1

2 3

Original Research Article Effects of Vermicompost on the Growth and Yield of Sweet Corn in Bukidnon, Philippines

- 4 5 6
- ABSTRACT

Aims: To determine the influence of fertilizer on the growth and yield of sweet corn grown under Bukidnon, Philippines condition.

Place and Duration of Study: Research Station of IPB-UPLB, Central Mindanao University, Musuan, Bukidnon, Philippines on February 2016 to May 2016.

Methodology: Soil samples were taken from the site for initial characterization. Six treatments were employed; T_1 - no fertilizer, T_2 - Recommended rate of inorganic fertilizer (RRIF) based on soil analysis of the experimental area (70 - 50 - 0 N, P₂O₅, K₂O kg ha⁻¹), T₃- 2 tons ha-¹ Vermicompost, T₄- $\frac{1}{2}$ RRIF (35 - 25 - 0 N, P₂O₅, K₂O kg ha⁻¹) + 1 ton ha⁻¹ Vermicompost, T₅- $\frac{1}{2}$ RRIF (35 - 25 - 0 N, P₂O₅, K₂O kg ha⁻¹) + 1 ton ha⁻¹ Vermicompost, T₅- $\frac{1}{2}$ RRIF (35 - 25 - 0 N, P₂O₅, K₂O kg ha⁻¹) + 1 ton Vermicompost. Harvesting proceeded at 70 days after sowing (DAS).

Results: The application of Full RRIF + 1 ton Vermicompost ha⁻¹ significantly influenced the plant height of sweet corn at 20 DAS. Soil's negative logarithm of hydrogen ions present or pH was greatly affected by the application of inorganic fertilizer alone. Moreover, the application of ½ RRIF + 2 tons of Vermicompost ha⁻¹ caused significant effects towards the organic matter content (%) of the soil at harvest. On the other hand, the yield of sweet corn measured by the number of ears expressed in per hectare basis shows to be highly affected by the application of Full RRIF along with 1 ton Vermicompost ha⁻¹.

Conclusion: The combined application of the recommended rate of inorganic fertilizer and Vermicompost are possible ways that may be undertaken in order to yield sweet corn in higher portion under Bukidnon condition as well as maintaining the quality of the soil of Bukidnon, Philippines.

7 8 9

Keywords: Growth; Yield; Sweet corn; Fertilizer; Bukidnon.

1. INTRODUCTION

10 11

Sweet corn scientifically known as *Zea mays* L. *var Saccharata* is a variety of maize with a high sugar content. Sweet corn is the result of a naturally occurring recessive mutation in the genes which control conversion of sugar to starch inside the endosperm of the corn kernel. Unlike field corn varieties, which are harvested when the kernels are dry and mature (dent stage), sweet corn must be picked when immature (milk stage) and prepared and eaten as a vegetable, rather than a grain. Since the process of maturation involves converting sugar to starch, sweet corn stores poorly and must be eaten fresh, canned, or frozen, before the kernels become tough and starchy [1].

The key to high quality sweet corn is rapid growth, adequate soil moisture and nutrients, and harvesting the ears at optimum maturity. Sweet corn requires rich soil with ample nitrogen and moisture. Soil moisture is found critical for the germination of sweet corn, as it absorb more water than other types for germination to occur [2]. A wide variety of soils is suitable, moreover, it is important that the soil be well drained and well supplied with organic matter. The optimum range of pH for this crop is 5.8 to 7.0.

