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Data Article  1 

Hybrid Orthonormal Bernstein and Block-Pulse Functions for solving 2 

Volterra- Fredholm integral equations 3 

Abstract  4 

 In this paper, we have used Hybrid orthonormal Bernstein and Block-Pulse Functions on 5 

the interval [0,1] to solve mixed Volterra-Fredholm integral equations (VFIE’s) of the second 6 

kind, numerically. First we introduce the  proposed method, then we used it to transform  the  7 

integral  equations  to  the system  of  algebraic equations,  we compared the result of the 8 

proposed method with true answers to show the convergence and advantages of the new method. 9 

Finally, the numerical examples illustrate the efficiency and accuracy of this method. 10 

Keywords: Hybrid orthonormal Bernstein and Block-Pulse Functions, linear Volterra-Fredholm  11 

integral equations, Integration of the cross product, Product matrix, Coefficient matrix. 12 

 13 

I. Introduction 14 

 Integral equations are encountered in various fields of science and numerous applications 15 

such as physics [1], biology [2] and engineering [3,4]. But we can also use it in numerous 16 

applications, such as biomechanics, control, economics, elasticity, electrical engineering, 17 

electrodynamics, electrostatics, filtration theory, fluid dynamics, game theory, heat and mass 18 

transfer, medicine, oscillation theory, plasticity, queuing theory, etc. [5]. Fredholm and Volterra 19 

integral equations of the second kind show up in studies that includes airfoil theory [6], elastic 20 

contact problems [7,8], fracture mechanics [9], combined infrared radiation and molecular 21 

conduction [10]  and so on. 22 

 Numerical Solution Of Linear Volterra-Fredholm Integral Equations, such as Block-Pulse 23 

functions [14 - 19], Triangular functions [20 - 22], Haar functions [23], Hybrid Legendre and 24 

Block-Pulse functions [24 - 25], Hybrid Chebyshev and Block-Pulse functions [25- 26], Hybrid 25 

Taylor, Block-Pulse functions [27], Hybrid Fourier and Block-Pulse functions In  recent years, 26 

many researchers have been successfully applying Bernstein polynomials method (BPM) to 27 

various  linear and nonlinear integral equations . For example, Bernstein polynomials method is 28 

applied to find an approximate solution for Fredholm integro-Differential  equation  and integral 29 

equation  of  the second  kind in (AL-Juburee 2010). ( Al-A'asam 2014) used Bernstein 30 
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polynomials  for deriving the modified Simpson's 3/8 ,and the composite modified Simpson's 3/8 31 

to solve one dimensional linear Volterra integral equations of the second kind. Application of 32 

two-dimensional Bernstein polynomials for solving mixed Volterra-Fredholm integral equations 33 

can be found in(Hosseini.et al 2014) . In this paper, Hybrid Orthonormal Bernstein and Block-34 

Pulse Functions (OBH) to solve mixed Volterra-Fredholm integral equations (VFIE’s) of the 35 

second kind: 36 

dttutxkdttutxkxfxu

b

a

x

a

)(),()(),()()( 2211 ∫∫ ++= λλ  37 

where 21 ,, λλbxa ≤≤ are  scalar parameters, ),(,),(,)( 21 txktxkxf  are continuous functions  38 

and )(xu is the unknown function to be determine. 39 

The advantage of this method to other existing methods is its simplicity of implementation 40 

besides some other advantages.  41 

This paper is organized as follows: In Section 2, we introduce Bernstein polynomials and their 42 

properties. Also we orthonormal these polynomials and hybrid them with Block-Pulse functions 43 

to obtain new basis. In Section 3, these new basis together with  collocation method are used to 44 

reduce the linear Volterra-fredholm integral equation to a linear system that can be solved by 45 

various method. Section 4 illustrates some applied models to show the convergence, accuracy 46 

and advantage of the proposed method and compares it with some other existed method. In 47 

Section 5, numerical experiments are conducted to demonstrate the viability and the efficiency of 48 

the proposed method computationally. Finally Section 6 concludes the paper. 49 

 50 

II. BASIC DEFINITION 51 

 In this section we introduce Bernstein polynomials and their properties to get better 52 

approximation, we orthonormal these polynomials and hybrid them with Block-Pulse functions. 53 

