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Sg-continuity in Topological ordered spaces

Abstract

Semi generalized closed set in a Topological space was introduced by P.Bhattacharya and
B.K.Lahiri in 1987. A subset A of a topological space (X,z) is a semi generalized closed
(sg-closed) set if scl(A)cU whenever A< U and U is semi open in (X, 7).Some authors
introduced the notion of sg-continuity in topological spaces. The same notion can be
extended to topological ordered spaces. A Topological ordered space is a topological space
together with a partial order. In this paper, we introduce and study the notion of semi
generalized increasing continuous function (sgi-continuous function), semi generalized
decreasing continuous function (sgd-continuous function) and semi generalized balanced
continuous function (sgbh-continuous function) and study the relationships between them.

Mathematics subject classification: 54A05

Key words: Topological ordered space, increasing set, decreasing set, balanced set and
semi generalized closed set.
1. Introduction
The study of Topological ordered spaces (TOS) was introduced by L.Nachbin [2].
Itis atriple (X,7,<) where r isatopology and < is a partial order on X. Let (X,7,<) be

a TOS. For anyx e X,[x,>]={yeX/x<y} and [« x]={yeX/y<x}.A subset A of a

TOS (X,7,<) is increasing if A=i[A] and decreasing if A=d[A] where i[A]:U[a,—>]

acA

and d[A]= U[<—, a].The complement of an increasing set is a decreasing set and vice versa.

acA

A subset of a TOS (X, 7,<) is balanced set if it is both increasing and decreasing.

2. Preliminaries

In the present paper (X,z) represent a non-empty topological space on which no
separation axioms are assumed unless otherwise mentioned. For a subset A of (X,7), the

closure is the intersection of all closed sets containing A and semi closure is the intersection

of all semi closed sets containing A.They are denoted by cl(A) and scl(A).respectively.
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Definition 2.1. A subset A of a topological space (X,7) is asg-closed set [1] if scl(A) cU
whenever A < U and U is semi open in(X,7).

The following definition is due to [7].

Definition 2.2. A subset A of a topological ordered space (X,z,<) is a sgi-closed (resp.
sgd-closed, sgb-closed) set if A is sg-closed and increasing (resp. decreasing, balanced).
3. Sg-continuity in Topological ordered spaces
We define new types of semi generalized continuous functions in topological ordered spaces.
A function f:(X,z,)—(Y,z,) is sg-continuous [1] if f (V) is sg-closed whenever V is a
closed setin Y.
The following notions are introduced in a topological ordered space.
Definition 3.1. A function f :(X,7,<) —>(Y,7, <) is
(1) a semi generalized increasing continuous function (briefly sgi-continuous) if f (V)
is a sgi-closed set in X whenever V is ani-closed setinY.
(2) a semi generalized decreasing continuous function (briefly sgd-continuous ) if f (V)
is a sgd-closed set in X whenever V is a d-closed setinY.
(3) a sg-balanced continuous function (briefly sgb-continuous) if f (V) is a sgb-closed

setin X whenever V isa b-closed setin.

The following examples support the above definitions.

Example 3.2. Let X =Y ={a,b,c}, 7, ={¢, X ,{a,b}}, <,={(a,a),(b,b),(c,c),(ab),(a,c)}
<,={(a,a),(b,b),(c,c),(a,b),(c,a),(c,b)} .Then (X,7;,<;) and (Y,7,,<,) are topological
ordered spaces. The i-closed sets in Y are ¢, X and sgi-closed sets in X are ¢, X ,{c},{b,c}.

Define f: X —>Y as f(a)=b, f(b)=c and f(c)=a then, f is a sgi-continuous function.

Example 3.3. LetX =Y ={ab,c}, 7, ={s X {a}{b}{b.c}{ab}} 7,={g X {a,b},
<,={(a,a),(b,b),(c,c),(b,a)}, <,={(a a),(b,b),(c,c)}, Then, (X,7;,<;) and (Y,z,,<,) are
topological ordered spaces. The d-closed sets in Y are ¢, X,{c} and sgd-closed sets in X are
¢, X {c},{b,c}. Define f:X —>Y asf(a)=b, f(b)=a and f(c)=c then, f is a

sgd-continuous function.
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Example 3.4. Let X =Y ={a,b,c}, 7, ={¢, X {a,b}}, 7, = {¢, X . {b}.{c}.{b.c}}
<,={(a,a),(b,b),(c,c),(ab),(b,c),(ac)}, <={(a a),(bb),(c,c),(ac)(b,c)}

Then, (X,75,<;) and (Y,7,,<;) are topological ordered spaces. The b-closed sets in Y
are ¢, X and sgb-closed setsin X are ¢, X . Define f: X —»Y as f(a)=b, f(b)=c
and f(c)=a. Then, f isa sgb-continuous function.

