1	Rice yield potential under unfavorable soil ecosystems in Bangladesh
2	Jatish Chandra Biswas ¹ Md Mozammel Haque ^{1,*} , P K Saha ¹
3	¹⁾ Soil Science division, Bangladesh Rice Research Institute, Gazipur-1701
4	
4 5	
6	
7	
8	
9	
10	
11	* Corresponding Author:
12	Md. Mozammel Haque
13	Email: <u>mhaquesoil@yahoo.com</u>
14	
15	
16	
17	
18	
19 20	
21	
22	
23	
24	
25	
26	
27	
28	
29 30	
30 31	
32	
33	
34	
35	
36	
37	Abstract
38	

Unfavorable ecosystems in Bangladesh are under intense pressure of crop production and climate 39 change impact; although the relationships of indigenous soil nutrients ratios with crop 40 performance are vet to be fully explored. Experiments were conducted under submergence and 41 cold prone areas (agricultural ecological zone, AEZ-3), drought and cold prone areas (AEZ-26), 42 non-saline tidal flood ecosystem (AEZ-13), char and saline prone ecosystem (AEZ-18) and haor 43 44 ecosystem (AEZ-21) for evaluating rice grain yield with native nutrients ratios. Synergistic and antagonistic relationships were observed in different AEZ depending on indigenous nutrient 45 ratios. The Ca:P and N:Zn ratios were playing significant negative role with rice yield in wet 46 47 season. In dry season, P:K ratio was acting antagonistically in AEZ-18, AEZ-3 and AEZ-26 but K:Mg, Ca:Zn S:Zn P:Zn were playing synergistic role in the same localities. The C:K ratio was 48 playing antagonistic role with dry season irrigated rice yield in AEZ-13 and AEZ-21. Dry season 49 irrigated rice grain yield was 13-27% lower in AEZ-26 than others AEZ because of variations in 50 negative ratios of nutrients. Application of 187-13-75-15-1.1, 174-27-19-840, 162-11-58-11-0, 51 180-24-14-15-4 and 144-36-5-3-0 kg/ha of N-P-K-S-Zn, respectively for Rangpur, Rajshahi, 52 Barisal, Sonagazi and Habigani improved dry season rice yield significantly in all AEZ except 53 AEZ-18 compared to indigenous soil fertility. Soil separates showed variable relationships with 54 indigenous nutrient ratios in different AEZ. It is concluded that indigenous soil nutrient ratios 55 play a vital role in improving rice yield under unfavorable ecosystems. 56

- 57 Key word: Agricultural ecological zone, Native nutrient ratio, Rice yield
- 58 Introduction

59

60 Rice plays an important role in food security of Bangladesh and farmers grow this crop in 61 most of their land throughout the year. It covers about 77% of total cropped area (13.88 million 62 hectares) in Bangladesh (Quayum and Salam, 2012). Net cultivable area is decreasing, but food demand is increasing. It will require about 41 million metric tons of rice to feed about 169
million people by 2025 (Bhuiyan et al., 2002). The additional rice requirement needs to obtain
from favorable and unfavorable ecosystems in Bangladesh by adopting new improved genotypes
together with improved fertilizer and water management.

Fertilizer management requires proper understanding of indigenous soil nutrients and its 67 behavior in soil-plant continuum. Either excess or deficit plant nutrient conditions have been a 68 topic of intensive research since the beginning of modern agriculture. In spite of the decades of 69 research in this area, many problems still existed and increased use of fertilizers has not been 70 alleviated the problems. Interactions of soil mineral elements with plants are either antagonistic 71 72 or synergistic depending on their availability and ratios in rhizosphere. The ratios are changing because of crop culture and soil ecology and thus causing either nutrient deficiency or toxicity. 73 For example, inadequate supplies of one or more nutrients in the growing medium shift the 74 75 existing ratios of nutrients. The interactions between these factors can be extremely complex, interfering with the absorption and utilization of nutrient elements by the plants and thus leading 76 to the symptoms of abiotic nutritional damage (Bergman, 1992). Moreover, soil nutrient ratios 77 are influenced by parent materials, geological locations, intensity of cropping and use of 78 fertilizers etc (Chadwick et al., 1999; Cleveland and Liptzin, 2007). Excesses and shortages of 79 80 some nutrients affect the uptake of other nutrients. For example, plant Mg levels are reduced when soil K:Mg ratio is above 1.5:1 or Mg:K ratio is less than 0.67. This effect is severe in 81 grasses, especially with corn (Anonymous, 2016). Research works are limited on indigenous soil 82 83 nutrient ratios for unfavorable ecosystems, although they are utilizing for crop production in many countries including Bangladesh. Over the years, a significant amount of conversation and 84 85 salesmanship has revolved around the concept of the ideal soil Ca:Mg ratio. Most of the claims

