1

Sg-continuity in Topological ordered spaces

2 3

Abstract

Semi generalized closed set in a Topological space was introduced by P.Bhattacharya and 4 B.K.Lahiri in 1987. A subset A of a topological space (X, τ) is a semi generalized closed 5 (sg-closed) set if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi open in (X, τ) . Some authors 6 7 introduced the notion of sg-continuity in topological spaces. The same notion can be 8 extended to topological ordered spaces. A Topological ordered space is a topological space together with a partial order. In this paper, we introduce and study the notion of semi 9 generalized increasing continuous function (sgi-continuous function), semi generalized 10 decreasing continuous function (sgd-continuous function) and semi generalized balanced 11 continuous function (sgb-continuous function) and study the relationships between them. 12

13 Mathematics subject classification: 54A05

14 Key words: Topological ordered space, increasing set, decreasing set, balanced set and 15 semi generalized closed set.

16

1. Introduction

17 The study of Topological ordered spaces (TOS) was introduced by L.Nachbin [2]. 18 It is a triple (X, τ, \leq) where τ is a topology and \leq is a partial order on X. Let (X, τ, \leq) be 19 a TOS. For any $x \in X, [x, \rightarrow] = \{y \in X / x \leq y\}$ and $[\leftarrow, x] = \{y \in X / y \leq x\}$. A subset A of a 20 TOS (X, τ, \leq) is increasing if A = i[A] and decreasing if A = d[A] where $i[A] = \bigcup_{a \in A} [a, \rightarrow]$

and d[A] = ∪_{a∈A}[←, a]. The complement of an increasing set is a decreasing set and vice versa.
 A subset of a TOS (X, τ, ≤) is balanced set if it is both increasing and decreasing.

- 23
- 24

2. Preliminaries

In the present paper (X, τ) represent a non-empty topological space on which no separation axioms are assumed unless otherwise mentioned. For a subset A of (X, τ) , the closure is the intersection of all closed sets containing A and semi closure is the intersection of all semi closed sets containing A. They are denoted by cl(A) and scl(A) respectively. **2** | Page

Definition 2.1. A subset A of a topological space (X, τ) is a sg-closed set [1] if $scl(A) \subseteq U$ 29 whenever $A \subseteq U$ and U is semi open in (X, τ) . 30 The following definition is due to [7]. 31 **Definition 2.2.** A subset A of a topological ordered space (X, τ, \leq) is a sgi-closed (resp. 32 sgd-closed, sgb-closed) set if A is sg-closed and increasing (resp. decreasing, balanced). 33 **3.** Sg-continuity in Topological ordered spaces 34 We define new types of semi generalized continuous functions in topological ordered spaces. 35 A function $f:(X,\tau_1) \to (Y,\tau_2)$ is sg-continuous [1] if $f^{-1}(V)$ is sg-closed whenever V is a 36 closed set in Y. 37 The following notions are introduced in a topological ordered space. 38 **Definition 3.1.** A function $f: (X, \tau, \leq) \rightarrow (Y, \tau^1, \leq^1)$ is 39 (1) a semi generalized increasing continuous function (briefly sgi-continuous) if $f^{-1}(V)$ 40 41 is a sgi-closed set in X whenever V is an i-closed set in Y. (2) a semi generalized decreasing continuous function (briefly sgd-continuous) if $f^{-1}(V)$ 42 is a sgd-closed set in X whenever V is a d-closed set in Y. 43 (3) a sg-balanced continuous function (briefly sgb-continuous) if $f^{-1}(V)$ is a sgb-closed 44 set in X whenever V is a b-closed set in Y. 45 The following examples support the above definitions. 46 **Example 3.2.** Let $X = Y = \{a, b, c\}, \tau_8 = \{\phi, X, \{a, b\}\}, \leq_3 = \{(a, a), (b, b), (c, c), (a, b), (a, c)\}$ 47 $\leq_4 = \{(a,a), (b,b), (c,c), (a,b), (c,a), (c,b)\}$. Then (X, τ_8, \leq_3) and (Y, τ_8, \leq_4) are topological 48 ordered spaces. The i-closed sets in Y are ϕ , X and sgi-closed sets in X are ϕ , X, $\{c\}$, $\{b, c\}$. 49 Define $f: X \to Y$ as f(a) = b, f(b) = c and f(c) = a then, f is a sgi-continuous function. 50 51 **Example 3.3.** Let $X = Y = \{a, b, c\}, \quad \tau_7 = \{\phi, X, \{a\}, \{b\}, \{b, c\}, \{a, b\}\} \quad \tau_8 = \{\phi, X, \{a, b\}\},$ 52 $\leq_{7} = \{(a,a), (b,b), (c,c), (b,a)\}, \leq_{8} = \{(a,a), (b,b), (c,c)\}, \text{ Then, } (X, \tau_{7}, \leq_{7}) \text{ and } (Y, \tau_{8}, \leq_{8}) \text{ are } (Y, \tau_{8}, \leq_{8}) \}$ 53 topological ordered spaces. The d-closed sets in Y are $\phi, X, \{c\}$ and sgd-closed sets in X are 54 $\phi, X, \{c\}, \{b, c\}$. Define $f: X \to Y$ as f(a) = b, f(b) = a and f(c) = c then, f is a 55 sgd-continuous function. 56