25 Fertilizer, natural or artificial substance containing the chemical elements that improve growth 26 and productiveness of plants. Fertilizers enhance the natural fertility of the soil or replace the chemical 27 elements taken from the soil by previous crops [3]. Inorganic fertilizer contains a combination of chemicals and minerals that were produced in a refinery, and it offers gardeners and farmers a more 28 29 reliable form of plant nourishment because its nutrient levels are calculated to be consistent, thus, 30 nutrients are already in their available form allowing them to be easily absorbed and metabolized by 31 the growing plants. However, inorganic fertilizer also affects soil in ways that can harm plants if the 32 fertilizer is not applied carefully. Inorganic fertilizers provide the same three major nutrients that 33 organic fertilizers do: nitrogen, phosphorus and potassium, however, the organic fertilizers can 34 provide all the nutrients needed by the plants to complete its life cycle. Plants receive these nutrients 35 more quickly from inorganic fertilizer, however, because the refinery has already broken them down 36 into a digestible form; organic fertilizers must dissolve in the soil first, and the amount of nutrition they deliver is imprecise. For these reasons, inorganic fertilizer has a swifter, more efficient effect on plants[21].

The province of Bukidnon is considered to be the food basket of Mindanao, being the major producer of rice and corn in the region. Products from plantations in the province also include pineapples, bananas and sugarcane. Two types of climate prevail between the northern and southern sections of Bukidnon, The northern part is classified as belonging to Type III, that is, there is no pronounced rain period but relatively dry during the months of November to May. In the southern portion of the province, the climate is classified as Type IV with no dry season [4].

46 2. MATERIALS AND METHODS 47

48 **2.1 Location**

49 50

51

52 53

54

The field experiment was conducted at the Research Station of IPB-UPLB (7° 51' 31.788" N and 125° 3' 40.4568" E), Central Mindanao University, Musuan, Bukidnon, Philippines.

2.2 Collection, preparation and characterization of soil samples

55 Surface soil samples at 0-20 cm depth were collected randomly from the experimental area 56 following a zigzag direction prior to the land preparation. The collected soil samples were placed in cellophane bags and then brought to the Soil and Plant Analysis Laboratory (SPAL), Department of 57 Soil Science, College of Agriculture, Central Mindanao University, Musuan, Bukidnon, Philippines 58 59 wherein laboratory analyses were conducted. Prior to analysis, the collected soil samples were airdried at room temperature for about a week, and passed through a 2-mm sieve and were stored in a 60 clean plastic containers. Soil samples were also collected from each experimental plot after harvest of 61 62 sweet corn. The chemical and physical properties of the soil were determined and analyzed at the Soil and Plant Analysis Laboratory (SPAL). The properties tested include: soil pH in 0.01 M CaCl₂ at a 63 64 soil to solution ratio of 1:5 [6]; organic matter content by the Walkley and Black method [7]; extractable 65 P using the Bray 2 method [8] and exchangeable K using 1N NH₄OAc buffered at pH 7.0 using a 66 Flame photometer [5].

67 68 69

70

71

72

73

78

79 80

81

82

87

2.3 Characteristics of soil in the experimental area

Table 1 shows that the soil samples collected from the experimental area has a pH value of 5.52 and is classified as strongly acidic [11]. The soil has organic matter content of 3.90% which is considered marginal [5]. For the extractable phosphorus, it has a value of 17.37 mg kg⁻¹ and is classified as medium in amount [10]. On the other hand, exchangeable potassium was found high in amount because of its value 1.11 cmol kg⁻¹ [10]. Hence, the fertilizer recommendation for the experimental site was 70-50-0 kg ha⁻¹ of N, P₂O₅ and K₂O.

2.5 Land preparation and lay-outing

The total land area used in the experiment was 463.75 m² (35 m x 13.25 m). It was divided into three (3) blocks and each block had a dimension of 131.25 m². A one meter space was provided between blocks and experimental plots as alleyways. The field was plowed using an animal-drawn moldboard plow. Plowing was done twice at one week interval to destroy the emerging weeds. Harrowing was done after plowing to further pulverize larger soil aggregates. Furrows were made at the time of planting at a distance of 75 cm between rows and 25 cm between hills.

