
ON THE BUCKLING MODES AND BUCKLING LOAD OF AN INFINITELY LONG 

BUT HARMONICALLY IMPERFECT COLUMN LYING ON CUBIC – QUINTIC 

FOUNDATION. 

 

 

ABSTRACT 

This paper utilizes perturbation and asymptotic techniques to dismiss and obtain, analytically, the 

buckling modes and buckling load of a harmonically imperfect column lying on an elastic foundation 

that has cubic – quintic nonlinearity. Two slightly different approaches are here utilized. In the first 

approach, the perturbation parameter is a component of the displacement while in the second 

approach, the perturbation is a component of the load. In the final assessment, results from both 

approaches are seen to be in good agreement. The results are however observed to be implicit in 

the load parameter and are valid asymptotically as long as these perturbation parameters are small 

relative to unity. 

KEYWORDS: Infinitely Long Columns, Nonlinear Elastic Foundation, Static Buckling, Perturbation 

Technique, Asymptotic Analysis. 

1. INTRODUCTION 

In this paper, a perturbation scheme in asymptotic series expansions, is developed in determining 

the static buckling load and buckling modes of an infinitely long but harmonically imperfect column 

lying on a cubic – quintic nonlinear elastic foundation, where the column is trapped by a static load 

of magnitude P. It is to be recalled that, as far as investigations concerning columns are concerned, 

majority of the existing research findings have tended to favour columns lying on nonlinear cubic 

elastic foundations [1, 2, 3] to the exclusion of most other nonlinear elastic foundations. In this 

study, we intend to stretch the analysis to the case where the foundation has a cubic – quintic 

nonlinearity. 

Generally, investigations on buckling, both static and dynamic, have tended to attract and occupy a 

prominent attention amongst the research community for a long time now. In this respect, mention 

is here made of investigation by Reda and Forbes [4], Priyadarsini et al. [5], Chitra and Priyadarsini 

[6], Mcshane et al. [7], Kolakowski [8, 9] and Patil et al. [10], among others. 

2. GOVERNING EQUATION 

The normal displacement �(�) of the column, subjected to the applied load P, satisfies the non – 

homogeneous equation 

                   �� �	
��	 + 2� ��
��� +  ��� +  ����� − ������ =  −2� ��
���� ,     − ∞ < � < ∞         (2.1)  

where X is the spatial coordinate, EI is the bending stiffness , where E and I are the Young’s modulus  

and moment of inertia respectively and ��  is the twice differentiable stress – free harmonic 

imperfection. The cubic – quintic nonlinear elastic foundation exerts a force per unit length given by 
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��� +  ����� − ������ on the column, while � and �� are the imperfection – sensitivity factors 

which are to be carefully chosen so that the column becomes imperfection – sensitive and ��, �� 

and �� are positive constants. In this formulation, we have neglected all nonlinearities greater than 

quintic while all nonlinear derivatives are neglected. 

In order to nondimensionalize the equation, the following nondimensional quantities are now 

assumed. 

                 � =  � !"#$#	 %,     � =  �"#"�$#� &,      �� =  ' �"#"�$#� &� ,       � =  �(#"#")"�� $ ,       � = 2*(����)#�        
Here, ' and * satisfy the inequalities 0 < ' ≪ 1, 0 <  * < 1, and the nondimensional form of the 

equation is 

-.&-%. + 2* -�&-%� +  & +  �&� − �&� =  −2*' -�&�-%� ,     − ∞ < % < ∞                       (2.2) 

We shall solve the equation in two slightly different approaches whereby, in the first approach, we 

adopt the perturbation and asymptotic parameter as a component of displacement whereas in the 

second approach, we adopt the perturbation parameter as a component of the applied load. In this 

latter case, we shall let = 1 −  /0��  , for 0 <  1̅ ≪ 1, where * is the nondimensional load amplitude. In 

both cases, we aim at first determining a uniformly valid asymptotic expression of the normal 

displacement subsequent upon which the static buckling load, *3, is next determined. The static 

buckling load *3, as in [1 – 3], is defined as the maximum value of the load amplitude * that 

emanates from the origin of the load – displacement graphical configuration of the loading system. 