 54 

A. Definition of Bernstein polynomials 55 

 B-polynomials (Bernstein polynomials basis) of nth-degree were introduced in the 56 

approximation of continuous functions f(x) on an interval [0, 1] (see [11]), 57 

)1(.0,)1()(, nixx
i

n
xB

ini

ni ≤≤−







=

− T58 

here are (n +1) nth-degree polynomials and for convenience, 59 
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we set 0)(, =xB ni , if 0<i  or ni > . 60 

A recursive definition also can be used to generate the B-polynomials over this interval, so that 61 

the ith nth degree B-polynomial can be written; 62 

)2()()()1()( 1,11,, xxBxBxxB ninini −−−
+−= Th63 

e explicit representation of the orthonormal Bernstein polynomials, denoted by ( )(, xOB ni ) here, 64 

was discovered by analyzing the resulting orthonormal polynomials after applying the Gram-65 

Schmidt process on sets of Bernstein polynomials of varying degree n . For example, for 5=n , 66 

using the Gram-Schmidt process on )(5, xOBi  normalizing, and simplifying the resulting 67 

functions, we get the following set of orthonormal polynomials; 68 

5

5,0 )1(11)( txOB −=  69 

)111()1(3)( 4

5,1 −−= ttxOB  70 

)12055()1(7)( 23

5,2 +−−= tttxOB  71 

)127135165()1(5)( 232

5,3 −+−−= ttttxOB  72 

)132216480330)(1(3)( 234

5,4 +−+−−= tttttxOB  73 

)1352808401050462()( 2345

5,5 −+−+−= tttttxOB  74 

We can see from these equations that the orthonormal Bernstein polynomials are, in general, a 75 

product of a factorable polynomial and a non-factorable polynomial. For the factorable part of 76 

these polynomials, there exists a pattern of the form 77 

.,....,1,0)1)(1)(2( nitin
in

=−+−
−  78 

While it is less clear that there is a pattern in the non-factorable part of these polynomials, the 79 

pattern can be determined by analyzing the binomial coefficients present in Pascal’s triangle. In 80 

doing this, we have determined the explicit representation for the orthonormal Bernstein 81 

polynomials to be 82 

Ki
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tjnxOB
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
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







−

−+
−−+−= ∑

12
)1()1)(1)(2()(

0

,                                        (3) 83 

B. Definition of Block-Pulse functions (BPFs) and their properties 84 

 BPFs are studied by many authors and applied for solving different problems, for 85 

example see [12]. 86 
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A k - set of BPFs over the interval [0, T)  is defined as 87 

.1,....,1,0,

,0

)1(
,1

)( −=






 +
<≤

= ki

elsewhere

k

Ti
t

k

iT

tBi                                                               (4) 88 

with a positive integer value for k . In this paper, it is assumed that T = 1 , so BPFs are defined 89 

over [0, 1) . BPFs have some main properties, the most important of these properties are 90 

disjointness, orthogonality, and completeness. 91 

(1)  The disjointness property can be clearly obtained from the definition of BPFs 92 

1,....,1,0,
,0

),(
)()( −=





≠

=
= kji

ji

jitB
tBtB

i

ji
                                                       (5) 93 

(2)  The orthogonality property of these functions is 94 

1,....,1,0,

,0

,
1

)()()(),(

1

0

−=








≠

=
==〉〈 ∫ kji

ji

ji
kdttBtBtBtB jiji

                        (6) 95 

(3)  The third property is completeness. For every ),1,0[2Ly ∈  when k  approaches to the 96 

infinity, Parseval’s identity holds, that is 97 

∫ ∑
∞

=

=

1

0

2

1

22 )()(
i

ii tBcdtty  98 

where    dttBtfkc ii ∫=

1

0

)()(                                                                                              (7) 99 