3 | Page

57 Example 3.4. Let
$$X = Y = \{a, b, c\}, \tau_a = \{\phi, X, \{a, b\}\}, \tau_y = \{\phi, X, \{b\}, \{c\}, (c\}, (c), \{b, c\}\}$$

58 $\leq_i = \{(a, a), (b, b), (c, c), (a, b), (b, c), (a, c)\}, \leq_s = \{(a, a), (b, b), (c, c), (a, c), (b, c)\}$
59 Then, (X, τ_b, \leq_s) and (Y, τ_y, \leq_i) are topological ordered spaces. The b-closed sets in Y
60 are ϕ, X and sgb-closed sets in X are ϕ, X . Define $f : X \to Y$ as $f(a) = b, f(b) = c$
61 and $f(c) = a$. Then, f is a sgb-continuous function.
62 **4. Independency of the functions**
63 Theorem 4.1: The notions sgi-continuity and sgd-continuity are independent.
64 **Proof**: The following example proves the theorem.
65 Let $X = Y = \{a, b, c\}, \tau_a = \{\phi, X, \{a, b\}\}, \leq_3 = \{(a, a), (b, b), (c, c), (a, b), (a, c)\}$
66 $\leq_4 = \{(a, a), (b, b), (c, c), (a, b), (c, a), (c, b)\}$. Then, (X, τ_a, s_3) and (Y, τ_a, s_4) are topological
67 ordered spaces. The i-closed sets in Y are ϕ, X and sgi-closed sets in X are $\phi, X, \{c\}, (b, c\}$.
68 Define $f : X \to Y$ as $f(a) = a, f(b) = c$ and $f(c) = b$ then f is a **sgi-continuous function**.
70 The d-closed sets in Y are $\phi, X, \{a, b\}\}, \leq_4 = \{(a, a), (b, b), (c, a), (c, b), b\}$
71 If we take $X = Y = \{a, b, c\}, \tau_a = \{\phi, X, \{a, b\}\}, \leq_4 = \{(a, a), (b, b), (c, a), (c, a), (c, b)\}$
72 $, \leq_3 = \{(a, a), (b, b), (c, c), (a, c), (b, c)\}$. Then, (X, τ_a, \leq_4) and (Y, τ_a, \leq_5) are topological ordered
73 spaces. The i-closed sets in Y are $\phi, X, \{c\}$ and sgi-closed sets in X are $\phi, X, \{a, c\}, \{c\}$. Then,
74 $f : X \to Y$ as $f(a) = a, f(b) = a$ and $f(c) = c$. Then, f is a **not a sgi-continuous**
75 function. The d-closed sets in Y are $\phi, X, \{c\}$ and sgd-closed sets in X are $\phi, X, \{a, c\}, \{c\}$. Then,
76 f is a **sgd-continuous function**.
77
78 Theorem 4.2: The notions sgi-continuity and sgb-continuity are independent.
79 Froif: This can be seen from the following example.
80 In the topological ordered spaces (X, τ_a, \leq_4) and (Y, τ_a, \leq_5)
81 where $X = Y = \{a, b, c\}, \tau_a = \{\phi, X, \{a, b\}\}, \leq_a = \{(a, a), (b, b), (c, c), (a, c), (b)\}$ and

in X are ϕ, X . Define $f: X \to Y$ as f(a) = a, f(b) = a and f(c) = c. Then, f is a **not a** sgi-continuous function. The b-closed sets in Y are ϕ, X and sgb-closed sets in X are ϕ, X . Then, f is a sgb-continuous function. **4 |** P a g e