3. SOLUTION OF (2.2) USING DISPLACEMENT AS PERTURBATION PARAMETER 

Since the imperfection is harmonic, we let 

&� = cos 7%,                7 = 1, 2, 3, …                                                                                 (3.1) 

Assuming that the displacement must be in the shape of imperfection, we let 

&(%) = cos 7%,                                                                                                                   (3.2) 

The equation satisfied by the perfect linear structure is  

-.&-%. + 2* -�&-%� +  & = 0                                                                                                 (3.3) 

The resultant equation when (3.2) is substituted in (3.3) is  

(7. − 27�* + 1) = 0,       * =  127� (7. + 1)                                                                (3.4) 

The least value of * in (3.4) is obtained when 7 = 1 and for this the classical buckling load *;  is  

*; = 1                                                                                                                                (3.5) 

For the solution of (2.2), it is necessary to let 
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&(%) = 1c̅os % + =(%)                                                                                                    (3.6) 

It is here assumed that the average value of =(%) cos % vanishes over the interval of definition of %, 

that is 

< =(%)?@A% > = 0                                                                                                            (3.7)  
where, < ⋯ > denotes the average of =(%)?@A%.Thus, with & known, 1 ̅is uniquely defined. 

Let 

=(%) =  E 1F̅=F,         *' = G
FH� E 1F̅IF                                                                       (3.8) G

FH�  

In order to solve (2.2), using (3.2), equations (3.8) are now substituted into (2,2) and thereafter, we 

equatte the coefficients of powers of 1 ̅to get 

 K(1)̅:    2(1 − *)?@A% = 2I� cos %                                                                                (3.9) 

K(1̅�):   N=� ≡   -.=�-%. + 2* -�=�-%� +  =� = 2I� cos %                                                  (3.10)  
K(1̅�):   N=� = 2I� cos % − � cos� %                                                                                (3.11) 

K(1̅.):   N=. =  2I. cos % − 3�=� cos� %                                                                       (3.12) 

K(1̅�):   N=� = 2I� cos % − 3�=� cos� % − 3�=� cos % + � cos� %                       (3.13) 

K(1P̅):   N=P = 2IP cos % − 3�=� cos. % − 6�=�=� cos % + 5� =�cos.%               (3.14) 

K(1̅Q):   N=Q = 2IQ cos % − �R3=� cos� % + 6=�=. cos % + 3=�� cos %S +  �=�cos.%           (3.15) 

etc. 

From (3.9), it is easily seen that 

                    I� = (1 − *),       =� = 0                                                                                        (3.16) 

On using the condition (3.7), it is seen that  

I� = 0,         =�                                                                                                                           (3.17) 

On simplification, equation (3.11) becomes 

N=� =  T2I� − 3�4 U ?@A% − �4 cos 3%                                                                              (3.18) 

On using the condition (3.7) on (3.18), it easily follows that 

I� =  3�8                                                                                                                                     (3.19) 
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After solving the remaining equation in (3.18), we have  

=� =  −� cos 3%8(41 − 9*)                                                                                                                    (3.20) 

 From (3.12), it easily follows that  

I. =  =. = 0                                                                                                                        (3.21) 

Equation (3.13) is next simplified to yield (using (3.17)) 

N=� =  V2I� +  5�8 +  3��32(41 − 9*)W cos % +  V15�16 +  3��16(41 − 9*)W cos 3% 
+  V �16 +  3��32(41 − 9*)W cos 5%                                                         (3.22) 

On applying (3.7) in (3.22), this yields 

I� =  − 12 V5�8 +  3��32(41 − 9*)W                                                                                    (3.23) 

The solution of the remaining equation in (3.22) is 

=� =  132 V� +  3��(41 − 9*)W T cos 3%(41 − 9*)U +  164 V2� +  3��(41 − 9*)W T cos 5%(313 − 25*)U    (3.24) 

After substituting in (3.14), we get 

IP =  =P = 0                                                                                                                         (3.25) 

Next, we substitute in (3.15) and simplify to get 

N=Q =  X2IQ − 3�2 YZ�2 +  ��128(41 − 9*)�[ + 5�8  \ cos % +  ]3�8 − 3�2 TZ� + Z�2 U^ cos 3%
+  X�2 − 3�2 YTZ� + Z�2 U +  ��256(41 − 9*)�[\ cos 5%
+   X�8 − 3�2 YZ�2 + ��256(41 − 9*)�[\ cos 7%                                       (3.26_) 

where, 

Z� = 132(41 − 9*) V� +  3��41 − 9*W                                                                                     (3.26`) 

Z� = 164(313 − 25*) V2� +  3��41 − 9*W                                                                              (3.26?) 