86 for the ideal ratio ranges between 5:1 and 8:1 (Anonymous, 2016), although yield or quality of crop is not appreciably affected over a wide range of Ca:Mg ratios in the soil. Though stable 87 organic matter plays an important role in maintaining C:N:OP:S (carbon, nitrogen, organic 88 phosphorus and sulfur) ratios for determining the availability of N, P and S for humus-C 89 sequestration (Kirkby et al., 2011), high (Ca+Mg)/K ratios may contribute to K deficiency in rice 90 soils (Dobermann et al., 1996). All these factors have been adequately studied for crop 91 production in unfavorable ecosystems. So, the purpose of this study was to determine the effect 92 of native soil nutrient concentrations and ratios on rice yield under unfavorable ecosystems in 93 94 Bangladesh for sustainable use of those ecosystems.

95	
96	Materials and Methods
97	
98	Site description
99	Salient features of different regions are shown in Table 1
100	

101 Char and saline prone ecosystem (AEZ-18)

About 1.0 million hectares (M ha) land of Bangladesh is affected by varying degrees of salinity. Crop production in this area is dominated by traditional wet season rice (T. Aman rice) and farmers generally harvest 2 t ha⁻¹ grain yield, which is very low than other parts of the country due to soil salinity problem, drought in dry season, lack of adequate salinity tolerant varieties as well as lack of appropriate fertilizer management technologies.

107 Submergence and cold prone area (AEZ-3)

108 It covers about 2.6 million hectares. The devastating flood caused considerable loss of 109 rice crop. The average yield of rice under flood-prone ecosystem is very low (2.5 t ha⁻¹) due to lack of technologies on flood tolerance rice varieties and their appropriate fertilizer managementpackages etc.

Drought and cold prone area (AEZ-26)

It is situated in north-west part of Bangladesh. Drought is very common in this part of the country having 1200-1400 mm mean annual rainfall from June to October. Drought affected area is nearly 2.5 million hectares (Mha) in Kharif and 1.2 Mha in dry season. Rice yield is poor due to lack of sufficient water and nutrition management.

117 Non-saline tidal flood ecosystem (AEZ-13)

118 This ecosystem covers about 1.9 Mha and the average yield of rice under non-saline tidal 119 flood ecosystem is not more than 3.0 t ha⁻¹ due to lack of technologies on appropriate fertilizer 120 management packages etc.

121 Haor ecosystem (AEZ-21)

123 A haor is a wetland ecosystem in the north eastern part of Bangladesh. The total area in 124 this ecosystem is 8 Mha square kilometers. Most of this area remains under water for seven 125 months of the year. During dry season most of the water drains out, leaving small shallow lakes 126 or may completely dry out by the end of dry season. This exposes rich alluvial soil, extensively 127 cultivated for rice.

128 Cropping Pattern Based Experiments

- 129 During project period (2011-13), field experiments were conducted in Boro and T. Aman
- 130 seasons considering different cropping patterns (Table 2).
- 131

122

133	The treatments tested were: T1 = N-P-K-S-Zn @ 187-13-75-15-1.1, 174-27-19-840, 162-11-58-
134	11-0, 180-24-14-15-4 and 144-36-5-3-0 kg/ha respectively for Rangpur, Rajshahi, Barisal,
135	Sonagazi and Habiganj regions in Boro season. Similarly N-P-K-S-Zn added for wet season were
136	100-7-39-10-1, 62-11-28-9-0 and 97-12-7-10-3 in Rangpur, Rajshahi and Sonagazi, respectively
137	T_2 = Absolute control. The experiment was laid out in a randomized complete block design
138	(RCBD) with three replications.
139 140 141	Fertilizer application
142 143	One-third N and all other inorganic fertilizers were applied at final land preparation. The
144	first top dress (One-third N) was applied at 20 DAT. The rest 1/3 rd N was applied at 5-7 days
145	before panicle initiation stage after drainage out of flood water. Necessary intercultural

operations were done as and when ever required. 146

Data collection and analysis 147

At maturity, the crop was harvested from 5 m^2 area at the center of each plot. Grain and 148 straw yields were recorded. Grain yield was adjusted to 14% moisture. Nutrient contents (N, P) 149 and K) from plant samples of the cropping pattern were determined by standard laboratory 150 procedure. 151

- 152
- 153

Soil sample collection and analysis

A total of 125 composite soil samples (10 samples/spot) were collected from the surface 154 layer (0-20 cm depth) from five AEZs (3, 13, 18, 21 & 26). Soil samples were collected from 25 155 156 farmers' fields at each location. Land type, soil series and land use were recorded. Soil samples 157 were analyzed for texture, pH, EC, OC, total N, exchangeable cations (Ca, Mg and K), available P, S and Zn following standard methodology (Haque et al., 2015; Saleque et al., 2004). 158