94 95

^{2.4} Experimental design and treatments

The field experiment was laid out in a Randomized Complete Block Design (RCBD) with six (6) treatments and replicated three (3) times. Treatments include: T_1 - no fertilizer, T_2 - Recommended rate of inorganic fertilizer (RRIF) based on soil analysis of the experimental area (70 – 50 – 0 N, P₂O₅, K₂O kg ha⁻¹), T_3 - 2 tons ha-¹ Vermicompost, T_4 - ½ RRIF (35 – 25 – 0 N, P₂O₅, K₂O kg ha⁻¹) + 1 ton ha⁻¹ Vermicompost, T_5 - ½ RRIF (35 – 25 – 0 N, P₂O₅, K₂O kg ha⁻¹) + 2 tons ha⁻¹ Vermicompost and T_6 -RRIF (70 – 50 – 0 N, P₂O₅, K₂O kg ha⁻¹) + 1 ton Vermicompost.

96 Table 1. Chemical properties of soil in the experimental soil (0-20 cm)

			97
Properties	Value	<mark>Methods</mark>	98
pH	<mark>5.52</mark>	0.01 M CaCl ₂	99
Organic Matter Content, %	<mark>3.90</mark>	Walkley-Black	100
Extractable Phosphorus, mg kg ⁻¹	<mark>17.37</mark>	Bray P ₂	101
Exchangeable Potassium, cmol kg ⁻¹	<mark>1.11</mark>	1N NH₄OAc / Flame photo	meter 02
			103

104 2.6 Fertilizer application and vermicompost composition

105

106 The Vermicompost was sourced out from one of the Vermi farms in Valencia City. Bukidnon. 107 Philippines. The Vermicompost was applied in those plots assigned with organic fertilizer as treatment following the rate of two (2) tons ha⁻¹. It was carefully broadcasted within each plot before the seeding 108 operation. While basal application of inorganic fertilizer was done in treatments assigned to inorganic 109 110 fertilizer. Inorganic fertilizers were placed in a hole in the furrow covered with a thin layer of soil then 111 followed by the sowing of seeds and then covered again with soil to have a close contact between the 112 seed and the soil, thus, would facilitate uniform germination.

The chemical composition of Vermicompost used in the experiment include: pH of 6.52 and 113 114 an organic matter content of 32.45 %. For the nutrient content, total nitrogen of 2.82 %, total 115 phosphorus of 1.14 % and total potassium of 0.45 %.

117 2.7 Care and management

118

127

133

138

140

116

119 Care and management immediately started right after seeding up to the harvesting period. 120 Weed population was closely monitored to avoid possible competition of nutrients. Moreover, disease 121 monitoring was also done. Application of pesticides was also employed due to the evident infestation 122 of insect pests. Due to adverse climatic condition during the conduct of the experiment, irrigation was 123 done once a week to sustain the water need of the crop. Irrigation ceased when the experimental 124 plants were about to be harvested at 65 DAS. 125

126 2.8 Tagging of Data Plants

128 Ten (10) sample plants were randomly selected from data rows in each experimental plot. A 129 sheet of white paper was stapled to each data plants to serve as marker and guide during data 130 collection. 131

132 2.9 Statistical analysis

134 Statistical analysis was done after tabulating the gathered data through the Statistical Tool for 135 Agricultural Research (STAR) software. Moreover, some parameters were found significant as 136 manifested in the F computed value, comparison of means then proceeded using Honestly 137 Significance Difference (HSD) test as the Post hoc test undertaken [9].

139 3. RESULTS AND DISCUSSION

141 3.1 Growth of sweet corn as affected by fertilizer applications

142 143 144

The mean values of plant height at 20, 40, 60 DAS and ear height in plots treated with different fertilizers are presented and discussed in this section.