The condition (3.7) as applied to (3.26a) yields 

IQ =  12 X3�2 YZ�2 +  ��128(41 − 9*)�[\ − 5�8                                                                         (3.26-) 
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The solution of the remaining equation in (3.26a) yields 

=Q =  12 ]3�8 − 3�2 TZ� + Z�2 U^ T cos 3%41 − 9*U + 12 X�2 − 3�2 VZ� + Z�2 + ��256(41 − 9*)�W\ T cos 5%313 − 25*U
+  12 X�8 − 3�2 YZ�2 + ��256(41 − 9*)�[\ T cos 7%1201 − 49*U                                (3.27) 

Following (3.6), we can now write 

& =  1̅ cos % − α1̅�cos 3%8(41 − 9*)+  1�̅ X 132 V� +  3��41 − 9*W T cos 3%41 − 9*U + 164 V2� +  3��41 − 9*W T cos 5%313 − 25*U \
+  1Q̅2 b]3�8 − 3�2 TZ� + Z�2 U^ T cos 3%41 − 9*U
+ X�2 − 3�2 VZ� + Z�2 +  ��256(41 − 9*)�W\ T cos 5%313 − 25*U
+   X�8 − 3�2 YZ�2 + ��256(41 − 9*)�[\ T cos 7%1201 − 49*Uc + ⋯                             (3.28) 

Similarly, we have (from (3.8)) 

*' = 1(̅1 − *) +  3�1�̅8 − 1�̅2 V5�8 + 3��32(41 − 9*)W +  1̅Q2 X3�2 YZ�2 +  ��128(41 − 9*)�[ − 5�8 \+ ⋯                                                                                                                       (3.29) 

To determine the static buckling load *3, we, as in [1 – 3], use the condition -*-1̅ = 0,                                                                                                                                   (3.30) 

and get 

(1 − *3) +  9�13̅�8 −  513̅.2 V 3��32(41 − 9*) + 5�8 W = 0                                                    (3.31) 

On solving, this yields 

13̅� = 9�40 d 3��32(41 − 9*3) + 5�8 e fgg
gh1 − i1 + 512(1 − *3)405�� d 3��32(41 − 9*3) + 5�8 ejkk

kl              (3.32) 

and 
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∴     13̅ =  32√10 i �40 d 3��32(41 − 9*3) + 5�8 e fgg
gh1 − o1 + 512(1 − *3)405�� d 3��32(41 − 9*3) + 5�8 ep

��

jkk
kl

��
      (3.33) 

The static buckling load *3 is now obtained by evaluating (3.29) at * = *3 and substituting for 13̅� and 13̅ from (3.32) and (3.33) respectively and this yields 

*3' =
 13̅ b(1 − *3) +  13̅� qY�rs − 13̅� � �r���(.�tuvw) + �(s $ + /0w�� x�r� �y#� +  r���s(.�tuv)�$ − �(s z[{c      (3.34)  

4. SOLUTION OF (2.2) WITH LOAD COMPONENT AS PERTURBATION PARAMETER 

Here, we shall let 

* = 1 − 1�2 ,     0 < 1 < 1                                                                                                              (4.1) 

In this case, equation (2.2) becomes 

-.&-%. + 2 -�&-%� − 1� -�&-%� +  & +  �&� − �&� =  −2*' -�&�-%�                                               (4.2) 

Let 

&(%) =  0̀1 cos % + |(%),            0 < 0̀ < 1                                                                             (4.3) 

Further let  

|(%) =  E 1F|F,         *' = G
FH� E 1F}F                                                                            (4.4) G

FH�  

Substituting for terms in (4.2) and equating the coefficients of powers of 1, yields 

K(1):   ~|�  ≡ -.|�-%. + 2* -�|�-%� + |� = 2}� cos %                                                     (4.5) 

K(1�):   ~|� = 2}� cos %                                                                                                      (4.6)  
K(1�):   ~|� = −0̀ cos % − � 0̀� cos� % + 2}� cos %                                                     (4.7) 

K(1.):   ~|. =  -�|�-%� − 30̀�|� αcos� % + 2}. cos  %                                                      (4.8) 

K(1�):   ~|� = -�|�-%� − 30̀�|� αcos� % − 30̀�|�� cos % + � 0̀�cos� % + 2}� cos  %     (4.9) 

K(1P):   ~|P = -�|.-%� − ��30̀�|. cos� % + 60̀|�|� cos % − |���− 6�=�=� cos % + 5� |� 0̀.cos.% +2}P cos  %                                          (4.10) 
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K(1Q):   ~|Q = -�|�-%� − ��30̀�|� cos� % + 30̀|� cos %(|�� + 2|�|.)+3|��|��+ 5� |� 0̀.cos.% +2}Q cos  %                                                                         (4.11) 

etc. 