160 161	Site specific indigenous soil nutrient ratios
162	The native soil nutrient ratios before crop culture varied widely depending on nature
163	of soil ecology and cropping intensity in different localities of Bangladesh (Table 3). In AEZ-
164	21, the N:P, N:Mg, N:Zn, and Ca:P ratios were the widest compared to other studied locations
165	(Table 3). The C:N ratios ranged from 9.90:1 to 10.95:1. The P:Zn ratio was the lowest in
166	AEZ-21 and N:P and Ca:P ratios were the lowest in AEZ-3.
167 168	Statistical analysis
169	Means for rice yield and soil properties were compared by using Tukey's HSD method.
170	Fisher's protected least significant difference (LSD) was calculated at the 0.05 probability level
171	for making treatment mean comparisons.
172 173 174 175	Results Rice yield and nutrient ratios in wet season
176	•
177	In saline prone areas (Sonagazi, AEZ-18), indigenous soil nutrient ratios C:K, N:K, P:K
178	and N:Mg showed significant positive correlations with wet season rice yield, although it showed
179	significant negative relationships with K:Ca, K:Mg, Ca:P, Ca:Zn. S:Zn, N:Zn and P:Zn ratios
180	(Table 4). Similarly, P:K and K:Ca ratios were synergistically related with grain yield but C:N,
181	C:P, C:K, N:P, N:K, K:Mg, Ca:P, Ca:Zn, S:Zn, N:Mg, N:Zn and P:Zn ratios acted
182	antagonistically in AEZ-3 (flash flood and cold prone areas). In drought prone areas (AEZ-26),
183	all studied nutrient ratios (C:P, C: K ,N:P, N: K, P:K, Ca:P, N:Mg and N:Zn) showed
184	significantly negative relationships with grain yield except K: Ca K: Mg, Ca:Zn, S:Zn and P:Zn
185	ratios (<mark>Table 4</mark>).

Rice yield and nutrient ratios under dry season

In AEZ-18, K:Ca, K:Mg, Ca:P, Ca;Zn, S:Zn, N:Zn and P:Zn ratios showed significantly 190 positive relationships with grain yield but significantly negative with C:K, N:P, N:K, P:K and 191 N:Mg ratios (Table 5). The C:N, C:P and N:P ratios had no significant relationships with grain 192 vield of rice. The C:P, C:K, N:P, N:K, K:Mg, Ca:P, Ca:Zn, S:Zn, N:Mg, N:Zn, P:Zn ratios 193 favored significantly rice grain yield in AEZ-3. Nonetheless, P:K and K:Ca ratios acted 194 negatively against rice yield. In AEZ-26, rice yields were influenced antagonistically by C:P, 195 C:K, N:P, N:K, P: K, Ca:P, N:Mg and N:Zn ratios but others were synergistically correlated. In 196 197 AEZ-13 (Tidal ecosystem), rice yield showed significant negative relationships with C:P, C:K, N:P, N:K, K:Ca, K:Mg, N:Mg and N:Zn ratios, but no significant relationships with P:K, Ca;P, 198 Ca:Zn, S:Zn and P:Zn ratios. In AEZ 21 (haor ecosystem), only C:K showed significant 199 antagonistic relationship with **Boro** rice grain yield but other nutrient ratios had no significant 200 relationships (Table 5). We found no significant correlation of C:N ratio with grain yields of rice 201 in any studied location. 202

- 203
- 204

Nutrient ratios and soil separates

In AEZ-18, sand fraction showed significant positive relationship with C:P, N:P and Ca:P 205 206 ratios. There was significant positive relation of silt with P:K but negatively with Ca:P ratio (Table 6). Clay fraction had significant negative relationship with N:Mg, N:K and C:K ratios but 207 only Ca:P ratio was positively correlated. In AEZ-21, C: P, C:K, N:P, N:K, N:Mg, N:Zn, P:Zn, 208 209 Ca:Zn, S:Zn ratios showed significant positive relations with sand fraction (Table 7). Silt particle had significant negative relations with N:Mg and S:Zn ratios. Clay particle had significant 210 negative relations with C:P, N:P,N:Zn ratios. The C:K, N:K, P:K, K:Ca and N:Mg showed 211 212 significant positive relations with sand and clay fractions in AEZ-3. However, Ca:P, Ca:Zn, S:Zn

ratios were negatively related with sand and clay separates and positively related with silt fraction (Table 8). No significant relationships of soil nutrient ratios were found with sand in AEZ-13 and AEZ-26 (Table 9, 10). However, C:K, N:K and N:Mg ratios showed significant positive relations with silt but negative with clay fraction in AEZ-13. In AEZ-26, C:K and N:K had significant positive relations with silt but negative with clay faction and K:Ca had negative relationship with silt fraction.

- 219
- 220 221

226

Rice yield with added nutrients

In wet season, rice grain yields were not significantly improved because of NPKSZn fertilizer application under studied locations (Table 11). In dry season, grain yield significantly increased because of NPKSZn fertilizer application in all locations except AEZ-18 (Table 12).