145 146 3.1.1 Plant height at 20 DAS

147

148 Table 2 shows the mean plant heights of sweet corn measured at 20, 40 and 60 DAS. Based 149 on statistical analysis, it was found out that height of sweet corn at 20 DAS was significantly affected 150 by the fertilizers applied. Where plots treated with Full RRIF + 1 ton Vermicompost ha⁻¹ (T_6) got the 151 tallest plants, however, post hoc analysis would say that T_6 has no significant difference with T_2 , T_3 , T_4 152 and T_5 . But significantly different with that of T_1 (no fertilizer). These results are in agreement with the 153 findings of other researchers [12,13] who reported that there is a significant increase in growth

154Table 2. Plant height at 20, 40, 60 DAS and ear height of sweet corn as affected by fertilizer155application

156

1	REATMENTS	PLANT HEIGHT, cm			Ear
CODE	DESCRIPTION	20 DAS^{\dagger}	40 DAS	60 DAS	height, cm
T ₁	No fertilizer	37.48 b	117.22	195.30	85.23
T_2	Full RRIF	43.20 ab	135.18	207.87	95.40
T_3	2 tons Vermicompost ha ⁻¹	43.27 ab	137.65	209.67	95.30
T_4	½ RRIF + 1 ton Vermicompost ha ⁻¹	40.50 ab	121.85	188.90	89.53
T_5	1/2 RRIF + 2 tons Vermicompost ha ⁻¹	41.41 ab	136.00	202.60	94.30
T ₆	Full RRIF + 1 ton Vermicompost ha ⁻¹	44.58 a	135.10	198.70	90.97

[†] Means followed by the same letter(s) are not significantly different at 5% level of significance based on HSD

parameters including plant height and number of leaves of corn plants when applied with NPK fertilizers. At 40 and 60 DAS, no significant difference was noted among plants treated with different fertilizer materials, however, this result is contradictory to the report of [14] that application of fertilizer particularly nitrogen could cause increase in height of corn as it will promote more cell division.

165 3.1.2 Ear height of plants

166
167 Ear heights of sweet corn plants were measured and is presented in Table 2. Analysis of
168 variance declares no significant influence was observed among the sweet corn plants by the imposed
169 treatments.

171 3.2 Yield components and yield of sweet corn as affected by fertilizer 172 application

173 174

170

157

158

159

The mean values of ear diameter, ear length and yield (number of ears per hectare) in plots treated with different fertilizers are presented and discussed in this section.

175 176 177

3.2.1 Ear diameter and ear length of sweet corn

The ear diameter of sweet corn is presented in Table 3. Fertilizer treatments gave no significant effects towards the ear diameter of sweet corn. Largest ear diameter was observed in those plots applied with 2 tons ha⁻¹ of Vermicompost (T₃) with a value of 5.13 cm while smallest was observed in those plots with no fertilizer application (T₁) with a value of 4.73 cm. These results were opposite to the report of [15] who reported that application of amendments like fertilizer with NPK can lead into an increase in plant height, stem girth, number of leaves, leaf area, number of cobs, ear diameter and length, weight of cob, 100-grain weight, and grain yield of maize.

Ear length of sweet corn gave no significant response on the influence of fertilizers applied. Ear length in plots treated 2 tons ha⁻¹ of Vermicompost gave the longest length with 20.47 cm. Shortest length was observed in those plots treated with $\frac{1}{2}$ RRIF + 2 tons Vermicompost ha⁻¹ (T₅). Results were conflicting to the results of [12,1314,15] who reported that application of fertilizers could cause improvements and increase in corn growth and yield performance as it will supply the nutrients needed by the planted crop.

192

193 3.2.2 Yield (number of ears) of sweet corn per hectare

194

Highest number of ears was observed in those plots applied with Full RRIF + 1 ton Vermicompost ha⁻¹ (T₆) with a value of 48820 ears per hectare. Moreover, lowest yield was noted in those plants that were applied with $\frac{1}{2}$ RRIF + 2 tons Vermicompost ha⁻¹ having a value of 42222 ears per hectare.