On the other hand, in the spaces (X, τ_{11}, \leq_7) and (Y, τ_{11}, \leq_8) where
$X = Y = \{a, b, c\}, \ \tau_{11} = \{\phi, X, \{c\}, \{c, b\}\}, \le_7 = \{(a, a), (b, b), (c, c), (b, a)\} \text{ and }$
$\leq_8 = \{(a,a), (b,b), (c,c)\}$, the i-closed sets in Y are $\phi, X, \{a\}, \{a,b\}$ and sgi-closed sets in X
are $\phi, X, \{a\}, \{a, b\}$. Define $f: X \to Y$ as $f(a) = a$, $f(b) = b$ and $f(c) = c$. Then, f is a
sgi-continuous function. The b-closed sets in Y are $\phi, X, \{a\}, \{a, b\}$ and sgb-closed sets in
X are $\phi, X, \{a, b\}$. Then, f is not a sgb-continuous function .
Theorem 4.2: The notions sgd-continuity and sgb-continuity are independent.
Proof : This can be observed from the following example.
Consider the spaces (X, τ_{11}, \leq_8) and (Y, τ_{11}, \leq_9) where $X = Y = \{a, b, c\}$,
$\leq_8 = \{(a,a), (b,b), (c,c)\} \text{ and } \leq_9 = \{(a,a), (b,b), (c,c), (a,c)\}. \text{ The b-closed sets in } Y \text{ are } \phi, X$
and sgb-closed sets in X are $\phi, X, \{a\}, \{b\}, \{a, b\}$. Define $f: X \to Y$ as $f(a) = c$, $f(b) = b$
and $f(c) = a$. Then, f is a sgb-continuous function. The d-closed sets in Y are
$\phi, X, \{a\}, \{a,b\}$ and sgd-closed sets in X are $\phi, X, \{a\}, \{b\}, \{a,b\}$. Then, f is not a sgd-
continuous function.
For the other part, consider the topological ordered spaces (X, τ_{11}, \leq_6)
and (Y, τ_{11}, \leq_7) where $X = Y = \{a, b, c\}, \leq_6 = \{(a, a), (b, b), (c, c), (b, a), (a, c), (b, c)\}$
and $\leq_7 = \{(a,a), (b,b), (c,c), (b,a)\}$. The d-closed sets in Y are $\phi, X, \{a,b\}$ and sgd-closed
sets in X are $\phi, X, \{b\}, \{a, b\}$. Define $f: X \to Y$ as $f(a) = a$, $f(b) = b$ and $f(c) = c$. Then,
f is a sgd-continuous function. The b-closed sets in Y are $\phi, X, \{a, b\}$ and sgb-closed sets
in X are ϕ , X. Then, f is not a sgb-continuous function.
Conclusion:

- 108 The following results were proved in this paper.
- 109

110 111 5 | Page

112 Here the symbol $A \blacktriangleleft$	→ B indicates A and B	are independent notions.
--	-----------------------	--------------------------

113

114 **References**

- 115 [1]Bhattacharyya.P, Lahiri B.K (1987), Semi generalized closed sets in topology.
- 116 Indian J. Pure. Appl. Math 29:375–382.
- 117 [2] L. Nachbin, *Topology and order*, D.Van Nostrand Inc., Princeton, New Jersey (1965).
- 118 [3] M.K.R.S. Veera Kumar, Homeomorphisms in topological ordered spaces, Acta Ciencia
- 119 Indica, XXVIII (M) (1)(2002), 67-76.
- 120 [4] V.V.S. Ramachnadram, B. Sankara Rao and M.K.R.S. Veera Kumar, g-closed type,
- 121 g*-closed type and sg-closed type sets in topological ordered spaces, Diophantus J.Math.,
- **122** 4(1) (2015), 1-9.
- 123
- 124 ------
- 125