225 **Discussion**

Indigenous soil nutrient availability and ratios influence crop production in unfavorable 227 228 ecosystem depending on crop variety and water management. Our result indicated that grain vield was the lowest in AEZ-26 compared to other studied locations might be because of 229 unfavorable C:N and S:Zn ratios for coarse textured soil (Table 3). In coarse textured soil, the 230 C:N needs to be around 25:1 (Ovem et al., 2013), but it was low with our findings. The lower 231 S:Zn ratio indicates higher soil Zn availability might have affected S uptake and thus reduced 232 rice vield (Singh et al., 2012). The C:P ratio clearly indicated that soils were deficient in P in 233 studied areas in which rice grain yield improved in dry season because of added P in all 234 locations. However, our previous studies showed no beneficial effect of added P in AEZ-21 235 236 (BRRI, 2014) indicating that P analysis method used failed to determine available soil P. Climate imposes vital role in soil development and thus soil biota and its interaction with soil nutrients 237 (Chadwick et al., 1999; Vitousek, 2004). We have found C:N:P ratios of 10.8:385.4:1, 238

10.0:55.67:1, 9.9:551.3:1, 10.95:320.6:1 and 10.18:319.11:1 for AEZ-13, AEZ-21, AEZ-26, 239 AEZ-3 and AEZ-18, respectively. These ratios are far higher than available literature (Cleveland 240 and Liptzin, 2007; Redfield, 1958) because of lower soil P levels. Since the study locations are in 241 high temperature and precipitation in tropical region, high P leaching and P occlusion might have 242 taken place (Vitousek and Walker, 1987; Neufeldt et al., 2000; Zhang et al., 2005). At the same 243 time, higher cropping intensity and imbalanced fertilizers used by the farmers (Biswas et al., 244 2004, 2008) could be the reason of skewed soil C:P N:P, N:Mg, N:Zn, and Ca:P ratios in studied 245 locations. 246

The findings of present investigation shows that indigenous soil nutrient ratios like C:P, 247 N:P, N:K, K:Mg, Ca:P, Ca:Zn and S:Zn significantly influenced dry season irrigated rice yield in 248 AEZ-3. Soil K/(Ca + Mg) or K/Mg ratios might have played vital role in this aspects (McLean et 249 al., 1983). We found K:Mg, Ca:Zn, S:Zn and P:Zn ratios as vital component for dry season 250 irrigated rice yield improvement in AEZ-18, flash flood and cold prone areas (AEZ-3) and 251 252 drought and cold prone (AEZ-26) regions of Bangladesh (Table 5). Soil K and Mg showed no effective linkages with sand, silt and clay fractions of studied locations in Bangladesh (Table 6, 253 7, 8, 9, 10). Kopittke and Menzies, 2007 also reported that K:Mg was not influenced by 254 255 chemical, physical, and biological fertility of soil. Emphasis should be placed on providing sufficient, but not excessive levels of each basic cation rather than attempting to attain a 256 favorable basic cation saturation ratio, which evidently does not exist (McLean et al., 1983). It is 257 possible to have a deficiency of K and Mg even though the ratios might be in the ideal range. 258 The cations ratio may be less than ideal for some fine-textured soils, but may have adequate 259 amounts for crop production and additional applications are not necessary (McLean, 1976). 260 Result indicated that indigenous Ca, Mg and Zn were playing a vital role for rice production in 261

262	unfavorable ecosystems of Bangladesh. Besides, variations in rainfall and temperature patterns
263	and salinity influence crop production in different ecosystems of Bangladesh.
264 265 266	Conclusion Nutrient management requires understanding of soil nutrients behavior for optimizing
267	rice yield through fertilizer management. We observed about 27% higher grain yield in AEZ-3
268	than AEZ-26 because of variations in C:P, C:K, N:P, N:K, Ca:P, N:Mg, N:Zn, ratios in which
269	Ca, Mg and Zn were playing a pivotal role in rice production in unfavorable ecosystems of
270	Bangladesh. Soil test for fertilizer application needs special attention for judicial use of
271	ecologically fragile soils in Bangladesh.
272 273 274	Acknowledgments We greatly acknowledge TATP Phase-I, BARC for funding the project activity (SPGR Sub-
275	project ID No. 344.)
276 277 278	References
279	Anonymous (2016) Magnesium in the soil. Agronomical Library.
280	http://www.spectrumanalytic/Mg_Basics.htm (access on 11-6-2016)
281	Bhuiyan, N. I., Paul, D. N. R., &Jabber, M. A. (2002). Feeding the extra millions by 2025:
282	challenges for rice research and extension in Bangladesh. In: Proceedings of the national
283	workshop on rice research and extension, BRRI, Gazipur, January 29-31, 2002.
284	Bergman, W. (1992). Nutritional Disorders of Plants. Development, Visual, and Analytical
285	Diagnosis. Gustav Fischer Verlag, Jena, Germany.