Table 3. Ear diameter, ear length and yield of sweet corn as affected by fertilizer application

	TREATMENTS	Ear	Ear	Yield [†]
CODE	DESCRIPTION	diameter, cm	length, cm	(number of ears) ha⁻¹
T ₁	No fertilizer	4.73	19.93	43757 b
T_2	Full RRIF	5.00	19.43	45197 b
T_3	2 tons Vermicompost ha ⁻¹	5.13	20.47	43596 b
T_4	1/2 RRIF + 1 ton Vermicompost ha ⁻¹	4.93	19.40	44406 b
T_5	1/2 RRIF + 2 tons Vermicompost ha ⁻¹	4.93	19.20	42222 b
T_6	Full RRIF + 1 ton Vermicompost ha ⁻¹	4.97	19.83	48820 a

[†]Means followed by the same letter(s) are not significantly different at 5% level of significance based on HSD

220

205 Statistical analysis declares that the yield of sweet corn is significantly affected by the 206 treatments. Moreover, post hoc test reveals that T_6 (Full RRIF + 1 ton Vermicompost ha⁻¹) is 207 significantly the highest among all the treatments imposed. Reports of [16,17] show that there was an 208 increase in yield among sweet corn plants treated with inorganic fertilizers, organic fertilizers and their 209 combinations. It was known that application of inorganic fertilizer would lead to an increased yield due 210 to the readily available and mineralized nutrients present in inorganic fertilizers along with constant 211 release of nutrients by organic fertilizers. Thus, these reports were confirmations to the results and 212 findings of this study, that fertilizers can cause increase in the yield of sweet corn. Moreover, the 213 report of [20] revealed the same results as to with the influence of available nutrients from fertilizers 214 (organic and inorganic) with regards the highest yield obtained in T_6 .

The experimental area has a marginal amount of organic matter [7] making sweet corn plants still very productive amidst no application of fertilizer in T_1 . Thus, showing no significant difference as observed in terms of yield and other growth parameters for treatments T_1 , T_2 , T_3 , T_4 and T_5 .

219 **3.3 Soil chemical properties at harvest as affected by fertilizer application**

The mean values of soil pH, organic matter content (%), extractable P (mg ka⁻¹) and exchangeable K (cmol kg⁻¹) in plots treated with different fertilizers are presented and discussed in this section.

225 3.3.1 Soil chemical properties at harvest

226 227 The pH was significantly affected by the imposed fertilizer treatment based on soil analysis 228 conducted [6] after harvest as presented in Table 4. Plots with no fertilizer application (T_1) had the 229 highest pH value of 5.85 which was significantly higher with those plots treated with Full RRIF + 1 ton 230 Vermicompost ha⁻¹ (T₆). However, post hoc analysis using HSD at 5% level of significance revealed 231 that T_1 pH value has no significant difference with of T_2 , T_3 , T_4 and T_5 . Results presented by [18] is opposite to the findings of the study. The reason is due to the short period of time that sweet corn 232 233 stays in the field. Sweet corn plants are harvested in less than 3 months which would cause 234 incomplete reactions in the soil. Leading to a change in pH.

235 Organic matter content of the soil was found significantly affected by the imposed treatments 236 based on statistical analysis. Highest organic matter content was observed in plots applied with 1/2 237 RRIF + 2 tons Vermicompost ha⁻¹ (T₅) followed by those plots treated with 2 tons Vermicompost ha⁻¹ (T₃), $\frac{1}{2}$ RRIF + 1 ton Vermicompost ha⁻¹ (T₄), Full RRIF + 1 ton Vermicompost ha⁻¹ (T₆) and lastly T₁ 238 239 (no fertilizer) and T_2 (Full RRIF). Post hoc test reveals that T_5 value was not significantly different with 240 that of T_3 , T_4 and T_6 . But significantly higher with that of T_1 and T_2 . Application of organic fertilizer like 241 Vermicompost can readily increase and improve the amount of organic matter in the soil as reported 242 by [19]. The extractable P measured in mg kg⁻¹ was not significantly affected by fertilizer treatments. However, highest value was obtained by those plots applied with ½ RRIF + 2 tons Vermicompost ha⁻¹ 243 244 (T_5) . Exchangeable K was also not significantly affected by the imposed treatments of fertilizer. 245 Highest value was also obtained by those plots treated with $\frac{1}{2}$ RRIF + 2 tons Vermicompost ha⁻¹ (T₅). 246 Treatment 5 got the highest values for extractable P and exchangeable K at harvest.