III. Some properties of hybrid functions 100 

A. Hybrid functions of block-pulse and Orthonormal Bernstein polynomials 101 

We define OBH  on the interval [0; 1] as follow: 102 







<≤

−
+−

=

otherewise

M

i
x

M

i
ixMB

xOBH
nj

ji

0

1
)1(

)( ,

,
                                                                (8) 103 

where Mi ,....2,1=  and nj ,....2,1,0= . thus our new basis is },...,,{ ,1,10,1 nMOBHOBHOBH  and 104 

we can approximate function with this base. for example for M = 2 and n = 1 105 
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
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1
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 110 

B. Function approximation by using OBH functions  111 

Any function )(ty which is square integrable in the interval )1,0[  can be expanded in a hybrid 112 

Orthonormal Bernstein and Block-Pulse Functions  113 

),1,0[,,...,2,1,0,,...,2,1),()(
1 0

∈∞=∞==∑∑
∞

=

∞

=

tjitOBHcty
i

ij

j

ij                                          (9) 114 

where the hybrid Orthonormal Bernstein and Block-Pulse coefficients 115 

))(),((

))(),((

tOBHtOBH

tOBHty
c

nmnm

nm

nm =                                                                                          (10) 116 

In Eq. (10), ).,.( denotes the inner product. Usually, the series expansion Eq. (9) contains an 117 

infinite number of terms for a smooth ).(ty  If ).(ty is piecewise constant or may be 118 

approximated as piecewise constant, then the sum in Eq. (9) may be terminated after nm terms, 119 

that is 120 

)()()(
1 0

tOBHCtOBHcty
T

M

i

ij

n

j

ij =≅∑∑
= =

                                                                             (11) 121 

where 122 
T

nMOBHOBHOBHxOBH ],....,,[)( ,1,10,1= , 123 

and 124 

T

nMcccC ],....,,[ ,1,10,1=  125 
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Therefore we have 126 

>>=<< )(),()(),( xOBHxuxOBHxOBHC T  127 

then 128 

,)(),(1
><=

− xOBHxuDC  129 

where 130 

,)(),( >=< xOBHxOBHD  131 

    dxxOBHxOBH
T )().(

1

0

∫=                                                                                             (12) 132 

     





















=

M
D

D

D

L

OM

L

L

00

0

00

00

2

1

 133 

then by using (7) ),...,2,1( MiDi =  is defined as follow: 134 

dxjMxBiMxBD nj

M

i

M

i

nijin )1()1()( ,

1
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 135 
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 137 

We can also approximate the function ]1,0[),( Ltxk ∈  as follow: 138 

),()(),( tOBHKxOBHtxk T
≈  139 

where K  is an )1( +nM  matrix that we can obtain as follows: 140 
11 )(),,()( −−

>><<= DtOBHtxkxOBHDK                                                                 (13) 141 

C. Integration of OBH functions 142 

 In OBH function analysis for a dynamic system, all functions need to be transformed into 143 

OBH functions. Since the differentiation of OBH functions always results in impulse functions 144 

which must be avoided, the integration of OBH functions is preferred. The integration of OBH 145 
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functions should be expandable into OBH functions with the coefficient matrix P. These ideas 146 

come from papers of Chen et al. [5,11]. 147 

),1,0[),()()( ))1((

0

)1()1())1(( ∈≈
+×+×++×∫ ttOBHPdOBH mn

t

mnmnmn ττ                                          (14) 148 

where the )1( +mn -square matrix P is called the operational matrix of integration, and 149 

)())1(( tOBH mn +×
 is defined in Eq. (8). A subscript )1()1( +×+ mnmn  of P  denotes its dimension 150 

and P is given in [4] as: 151 
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and H  is the operational matrix of integration  and can be obtained as: 154 
 155 
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The integration of the cross product of two OBH function vectors can be obtained as 157 

∫ +×+×
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where L  is an )1( +× nM diagonal matrix given by 160 


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1
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                                                                                    (19) 161 