- Biswas, J.C., Maniruzzaman, M., Sattar, M. A., & Neogi, M.G. (2008). Improvement of rice
 yield through fertilizer and cultural management at farmer's field. Bangladesh Rice Journal,
 13, 9-14.
- Biswas, J.C., Islam, M.R., Biswas, S.R., & Islam, M.J. (2004). Crop productivity at farmers
 fields: Options for soil test based fertilizer use and cropping patterns. Bangladesh
 Agronomy Journal, 10, 31-41.
- BRRI (Bangladesh Rice Research Institute). (2014). Annual report for 2013. Gazipur,
 Bangladesh: BRRI.
- Chadwick, O.A., Derry, L.A., Vitousek, P.M., Huebert, B.J., & Hedin, L.O. (1999). Changing
 sources of nutrients during four million years of ecosystem development. Nature, 397, 49197.
- Cleveland, C.C., & Liptzin, D. (2007). C:N:P stoichiometry in soil: Is there a "Redfield ratio" for
 the microbial biomass? Biogeochemistry, 85, 235-252.
- Dobermann, A., Cassman, K.G., Sta. Cruz. C. P., Adviento, M. A., & Pampolino, M. F. (1996).
 Fertilizer inputs, nutrient balance, and soil nutrient-supplying power in intensive,
 irrigated rice systems. II: Effective soil K-supplying capacity. Nutrient Cycling in Agroecosystems, 46, 11-21.
- Haque, M. M., Saleque ,M.A., Shah, A.L., Biswas, J. C., & Kim, P. J. (2015). Long-Term Effects
 of Sulfur and Zinc Fertilization on Rice Productivity and Nutrient Efficiency in Double Rice
 Cropping Paddy in Bangladesh. Communications in Soil Science and Plant Analysis, 46,
 2877-2887.

- 307 Kirkby, C. A., Kirkegaard, J.A., Richardson, A.E., Wade, L.J., Blanchard, C., & Batten, G.
 308 (2011). Stable soil organic matter: A comparison of C:N:P:S ratios in Australian and other
 309 world soils. Geoderma, 163, 197–208.
- 310 Kopittke, P. M., & Menzies, N. W. (2007). A review of the use of the basic cation saturation ratio
- and the "Ideal" soil. Soil Science Society of American Journal, 71, 259-265.
- McLean EO (1976) Exchangeable K levels for maximum crop yields on soils of different cation
 exchange capacities. *Communications in Soil Science and Plant Analysis* 17, 823-838.
- 314 Mclean, E.O., Hartwig, R.C., Eckert, D.J., & Triplett, G.B. (1983). Basic cation saturation ratios
- as basis for fertilizing and liming agronomic crops. II. Field studies. American Journal ofAgronomy, 75, 635-639.
- Neufeldt, H., da Silva, J.E., Ayarza, M.A., & Zech, W. (2000). Land-use effects on phosphorus
 fractions in Cerrado Oxisols. Biology and Fertility of Soils, 31, 30–37.
- Oyem, I ,L,, & Rank, O.I.L. (2013). Effects of Crude Oil Spillage on Soil Physico-Chemical
 Properties in Ugborodo Community. International Journal of Modern Engineering Research,
 6, 3336-3342.
- Quayum, M.A., Ali, A.M., & Salam, M. A. (2012). Impact of power tillers on profitability of
 some cropping patterns in some selected areas of Bangladesh. Bangladesh Journal of
 Agricultural Research, 37, 415-432.
- Redfield, A.C .(1958). The biological control of chemical factors in the environment. American
 Scientist, 46, 205-221.
- 328 Saleque, M.A., Abedin, M. J., Bhuiyan, N. I., Zaman, S. K., & Panaullah, G. M. (2004). Long-
- 329 term effects of inorganic and organic fertilizer sources on yield and nutrient accumulation of
- lowland rice. Field Crops Research, 86, 53-65.

- 331 Singh, A. K., Manibhushan, M.K., Meena, Upadhyaya, A. (2012). Effect of Sulphur and Zinc on
- Rice Performance and Nutrient Dynamics in Plants and Soilof Indo Gangetic Plains. TheJournal of Agricultural Science, 4, 162-170.
- 334 Vitousek, P.M., Walker, L.R., Whiteaker, L.D., Muellerdombois, D., & Matson, P.A. (1987).
- Biological Invasion by Myrica-Faya Alters Ecosystem Development in Hawaii. Science, 238,
 802-804.
- Vitousek, P.M .(2004). Nutrient Cycling and Limitation: Hawai'i as a Model System. Princeton
 University Press, Princeton, New Jersey.
- 339 Zhang, C., Tian, H.Q., Liu, J., Wang, S., Liu, M., Pan, S., & Shi, X. (2005). Pools and
- 340 Distributions 496 of Soil Phosphorus in China. Global Biogeochemical Cycles, 19, GB1020,
- 341 497 doi:10.1029/2004GB002296