²⁰² 203 204

Table 4. pH, organic matter content, extractable P and exchangeable K of soil at harvest as affected by fertilizer application

Т	REATMENTS	Some Soil Chemical Properties at Harvest			Harvest
CODE	DESCRIPTION	pH [†]	Organic Matter [†] Content, %	Extractable P, mg kg ⁻¹	Exchangeable K, cmol kg ⁻¹
T ₁	No fertilizer	5.85 a	3.93 b	11.00	1.24
T ₂	Full RRIF	5.59 ab	3.93 b	14.33	1.20
T_3	2 tons Vermicompost ha ⁻¹	5.84 a	4.11 ab	14.17	1.21
T_4	½ RRIF + 1 ton Vermicompost ha ⁻¹	5.72 ab	4.05 ab	10.17	1.13
T_5	½ RRIF + 2 tons Vermicompost ha ⁻¹	5.65 ab	4.15 a	16.33	1.26
T_6	Full RRIF + 1 ton Vermicompost ha ⁻¹	5.54 b	4.00 ab	13.33	1.23

[†] Means followed by the same letter(s) are not significantly different at 5% level of significance based on HSD

253 4. CONCLUSION

249

250

251

252

254

264

265 266

267

268

273

274

275 276

277

278

255 Results of this study show that the application of inorganic fertilizer and Vermicompost toward 256 Bukidnon soil planted to sweet corn affect productivity as revealed in the statistical analysis undertaken. The combined effcts of both type of fertilizer is promising towards the productivity and 257 258 maintenance of soil quality and fertility. Greater yield, being the common objective of any farmer 259 particularly in Bukidnon area, may consider the combined influence of inorganic fertilizer and 260 Vermicompost in sweet corn production. Thus, the combined application of fertilizers caused 261 promising growth performance towards sweet corn plants planted under Bukidnon, Philippines 262 condition. 263

REFERENCES

 Erwin, A. T. Sweet Corn—Mutant or historic species? *Economic Botany*. Springer New York. 5 (3): 302. July 1951. doi:10.1007/bf02985153

- Cox, R. 2010. Growing sweet corn in the backyard garden. 888 E. Iliff Avenue, Denver, CO80210.
 Accessed 21 May 2018. Available: http://www.colostate.edu/Dept/CoopExt/4dmg/VegFruit/corn.
 htm
 - Scherer HW. "Fertilizers" in Ullmann's Encyclopedia of Industrial Chemistry. 2000, Wiley-VCH, Weinheim. doi:10.1002/14356007.a10_323.pub3
 - Department of Tourism. tourism.gov.ph. Archived from the original on 21 March 2018. Retrieved 1 May 2018.
- PCARRD. Standard Method of Analysis for Soils, Plants Tissue, Water and Fertilizers. Los Baños, Laguna, Philippines. 1991.
- Mclean EO. Soil pH and lime requirement. In: Page AL, Miller RH, Keeney DR. Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, 2nd Edition. ASA, SSA, Madison, Wisconsin, USA; 1982.
- Nelson DW, Sommers LE. Organic carbon. In: Page AL, Miller RH, Keeney (eds). Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, 2nd Edition. ASA, SSA, Madison, Wisconsin, USA; 1982.