We shall still use the same orthogonality condition as (3.7). Thus, from (4.5), we get 

}� = 0,           |� = 0                                                                                                                      (4.12_) 

From (4.6), we get 

}� = 0,           |� = 0                                                                                                                      (4.12`) 

Equation (4.7) simplifies to 

~|� = V2}� − 0̀ − 3� 0̀�4 W ?@A% − � 0̀�4  ?@A3%                                                                     (4.13) 

Application of (3.7) in (4.13) yields 

}� =  12 V0̀ + � 0̀�4  W                                                                                                                   (4.14_) 

The solution of the remaining equation in (4.13) is 

|� =  � 0̀�32  ?@A3%                                                                                                                    (4.14`) 

Substituting for |� in (4.8) yields 

}. = 0,           |. = 0                                                                                                               (4.15) 

Substituting for |�and |� in (4.9) gives 

~|� =  Zu cos % + Z�� cos 3% +  Z�� cos 5%                                                                (4.16_) 

where, 

Zu = V11� 0̀�16 + 2}� − 3� 0̀�128 W                                                                                          (4.16`) 

Z�� = V� 0̀�4 − 9� 0̀�32 − 3� 0̀�64 W,      Z�� = V� 0̀�16 − 3� 0̀�128 W                                           (4.16?)  
On account of (3.7), we observe that Zu = 0. This yields 

}� = 12 V3� 0̀�128 − 11� 0̀�16 W                                                                                                      (4.17_) 

The remaining equation in (4.16a) is solved to get 
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|� = − TZ�� cos 3%8 + Z�� cos 5%24 U                                                                                   (4.17`)  
On substituting for relevant terms in (4.10), we obtain 

}P = 0,           |P = 0                                                                                                               (4.18) 

After substituting for terms in (4.11) and simplifying, the equation becomes 

~|Q =  Z�� cos % +  Z�� cos 3% +  Z�. cos 5% + Z�� cos 7%                                       (4.19) 

where, 

Z�� =  X15�� 0̀Q512 + 2}Q +  � Y30̀�Zu16 − 3�� 0̀Q2048 [\                                                             (4.20_) 

Z�� = X9Zu8 +  � Y30̀�Zu16 +  30̀Z��48 [ + 15�� 0̀Q256 \                                                            (4.20`) 

Z�. = X25Z��4 +  � Y30̀�Z��48 +  30̀�Zu16 − 3�� 0̀Q1024 [ + 5�� 0̀Q256 \                                      (4.20?) 

Z�� =  XY3� 0̀Z��48 − 3�� 0̀Q4096  [ + 5�� 0̀Q512 \                                                                             (4.20-) 

From the orthogonality condition (3.7) as applied to (4.19), we get 

}Q =  − 12 X15�� 0̀Q512 + Y30̀�Zu16 − 3�� 0̀Q2048 [\                                                                         (4.21) 

The solution of the remaining equation in (4.19) is 

|Q =  − 12 ]Z�� cos 3%(41 − 9*) + Z�. cos 5%(313 − 25*) + Z�� cos 7%(1201 − 49*)^                                               (4.22) 

From (4.3) and (4.4), we write 

&(%) = 0̀1 + 1�� 0̀� cos 3%32 − 1� TZ�� cos 3%8 + Z�� cos 5%24 U
− 1Q2 ]Z�� cos 3%(41 − 9*) + Z�. cos 5%(313 − 25*) + Z�� cos 7%(1201 − 49*)^ + ⋯                 (4.23) 

Similarly, we have, from (4.4), 

*' =  0̀1�2 V1 + 3� 0̀�4 W + 0̀�1�2  T 3�128 − 11�16 U − 0̀�1Q2 X15�� 0̀�512 +  � Y3Zu16 − 3�� 0̀�2048 [\ + ⋯  (4.24) 

To determine the buckling load *3, we employ (3.30), which yields 

30̀13�2 V1 + 3� 0̀�4 W + 50̀�13.2 T 3�128 − 11�16 U − 70̀�13P2 X15�� 0̀�512 +  � Y3Zu16 − 3�� 0̀�2048 [\ = 0     (4.25) 
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At this stage, we shall give the result in two levels of approximation. First, if we take only the first 

two terms in (4.25), we get  

30̀13�2 V1 + 3� 0̀�4 W + 50̀�13.2 T 3�128 − 11�16 U = 0                                                                         (4.26_) 

where 13  is the value of 1 at static buckling. This gives 

13� =  350̀. � 1 + 3� 0̀�411�16 − 3�128�,          13 =  1̀0� �35 � 1 + 3� 0̀�411�16 − 3�128�
��                                         (4.26`) 