Table 1. The characteristics of the study areas

Location/AEZ	Characteristics	Cropping Pattern
Gongachara, Rangpur (AEZ-3)	Submergence and cold prone areas	Boro-Fallow-T. Aman
Tanore, Rajshahi (AEZ-26)	Drought and cold prone areas	Boro-Fallow-T. Aman
Babugonj, Barisal (AEZ-13)	Non-saline tidal flood ecosystem	Boro-Fallow-T. Aman
Sonagazi, Feni (AEZ-18)	Char and saline prone ecosystem	Boro-Fallow-T. Aman
Baniachang, Hobiganj (AEZ-21)	Haor ecosystem	Boro-Fallow-Fallow

Table 2. Cultural operation dates for different rice varieties in different locations of Bangladesh

Location/AEZ	Variety	Date of	Date of	Date of
		Soaking	Transplanting	Harvesting
Boro season, 2011-12				
Sonagazi, Feni (AEZ-18)	BRRI dhan47	20-11-11	17-01-12	27-04-12
Tanore, Rajshahi (AEZ-26)	BRRI dhan29	06-12-11	20-01-12	20-05-12
Gangachara, Rangpur (AEZ-3)	BRRI dhan29	30-11-11	16-01-12	24-05-12
Babugonj, Barisal (AEZ-13)	BRRI dhan29	05-12-11	23-01-12	07-05-12
Baniachang, Hobigonj (AEZ-21)	BRRI dhan29	20-11-11	10-01-12	11-05-12
T. Aman season, 2012				
Sonagazi, Feni (AEZ-18)	BRRI dhan46	24-07-12	03-09-12	05-12-12
Tanore, Rajshahi (AEZ-26)	BRRI dhan56	25-06-12	27-07-12	05-11-12
Gangachara, Rangpur (AEZ-3)	BRRI dhan52	23-06-12	03-08-12	21-11-12
Babugonj, Barisal (AEZ-13)	LIV	08-05-12	13-06-12	12-12-12
Boro season, 2012-13				
Sonagazi, Feni (AEZ-18)	BRRI dhan28	05-12-12	09-02-13	09-05-13
Tanore, Rajshahi (AEZ-26)	BRRI dhan29	26-11-12	25-01-13	21-05-13
Gangachara, Rangpur (AEZ-3)	BRRI dhan29	25-11-12	18-01-13	29-05-13
Babugonj, Barisal (AEZ-13)	BRRI dhan29	27-11-12	19-01-13	11-05-13
Baniachang, Hobigonj (AEZ-21)	BRRI dhan29	12-12-12	01-02-13	16-05-13
T. Aman season, 2013				
Sonagazi, Feni (AEZ-18)	BRRI dhan46	11-07-13	17-08-13	05-12-13
Tanore, Rajshahi (AEZ-26)	BRRI dhan56	04-07-13	27-07-13	28-10-13
Gangachara, Rangpur (AEZ-3)	BRRI dhan52	29-06-13	29-07-13	08-12-13
Babugonj, Barisal (AEZ-13)	LIV	16-06-13	16-08-13	Damaged

Table 3. Native soil nutrient ratio with different AEZ under different unfavorable ecosystems in Bangladesh

Sand (%)	Silt (%)	Clay (%)	C:N	C:P	C:K	N:P	N:K	N:Mg	N:Zn	P:K	P:Zn	K:Ca	K:Mg	Ca:P	Ca:Zn	S:Zn
	Barisal (AEZ 13)															
12.52	52.40	35.08	10.81	385.47	136.69	56.47	12.73	2.01	564.11	0.24	10.88	0.04	0.16	123.97	983.43	16.09
							<u>Habigan</u>	i <mark>j (AEZ 2</mark>	<u>(1)</u>							
20.00	20.64	59.36	10.07	5567.14	126.46	687.04	12.54	10.56	1050.66	0.02	1.51	0.19	0.87	352.49	452.60	18.49
	<u>Rajshahi (AEZ 26)</u>															
33.76	50.65	15.59	9.90	551.37	159.36	75.95	16.09	6.23	436.20	0.22	6.78	0.07	0.40	63.24	321.50	8.66
							Rangpur (<u>AEZ 3)</u>								
24.32	64.60	11.08	10.95	302.61	124.27	38.82	14.39	4.22	336.25	0.35	10.76	0.14	0.30	29.92	259.07	8.92
							<u>Sonagazi (</u>	<u>AEZ 18)</u>								
13.80	55.64	30.56	10.18	319.11	67.93	48.10	6.61	1.43	987.24	0.15	34.96	0.09	0.22	90.92	1179.05	57.15

