180

convergence: since the second series is x times the first series, they converge for exactly the181

same values of x. Likewise 1

0 1
nn

n

a x
n




  and
0 1

nn

n

a x
n



  have the same radius of182

convergence.183

Next recall R 1

 where 1/limsup | | nna  . For the series

0

n
n

n
na x




 , we consider184

1/ 1/ 1/limsup( | |) limsup | |n n n
n nn a n a .185

By Theorem[1-7], we have 1/lim 1nn  so 1/limsup( | |) n
nn a  by Theorem[1-7]. Hence the186

series
0

n
n

n
na x




 has radius of convergence R.187

For the series
0 1

nn

n

a x
n



  , we consider
1/| |limsup

1

n
na
n
 
  

. It is easy to show188

1/lim( 1) 1nn   ; therefore
1/1lim 1

1

n

n
    

. Hence by Theorem[1-7] we have189

1/| |limsup
1

n
na
n

    
, so the series

0 1
nn

n

a x
n



  has radius of convergence R.190

Theorem 9. Suppose
0

( ) n
n

n
f x a x





 has radius of convergence 0R  . Then191

1

0
0

( )
1

x nn

n

af t dt x
n







 for | |x R .             (1)192

193
Proof. We fix x and assume 0x  ; the case 0x  is similar. On the interval [x, 0],194

the sequence of partial sums
0

n
k

k
k
a t


 converges uniformly to f(t) by Theorem 6.195

Consequently, by Theorem 1 we have196

0 0

0
( ) lim

n
k

kx xn k
f t dt a t dt




   
 
 197

1 10

0 0

0lim lim
1

k kn n
k

k kxn nk k

xa t dt a
k

 

 
 

 
    
 198
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1

0 1
kk

k

a x
k






 
 (2)199

The second equality is valid because we can interchange integrals and finite sums; this is a200

basic property of integrals[1-7]. Since
0

0
( ) ( )

x

x
f t dt f t dt   . Eq. (2) implies Eq.(1).201

The theorem just proved shows that a power series can be integrated term-by-term inside its202
interval of convergence. Term-by-term differentiation is also legal.203

Theorem 10. Let
0

( ) n
n

n
f x a x





 have radius of convergence 0R  . Then f is204

differentiable on ( , )R R and205

1

1
'( ) n

n
n

f x na x






 for | |x R .          (1)206

The proof of Theorem 9 was a straightforward application of Theorem 1 but the direct207
analogue of Theorem 1 for derivatives is not true[1-7]. So we give a devious indirect proof of208
the theorem.209

Proof. We begin with series 1

1
( ) n

n
n

g x na x






 and observe this series converges for210

| |x R by Lemma 8. Theorem 9 shows that we can integrate g term-by-term:211

00
1

( ) ( )
x n

n
n

g t dt a x f x a




   for | |x R .212

Thus if 10 R R  , then213

1

( ) ( )
x

R
f x g t dt k


  for 1| |x R ,214

where k is a constant; in fact,215

1
0 ( )

x

R
k a g t dt


   .216

Since g is continuous, one of the versions of the Fundamental Theorem of Calculus[1-7] shows217

f is differentiable and '( ) ( )f x g x . Thus218

'( ) ( )f x g x 1

1

n
n

n
na x






 for | |x R .219

Example 6. Recall220

0

1
1

n

n
x

x






 for | | 1x  .          (1)221
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Differentiating term-by-term, we obtain222

1
2

1

1
(1 )

n

n
nx

x







 for | | 1x  .223

Integrating (1) term-by-term, we get224

1

0
0

1 1 log (1 )
1 1

xn
e

n
x dt x

n t






   
  225

1

1log (1 ) n
e

n
x x

n





   for | | 1x  .          (2)226

Replacing x by-x, we find227

2 3 4

log (1 )
2 3 4e
x x xx x      for | | 1x  .          (3)228

It turns out that this equality is also valid for x=1[see Example 7], so we have the interesting229
identity230

1 1 1 1 1log 2 1
2 3 4 5 6e        (4)231

In Eq. (2) set 1mx
m


 . Then232

1

1 1 1 1log 1 log log
n

e e e
n

m m m
n m m m





                
     

233

Hence we have234

1 1

1 1 1 log
n

e
n n

m m
n n m

 

 

   
 

  for all m.235

Here is yet another proof that
1

1
n n





  .236

To establish (4) we need a relatively difficult theorem about convergence of a power237
series at the endpoints of its interval of convergence.238

Let
0

( ) n
n

n
f x a x





 be a power series with finite positive radius of convergence R. If239

the series converges at x=R, then f is continuous at x=R. If the series converges at x=R, then f240
is continuous at x=-R.241

Example 7. As promised, we return to (3) in Example 1:242

2 3 4

log (1 )
2 3 4e
x x xx x      for | | 1x  .243

For x=1 the series converges by the Alternating Series Theorem[1-7]. Thus the series represents244

a function f on (-1, 1] that is continuous at x=1 by Abel’s theorem. The function log (1 )e x245
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is also continuous at x=1 so the functions agree at x=1. [In detail, if (xn) is a sequence in (-1, 1)246

converging to 1, then (1) lim ( )nn
f f x


  lim log 1 log 2e n en

x


   .] Therefore we have247

1 1 1 1 1log 2 1
2 3 4 5 6e        .248

Example 8. Recall
0

1
1

n

n
x

x






 for | | 1x  . Note that at x=-1 the function 1

1 x
is249

continuous and takes the value 1
2

. However, the series does not converge for x=-1, so Abel’s250

theorem does not apply.251
The point of view in our extremely brief introduction to power series has been: For a252

given power series n
na x , what can one say about the function ( ) n

nf x a x ? This point253

of view was misleading. Often, in real life, one begins with a function f and seeks a power254
series that represents the function for some or all values of x. This is because power series,255
being limits of polynomials, are in some sense basic objects.256

If we have257

0
( ) n

n
n

f x a x




 for | |x R ,258

then we can differentiate f term-by-term forever. At each step, we may calculate the kth259

derivative of f at 0, written ( ) (0)kf . It is easy to show ( ) (0) !k
kf k a for 0k  . This tells260

us that if f can be represented by a power series, then that power series must be261

( )

0

(0)
!

k
k

n

f x
k




 . This is the Taylor series for f about 0. Frequently, but not always, the Taylor262

series will agree with f on the interval of convergence.263
264

6. Conclusions265

From the above, we have seen that the properties of the power series are very perfect, it266
is an extremely rare class of function series; in addition, Cauchy criterion has played267
important role. Using Cauchy criterion as a tool, not only can derive many properties of268
number series, but it can also be derived a lot of properties of function series in the deep. In269
addition, the limit thought is never less important tool in our study.270

271
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