Now, on evaluating (4.24) at buckling, where * = *3, we get 

*3' = 120̀� T35U�� � 1 + 3� 0̀�411�16 − 3�128�
�� XV1 + 3� 0̀�4 W − 13� d 0̀. T11�16 − 3�128U + 13�Z�Pe\          (4.27_) 

where, 

Z�P(*3) =  X15�� 0̀�512 +  � Y3Zu16 − 3�� 0̀�2048 [\                                                                     (4.27`) 

and where (4.27a, b) are evaluated at where * = *3. If we take the three terms in (4.25) then, we 

can write the whole equation as 

13� X3 0̀2 Z�Q +  50̀.13�2 Z�s −  70̀�13.2 Z�u\ = 0                                                                        (4.28_) 

where, 

Z�Q =  V1 + 3� 0̀�4 W,    Z�s =  − T11�16 − 3�128U ,
Z�u = X15�� 0̀�512 +  � Y3Zu16 − 3�� 0̀�2048 [\    (4.28`) 

Then, we can recast (4.28a) simply as 

��13. − ��13� − �� = 0                                                                                                              (4.29_) 

where, 

�� =  70̀�2 Z�u,    �� = 50̀.2 Z�s,       �� =  30̀2 Z�Q                                                            (4.29`) 

The solution of (4.29a) is 
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13� =  50̀�Z�s7Z�u �1 − �1 +  84Z�QZ�u250̀PZ�s� �                                                                           (4.30_) 

13 =  0̀�57 TZ�sZ�uU�� �1 − �1 +  84Z�QZ�u250̀PZ�s� �
��                                                                 (4.30`) 

The static buckling load in this case is determined using (4.24) at * = *3 and using the values of 13� 

and 13  as in (4.30a, b) respectively. This gives 

*3' =  0̀13�2 �V1 + 3� 0̀�4 W − 13�2 o�T11�16 − 3�128U + 0̀13� q15�� 0̀�512 +  � Y3Zu16 − 3�� 0̀�2048 [{�p�   (4.31)  
5. ANALYSIS AND DISCUSSION OF RESULTS 

The results (3.34), (4.27a) and (4.31) show mathematical relationship between the Static buckling 

load *3 and the imperfection parameter ϵ. Using Q – Basic codes with 0̀ = 0.5, the results obtained 

from the two methods are shown both on Table1 and Table2 as well as on Figure1 and Figure2. It is 

clearly shown that the Static buckling load, in each case, decreases with increased imperfection 

parameter. All results are implicit in the load parameter *3 and are valid provided the perturbation 

parameters are small relative to unity. It is pertinent that 0̀ satisfies the inequality 0 < 0̀ < 1. 

 

6. Numerical and Graphical Plots 

Table 1: Relationship between the Static buckling load �� and the Imperfection parameter, ϵ for α 

= 1, β = 1 using Eqn. (3.34).  

IMPERFECTION 

PARAMETER, ϵ 

�� for α = 1, β = 1 

0.01 0.286212 

0.02 0.285966 

0.03 0.285721 

0.04 0.285478 

0.05 0.285236 

0.06 0.284995 

0.07 0.284756 

0.08 0.284519 

0.09 0.284283 

0.1 0.284048 
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Figure 1: Graphical Plot of Table 1, showing the relationship between the Static buckling load �� and the Imperfection parameter, ϵ for α = 1, β = 1, using Eqn. (3.34).  

 

Table 2: Relationship between the Static buckling load �� and the Imperfection parameter, ϵ 

for α = 1, β = 1 and �� = �. �, using Eqn. (4.27a).  

IMPERFECTION 

PARAMETER, ϵ 

�� for α = 1, β = 1, �� = �. � 

0.01 0.571931 

0.02 0.285966 

0.03 0.190644 

0.04 0.142983 

0.05 0.114387 

0.06 0.095322 

0.07 0.081705 

0.08 0.071492 

0.09 0.063548 

0.1 0.057194 
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Figure 2: Graphical Plot of Table 2, showing the relationship between the Static buckling load �� 

and the Imperfection parameter, ϵ for α = 1, β = 1 ��� �� = �. �, using Eqn. (4.27a). 
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