	Sonagazi	Rangpur	Rajshahi
	(AEZ-18)	(AEZ-3)	(AEZ-26)
C:N	-0.28039NS	-1.35154**	0.32920ns
C:P	0.27049NS	-0.66653*	-0.81137**
C:K	0.82750**	-0.67253*	-0.79981**
N:P	0.48109ns	-0.70784*	-0.80105**
N:K	0.82067**	-0.67662*	-0.79644*
P:K	0.82095**	0.67373*	-0.80794**
K:Ca	-0.81655**	0.674319*	0.79914**
K:Mg	-0.80278**	-0.56359NS	0.82170**
Ca:P	-0.81679**	-0.66761*	-0.80119**
Ca:Zn	-0.83085**	-0.67224*	0.80121**
S:Zn	-0.88622**	-0.67197*	0.80119**
N:Mg	0.77828*	-0.65103*	-0.81750**
N:Zn	-0.81474**	-0.66697*	-0.80308**
P:Zn	-0.83218**	-0.67201*	0.80118**

Table 4. Relationships of nutrient ratios with T. Aman rice yields

NS = Non significant; * = Significant at 5% level;

** = Significant at 1% level of probability

	Sonagazi (AEZ-18)	Rangpur (AEZ-3)	Rajshahi (AEZ-26)	Barisal (AEZ-13)	Habiganj (AEZ-21)
C:N	0.29247NS	0.05079	-0.06786	0.58939NS	-0.20384NS
C:P	-0.28071NS	0.90350**	-0.85980**	-0.66043*	0.44432NS
C:K	-0.87984**	0.89921**	-0.85635**	-0.75850*	-0.67812*
N:P	-0.49775NS	0.90441**	-0.85670**	-0.67133*	0.53709NS
N:K	-0.87398**	0.89881**	-0.85765**	-0.75710*	-0.59344NS
P:K	-0.87707**	-0.89811**	-0.84797**	0.19370NS	-0.48828NS
K:Ca	0.87408*	-0.89793**	0.85533**	-0.88700**	0.61392NS
K:Mg	0.87550**	0.87424**	0.85023**	-0.70563*	0.54072NS
Ca:P	0.89447**	0.89967**	-0.85612**	0.40561NS	0.23405NS
Ca:Zn	0.88315**	0.89878**	0.85601**	0.47548NS	0.06181NS
S:Zn	0.88368**	0.89894**	0.85611**	-0.21137NS	0.29181NS
N:Mg	-0.80469**	0.89573**	-0.86679**	-0.84712**	0.09366NS
N:Zn	0.86545**	0.89833**	-0.85685**	-0.89038**	0.48385NS
P:Zn	0.88147**	0.89868**	0.85610**	0.00570NS	0.06518NS

Table 5. Relationships of nutrient ratios with Boro rice yields

NS = Non significant; * = Significant at 5% level;

** = Significant at 1% level of probability

	Sand	Silt	Clay
C:N	-0.11523NS	0.08390ns	0.13250ns
C:P	0.43015*	-0.35858NS	-0.22078NS
C:K	0.20770ns	-0.07508NS	-0.45713*
N:P	0.45842*	-0.37910ns	-0.24978ns
N:K	0.22453NS	-0.08243NS	-0.49595*
P:K	-0.32930NS	0.41385*	-0.31302NS
K:Ca	-0.12504NS	0.13626ns	-0.11501ns
K:Mg	0.00033NS	0.08383NS	-0.31027ns
Ca:P	0.50976**	-0.61572**	0.46506*
Ca:Zn	0.21613NS	-0.26396NS	0.20521NS
S:Zn	-0.08008NS	0.04833NS	0.08146ns
N:Mg	0.24371NS	-0.09160ns	-0.53658*
N:Zn	0.17604ns	-0.21294NS	0.15641NS
P:Zn	0.10111ns	-0.14268NS	0.15648ns
NO NI-	• • • • •	C:	5 0/1 1

Table 6. Nutrient ratios as influenced by soil separates, Sonagazi (AEZ-18)

NS = Non significant; * = Significant at 5% level;

** = Significant at 1% level of probability

Table 7. Nu	trient r	atios a	s influenced by s	soil separates, H	labiganj (AEZ-21)
					_
	C	1	C'1	C1	-

	Sand	Silt	Clay
C:N	0.25724NS	-0.08004NS	-0.25854NS
C:P	0.54720**	-0.31605NS	-0.44798*
C:K	0.44669*	-0.38395NS	-0.29086NS
N:P	0.54058**	-0.33084NS	-0.43263*
N:K	0.43423*	-0.39228NS	-0.2717NS
N:Mg	0.52929**	-0.46121*	-0.33888NS
N:Zn	0.53988**	-0.36913NS	-0.39071*
P:K	-0.11396NS	0.01818NS	0.12769 NS
P:Zn	0.40201*	-0.27168NS	-0.28834NS
K:Ca	-0.01681NS	-0.20668NS	0.12707ns
K:Mg	-0.09444NS	0.03676ns	0.08247ns
Ca:P	0.09008ns	0.25929ns	-0.24921NS
Ca:Zn	0.45705*	-0.22924NS	-0.37347ns
S:Zn	0.52011**	-0.45848*	-0.31758ns