- Bray RH, Kurtz LK. Determination of total, organic and available forms of phosphorus in soil. Soil
 Science. 1945; 59: 39–45.
- 293 9. STAR. Statistical Tool for Agricultural Research version 1.0. 2018. http://bbi.irri.org/
- 295 10. Landon JR. Booker Tropical soil manual: a handbook for soil survey and agricultural land
 296 evaluation in the tropics and subtropics. (Booker Tate: Longman Scientific & Technical, Harlow,
 297 UK). 1984.
 298
- 11. USDA. Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys. 1998.
 301
- Adiaha MS, Agba OA. Influence of different methods of fertilizer application on the growth of maize (Zea mays L.). for increase production in South Nigeria. WSN 54 (2016) 73-86 EISSN 2392-2192.. Available: http://www.worldscientificnews.com/wp-content/uploads/2016/01/WSN-54-2016-73-86-1.pdf. Accessed 21 May 2018
- 307
 13. Makinde EA, Ayoola OT. Growth, yield and NPK uptake by maize with complementary organic and inorganic fertilizers. African Journal of Food, Agriculture, Nutrition and Development. Volume
 309
 309
 309
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300<
- 14. Anjorin FB. Comparative growth and grain yield response of five maize varieties to nitrogen
 fertilizer Application. Greener Journal of Agricultural Sciences, 3(12): 801-808. Available:
 http://doi.org/10.15580/GJAS.2013.12.060913818. Accessed 21 May 2018.
- Ndukwe OO, IA Ekesiobi, NC Uzondu and ELC Nnabuife. Growth and yield responses of maize
 (Zea mays) to poultry manure and NPK 15-15-15 fertilizer in Igbariam, Anambra State,
 Southeastern Nigeria. International Journal Agricultural Biosciences, 3(6): 261-265. 2014.
 Available: www.ijagbio.com 2014. Accessed 21 May 2018.
- 16. Lazcano C, Revilla P, Malvarb RA. Dom´ıngueza J. Yield and fruit quality of four sweet corn hybrids (Zea mays) under conventional and integrated fertilization with Vermicompost. (wileyonlinelibrary.com) DOI 10.1002/jsfa.4306. Available: https://pdfs.semanticscholar.org/ f7a2/9ac300c6f37 e8971e0890171143744613f8b.pdf. Accessed: 21 May 2018.
- Mariusz S, Jacek P. Effect of different rates of nitrogen fertilizer on growth and yield of sweet corn cobs. Teka. Commission of Motorization and Energetics in Agriculture 2013, Vol. 13, No. 1, 197–200. Available:agro.icm.edu.pl/agro/element/bwmeta1.element.agro...4dfd.../197_Teka_ 13
 _1.pdf. Accessed 21 May 2018.
- 18. Arsova A. Effect of fertilizer application and soil ph on the acidic and sorption properties of maize
 leaves and stems. Bulgarian Journal of Plant Physiology, 1995, 21(1), 52–57. Available:
 http://www.bio21.bas.bg/ipp/gapbfiles/v-21/95_1-52_57.pdf. Accessed: 21 May 2018
- 19. Canatoy R. Growth and yield response of sweet corn (Zea mays I. var. saccharata) as affected by
 tillage operations and fertilizer applications. International Journal of Education and Research Vol.
 6 No. 4 April 2018. Available: http://www.ijern.com/journal/2018/April-2018/22.pdf. Accessed: 21
 May 2018.
- Sastro Y and Lestari IP. The growth and yield of sweet corn fertilized by dairy cattle effluents
 without chemical fertilizers in inceptisols. Journal of Tropical Soils Vol. 16, No. 2, 2011. doi:
 10.5400/JTS.2011.16.2.139. Available: https://media.neliti.com/media/publications/133877-enthe-growth-and-yield-of-sweet-corn-ferti.pdf. Accessed: June 4, 2018.
- 345 21. Mullin S. The effects of inorganic fertilizers. https://www.hunker.com/12391088/the-effects-of 346 inorganic-fertilizers. Accessed: June 4, 2018.
- 347

344

292

294

306

311

320