Eq. (14-18) are very important for solving Volterra- Fredholm integral equation of the second 162 

kind problems, because the D and P  matrix can increase the calculating speed, as well as save 163 

the memory storage. 164 

 165 

D. Multiplication of hybrid functions 166 

It is usually necessary to evaluate )())1(( tOBH mn +×
)())1(( tOBH mn

T
+×  for the Volterra- Fredholm 167 

integral equation of the second kind via OBH functions: 168 

Let the product of )())1(( tOBH mn +×
and )())1(( tOBH mn

T
+×  be called the product matrix of OBH 169 

functions: 170 
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≅                                                            (20) 171 
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 With the above recursive formulae, we can evaluate )(
))1,)1,(( tM

nMnM +×+
 for any M and n . 173 

The matrix )(
))1,)1,(( tM

nMnM +×+
in (20) satisfies 174 

)()( ))1(())1()1(())1(())1(( tOBHCctM nMnMnMnMnM ++×+++
=                                                        (21) 175 

where ))1(( +mnc is defined in Eq. (10) and ))1()1(( +×+ mnmnC is called the coefficient matrix. We 176 

consider that 4=M  and 3=n . That is 177 
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sing the vector )16(c in Eq. (22), the coefficient matrix  1616×
C  in Eq. (21) determined by 182 
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where 3,2,1,0, =iCi  are 44×  matrices given by 184 
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With the powerful properties of Eqs. (13-23), the solution of Volterra-Fredholm integral equation 186 

of the second kind can be easily found. 187 

 188 
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IV. Solution of Volterra- Fredholm integral equation of the second kind via hybrid 189 

functions 190 

Consider the following integral equation: 191 
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Applying Eqs. (10), (12) and (20) to Eq. (25) and Eq.(25) becomes  200 

∫++=

x

TTTT
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where YtOBHtOBHYtMtOBHY T )()()()(
~

== is a copy of (21). The integrals of (26) can be 202 

obtained by multiplying the operation matrix of integration of (14) as follows:      203 

)(
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TTTT
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In order to find Y  we collocate Eq. (27) in )1( +nM  nodal points of Newton-Cotes [9] as 205 

)1(2
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+

−
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i
t i                                                                                                               (28) 206 

From Eqs. (27) and (28), we have a system of )1( +nM linear equations and )1( +nM  207 

unknowns. After solving above linear system, we can achieve the unknown vectorsY . The 208 

required approximated solution )(xy for Volterra–Fredholm integral Eq. (1) can be obtained by 209 

using Eqs.(22), (26) and (27) as follows 210 

)(
~

)()()()( 21 xOBHPYKxOBHYDKxOBHxfxy
TT

++=  211 
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 212 

V. Numerical Examples 213 

 We applied the presented schemes to the following Volterra- Fredholm integral equation 214 

of second kind. For this purpose, we consider two examples. 215 

 216 

5.1. Example 1 217 

Consider the following linear Volterra- Fredholm integral equation 218 

4

0

1

0

3

1

3

2
)(

)25()()()()(

xxxf

dttyxtdttyxtxfxy

x

−=

++= ∫∫
If we 219 

solve (25) for )(xy directly, the analytic solution can be shown to be .)( xxy =  220 

 The comparison among the OBH solution and the analytic solution for )1,0[∈t is shown in 221 

Table 1 and Fig. 1 for M=4 and n=3, which confirms that the OBH method gives almost the 222 

same solution as the analytic method. The average relative errors of our method 223 

61012574987.6 −
× . Better approximation is expected by choosing the optimal 224 

values of M and n.  225 

X OBH solution Analytic solution 

 

0.1 0.10000003 0.1 

0.2 0.19999999 0.2 

0.3 0.29999999 0.3 

0.4 0.40000002 0.4 

0.5 0.49999999 0.5 

0.6 0.60000001 0.6 

0.7 0.69999999 0.7 

0.8 0.79999999 0.8 

0.9 0.90000007 0.9 

Table.1. The comparison among OBH and analytic solutions for example 2 226 

Fig.1. Absolute error for Example 2 227 
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 228 

 229 

5.2. Example 2 230 

1)(

)25()()()()()()(

22

1

00

2

++−−−+=

++−+= ∫∫

xexexexeexf

dttyxtxdttytxxfxy

xxxx

x

231 

With the exact solution xexy =)(  232 

The comparison among the OBH solution and the analytic solution for )1,0[∈t is shown in Table 233 