NS = Non significant; * = Significant at 5% level; ** = Significant at 1% level of probability

	Sand	Silt	Clay
C:N	-0.25254NS	0.26440ns	-0.28638NS
C:P	0.04395ns	-0.05308NS	0.08765NS
C:K	0.61698**	-0.63920**	0.54027**
N:P	0.07549ns	-0.08669 NS	0.12523NS
N:K	0.62624**	-0.64966**	0.55717**
P:K	0.52216**	-0.53482**	0.40785*
K:Ca	0.40491*	-0.45006*	0.54915**
K:Mg	0.17215ns	-0.16354NS	0.07337ns
Ca:P	-0.49858*	0.50816**	-0.41216*
Ca:Zn	-0.56713**	0.59414**	-0.59428**
S:Zn	-0.42094*	0.45311*	-0.48367*
N:Mg	0.70868**	-0.72870**	0.59532**
N:Zn	0.15874NS	-0.16617ns	0.15239ns
P:Zn	-0.04760NS	0.06567ns	-0.16471NS

Table 8. Nutrient ratios as influenced by soil separates, Rangpur (AEZ-3)

NS = Non significant; * = Significant at 5% level; ** = Significant at 1% level of probability

	Sand	Silt	Clay
C:N	0.09828NS	-0.24010NS	0.23033NS
C:P	-0.32632NS	0.33186NS	-0.16779ns
C:K	-0.28809NS	0.56204**	-0.51366**
N:P	-0.33030NS	0.35216NS	-0.19074ns
N:K	-0.28022NS	0.56588**	-0.52585**
P:K	0.10760ns	0.23041NS	-0.37442NS
K:Ca	-0.22735NS	0.14206ns	0.02911ns
K:Mg	0.17177ns	-0.23086NS	0.12099ns
Ca:P	-0.02861NS	-0.18354NS	0.23972NS
Ca:Zn	0.20291NS	-0.28018NS	0.17966ns
S:Zn	-0.13536NS	0.03165 NS	0.02667NS
N:Mg	-0.18597ns	0.45879*	-0.48588*
N:Zn	-0.26113NS	0.391678ns	-0.30865NS
P:Zn	0.16866NS	-0.02902NS	-0.09475ns

Table 9. Nutrient ratios as influenced by soil separates, Barisal (AEZ-13)

NS = Non significant; * = Significant at 5% level; ** = Significant at 1% level of probability

	Sand	Silt	Clay
C:N	-0.07562NS	0.19797ns	-0.29734NS
C:P	-0.10179ns	0.18273ns	-0.20563NS
C:K	-0.25048NS	0.43507*	-0.51893**
N:P	-0.09790ns	0.15394ns	-0.14698ns
N:K	-0.24787NS	0.41615*	-0.48346*
N:Mg	-0.23424NS	0.32796ns	-0.30115ns
N:Zn	0.11079ns	-0.19723ns	0.16286ns
P:K	-0.19971ns	0.30267ns	-0.32778NS
P:Zn	0.10410ns	-0.23053NS	0.26160ns
K:Ca	0.39349ns	-0.45240*	0.25756ns
K:Mg	0.05929ns	-0.13604ns	0.19855ns
Ca:P	-0.08519ns	0.00664ns	0.18150ns
Ca:Zn	0.18744ns	-0.34518NS	0.35627NS
S:Zn	0.28081NS	-0.39007ns	0.25017NS

Table 10. Nutrient ratios as influenced by soil separates, Rajshahi (AEZ-26)

NS = Non significant; * = Significant at 5% level; ** = Significant at 1% level of probability

Table 11.	Rice grain	vield in wet seasor	n under unfavorable ed	cosystems in Bangladesh
		,		see jetenne in Dungiuween

Treatment	Grain yield (t ha ⁻¹)			
	Rangpur	Rajshahi	Sonagazi	
	(AEZ-3)	(AEZ-26)	(AEZ-18)	
No fertilizer	2.56	2.54	3.07	
NPKSZn fertilizer	4.13	3.62	3.90	
t-test	NS	NS	NS	

Table 12. Rice grain yield in Boro season under unfavorable ecosystems in Bangladesh

Treatment	Grain yield (t/ha)				
	Barisal	Habiganj	Rangpur	Rajshahi	Sonagazi
	(AEZ-13)	(AEZ-21)	(AEZ-3)	(AEZ-26)	(AEZ-18)
No fertilizer	3.78	3.20	3.83	2.79	3.70
NPKSZn fertilizer	7.52	6.92	7.50	6.54	5.28
t-test	*	*	*	*	NS

Note: NS means not significant * denote significant at 5% levels.