4. Independency of the functions

Theorem 4.1: The notions sgi-continuity and sgd-continuity are independent.
Proof: The following example proves the theorem.

Let X =Y ={a,b,c}, 7, ={¢, X .{a.b}}, <,={(a.a).(b,b).(c,c),(a,b),(a,c)}
<,={(a,a),(b,b),(c,c),(a,b),(c,a),(c,b)} .Then, (X,z;,<,) and (Y,7,<,) are topological
ordered spaces. The i-closed setsin Y are ¢, X and sgi-closed sets in X are ¢, X,{c},{b,c}.
Define f: X —»Y as f(a)=a, f(b)=c and f(c)=b then f is a sgi-continuous function.
The d-closed sets in Y are ¢, X,{c} and the sgd-closed sets in X are ¢, X,{a,c}.Then f is
not a sgd-continuous function.

If we take X =Y ={a,b,c}, 7, ={¢, X {a,b}}, <,={(a,a),(b,b),(c,c),(a,b),(c,a),(c,b)}
.<s={(a,a),(b,b),(c,c),(a,c),(b,c)} .Then, (X,z;<,)and (Y, 7;,<;) are topological ordered
spaces.The i-closed sets in Y are ¢, X,{c} and sgi-closed sets in X are ¢, X . Define
f:X—>Y as f(a)=a, f(b)=a and f(c)=c. Then, f is a not a sgi-continuous
function. The d-closed sets in Y are ¢, X and sgd-closed sets in X are ¢, X,{a,c},{c}.Then,

f is a sgd-continuous function.

Theorem 4.2: The notions sgi-continuity and sgb-continuity are independent.
Proof: This can be seen from the following example.

In the topological ordered spaces (X,z5,<,) and (Y,75,<)
where X =Y ={a,b,c}, 7, ={¢, X {a,b}}, <,={(a,a),(b,b),(c,c).(a,b),(c,a),(c,b)} and
<={(a,a),(b,b),(c,c),(a,c),(b,c)}, the i-closed sets in Y are ¢, X ,{c} and sgi-closed sets
in X are ¢,X . Define f:X —>Y as f(a)=a, f(b)=a and f(c)=c. Then, f isanota
sgi-continuous function. The b-closed sets in Y are ¢, X and sgb-closed sets in X are

¢, X .Then, f isa sgb-continuous function.
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On the other hand, in the spaces (X,7,;,<;) and (Y,7,,<;) Where
X =Y ={a,b,c}, 7, ={¢, X {c}{c.b}}, <,={(a,a),(b,b),(c,c),(b,a)} and
<,={(a,a),(b,b),(c,c)}, the i-closed setsin Y are ¢, X ,{a}.{a,b} and sgi-closed sets in X
are ¢, X ,{a},{a,b}. Define f:X —>Y as f(a)=a, f(b)=b and f(c)=c. Then, f isa
sgi-continuous function. The b-closed sets in Y are ¢, X ,{a},{a,b} and sgb-closed sets in

X are ¢, X,{a,b}.Then, f isnot a sgb-continuous function.

Theorem 4.2: The notions sgd-continuity and sgbh-continuity are independent.

Proof: This can be observed from the following example.

Consider the spaces (X,7,;,<;) and (Y,7,,<;) where X =Y ={a,b,c},
<,=1{(a,a),(b,b),(c,c)} and <,={(a,a),(b,b),(c,c),(a,c)}. The b-closed sets in Y are ¢, X
and sgb-closed sets in X are ¢, X ,{a},{b},{a,b}. Define f:X —»Y as f(a)=c, f(b)=Db
and f(c)=a. Then, f is a sgb-continuous function. The d-closed sets in Y are
¢, X {a},{a,b} and sgd-closed sets in X are ¢, X,{a},{b},{a,b}.Then, f is not a sgd-
continuous function.

For the other part, consider the topological ordered spaces (X,7,;,<;)
and (Y,7,,,<;)  where X =Y={abc}, <={(aa)(bb)(cc)ba)(ac)bc)}
and <,={(aa),(b,b),(c,c),(b,a)}. The d-closed sets in Y are ¢, X,{a,b} and sgd-closed
setsin X are ¢, X {b},{a,b}. Define f:X —>Y as f(a)=a, f(b)=b and f(c)=c. Then,
f isa sgd-continuous function. The b-closed sets in Y are ¢, X,{a,b} and sgb-closed sets

in X are ¢, X .Then, f is not a sgb-continuous function.

Conclusion:

The following results were proved in this paper.

sgi-continuity «—}—» sgd-continuity

sgbh-continuity
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112 Here the symbol A <4 B indicates A and B are independent notions.
113
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