2 and Fig. 2 for M=2and n=1 which confirms that the OBH method gives almost the same 234 

solution as the analytic method. The average relative errors of our method 6101516485.1 −
× . 235 

Better approximation is expected by choosing the higher 236 

values of M and n.  237 

X OBH solution The Exact Solution 

0.1 1.105134 1.10586745 

0.2 1.221474 1.2217852 

0.3 1.349841 1.349112 

0.4 1.491835 1.491474 

0.5 1.648742 1.648536 

0.6 1.822146 1.822787 

0.7 2.013712 2.013752707 

0.8 2.2255464 2.225540928 

0.9 2.45960213 2.459603111 

Table.2. The comparison among OBH and analytic solutions for example 2 238 

Fig.2. Absolute error for Example 2 239 
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 240 

 241 

 242 

 243 

6. Conclusion 244 

 In this paper by use of the combination of orthonormal Bernstein and Block-Pulse 245 

functions we solved linear Volterra- Fredholm integral equations. The method is based upon 246 

reducing the system into a set of algebraic equations. The generation of this system needs just 247 

sampling of functions multiplication and addition of matrices and needs no integration. The main 248 

advantage of this method is its efficiency and simple applicability . The matrix D and P  are 249 

sparse; hence are much faster than other functions and reduces the CPU time and the computer 250 

memory, at the same time keeping the accuracy of the solution. The numerical examples support 251 

this claim. Also we noted that when the degree of  Hybrid Orthonormal Bernstein and Block-252 

Pulse Functions is increasing the errors decreasing to smaller values. The advantages of these 253 

hybrid functions are that the values of n and m are adjustable as well as being able to yield more 254 

accurate numerical solutions than the piecewise constant orthogonal function, for the solutions of 255 

integral equations. 256 

 257 

References 258 

 259 

[1] F. Bloom, “ Asymptotic bounds for solutions to a system of damped integro-differential 260 

equations of electromagnetic theory”, J. Math. Anal. Appl. 73 (1980) 524-542. 261 

UNDER PEER REVIEW



14 

 

[2] K. Holmaker, “ Global asymptotic stability for a stationary solution of a system of integro-262 

differential equations describing the formation of liver zones”, SIAM J. Math. Anal. 24 (1) 263 

(1993) 116-128. 264 

[3] M.A. Abdou, “ On asymptotic methods for Fredholm_Volterra integral equation of the 265 

second kind in contact problems”, J. Comput. Appl. Math. 154 (2003) 431-446. 266 

[4] L.K. Forbes, S. Crozier, D.M. Doddrell, “ Calculating current densities and fields produced 267 

by shielded magnetic resonance imaging probes”, SIAM J. Appl. Math. 57 (2) (1997) 401-425. 268 

 [5] A.D. Polyanin, A.V. Manzhirov, “   Handbook of Integral Equations”,2nd ed., Chapman& 269 

Hall/CRC Press, Boca Raton, 2008, Updated, Revised and Extended. 270 

[6] M.A. Golberg, “  The convergence of a collocations method for a class of Cauchy singular 271 

integral equations”, J. Math. Appl. 100 (1984) 500–512. 272 

[7] E.V. Kovalenko, “  Some approximate methods for solving integral equations of mixed 273 

problems”, Provl. Math. Mech. 53 (1) (1989) 85–92. 274 

[8] B.J. Semetanian, “  On an integral equation for axially symmetric problem in the case of an 275 

elastic body containing an inclusion”, J. Appl. Math. Mech. 55 (3) (1991) 371-375. 276 

[9] G.M. Philips, P.J. Taylor, Theory and Application of Numerical Analysis, Academic Press, 277 

New York, (1973). 278 

[10] J. Frankel, “  A Galerkin solution to regularized Cauchy singular integro-differential 279 

equation”, Quart. Appl. Math. 52 (2) (1995) 145–258.  280 

[11] K. Maleknejad, B. Basirat, E. Hashemizadeh, “   A Bernstein operational matrix approach 281 

for solving a system of high order linear VolterraFredholm integro-differential equations”,Math. 282 

Comput. Model., 55 (2012) 1363–1372. 283 

[12] T.J. Rivlin, “  An introduction to the approximation of functions, New York, Dover 284 

Publications”,(1969). 285 

 [13] R.Y. Chang, M.L. Wang, “  Shifted Legendre direct method for variational problems, J. 286 

Optim. Theory Appl. 39 (1983) 299–307. 287 

[14] K. Maleknejad, M. Shahrezaee, H. Khatami, Numerical solution of integral equations 288 

system of the second kind by Block-Pulse functions, Applied Mathematics and Computation, 289 

166 (2005) 15-24. 290 

UNDER PEER REVIEW



15 

 

[15] E. Babolian, Z. Masouri, Direct method to solve Volterra integral equation of the first kind 291 

using operational matrix with block-pulse functions, Applied Mathematics and Computation, 220 292 

(2008) 51-57. 293 

[16] K. Maleknejad, S. Sohrabi, B. Berenji, Application of D-BPFs to nonlinear integral 294 

equations, Commun Nonlinear Sci Numer Simulat, 15 (2010) 527-535 295 

[17] K. Maleknejad, K. Mahdiani, Solving nonlinear mixed Volterra Fredholm integral equations 296 

with two dimensional block-pulse functions using direct method, Commun Nonlinear Sci Numer 297 

Simulat, Article in press. 298 

[18] K. Maleknejad, B. Rahimi, Modification of Block Pulse Functions and their application to 299 

solve numerically Volterra integral equation of the first kind, Commun Nonlinear Sci Numer 300 

Simulat, 16 (2011) 24692477. 301 

[19] K. Maleknejad, M. Mordad, B. Rahimi, A numerical method to solve Fredholm-Volterra 302 

integral equations I two dimensional spaces using Block Pulse Functions and operational matrix, 303 

Journal of Computational and Applied Mathematics,  10.1016/j.cam.2010.10.028 304 

[20] E. Babolian, K. Maleknejad, M. Roodaki, H. Almasieh, Twodimensional triangular 305 

functions and their applications to nonlinear 2D Volterra-Fredholm integral equations, Computer 306 

and Mathematics with Applications, 60 (2010) 1711-1722. 307 

[21] K. Maleknejad, H. Almasieh, M. Roodaki, Triangular functions (TF) method for the 308 

solution of nonlinear Volterra-Fredholm integral equations, Commun Nonlinear Sci Numer 309 

Simulat, 15 (2010) 3293-3298. 310 

[22] F. Mirzaee, S. Piroozfar, Numerical solution of the linear twodimensional Fredholm integral 311 

equations of the second kind via twodimensional triangular orthogonal functions, Journal of 312 

King Saud University, 22 (2010) 185-193 . 313 

[23] Y. Ordokhani, Solution of nonlinear Volterra-Fredholm-Hammerstein integral equations via 314 

rationalized Haar functions, Applied Mathematics.  315 

[24] K. Maleknejad, M.T. Kajani, Solving second kind integral equations by Galerkin methods 316 

with hybrid Legendre and Block-Pulse functions, Applied Mathematics and Computation, 145 317 

(2003) 623-629. 318 

[25] E. Hashemzadeh, K. Maleknejad, B. Basirat, Hybrid functions approach for the nonlinear 319 

Volterra-Fredholm integral equations, Procedia Computer Sience,3 (2011) 1189-1194. 320 

UNDER PEER REVIEW



16 

 

[26] H.R. Marzban, H.R. Tabrizidooz, M. Razzaghi, A composite collection method for the 321 

nonlinear mixed Volterra-Fredholm-Hammerstein integral equation, Commun Nonlinear Sci 322 

Numer Simulat,16 (2011) 1186-1194. 323 

[27] M.T. Kajani, A. H. Vencheh, Solving second kind integral equations with Hybrid 324 

Chebyshev and Block-Pulse functions, Applied Mathematics and Computation, 163 (2005) 71-325 

77. 326 

UNDER PEER REVIEW


