1 2

3

Marijuana use and its effects on the kidney

4

- Abstract: Cannabis (marijuana) continues to be the most commonly used illicit psychoactive
- 6 substance globally. However little is known about trends of marijuana use in a large
- 7 proportion of the world's population, including in India. Some countries such as the United
- 8 States have legalised marijuana use in some states for recreational and medicinal uses. In
- 9 animal models, the endogenous cannabinoid (eCB) system plays a role in regulating kidney
- 10 hemodynamics and sodium transport and may contribute to the pathogenesis of diabetic and
- obesity-related nephropathy and kidney fibrosis. Although there is no evidence currently that
- marijuana use plays a role in the pathogenesis of kidney disease, data in humans are limited
- to case reports of AKI in the setting of synthetic cannabinoid use. The present review focuses
- on the role of the eCB system in normal kidney function and in various diseases.

15 Key Words: Cannabis, marijuana, diabetic nephropathy, hemodynamics, obesity

- 16 Cannabis (marijuana) continues to be the most commonly used illicit psychoactive substance
- globally. The National Survey of India (1) conducted in the year 2004 also reported that it is
- 18 the most commonly used illicit substance in India too. However little is known about trends
- of marijuana use in a large proportion of the world's population, including in India. Some
- 20 countries such as the United States have legalised marijuana use in some states for
- 21 recreational and medicinal uses. Subsequently, it has been reported that marijuana use has
- increased over the last decade (2, 3,4).
- 23 Marijuana is derived from the Cannabis plant (hemp) of which the two main species include
- 24 Cannabis sativa and Cannabis indica. The Sativa species contains strong fibre and is mainly
- used for industrial purposes (such as hempfibre), while indica variety has medicinal and
- recreational uses. It contains > 60 cannabinoid molecules including ▲ 9-tetrahydrocannabinol
- 27 which is primarily responsible for its psychoactive properties. The discovery of this molecule
- 28 led to the identification of the endogenous cannabinoid system and their ligands including
- 29 those in the kidney. In animal models, the endogenous cannabinoid (eCB) system plays a role
- 30 in regulating kidney hemodynamics and sodium transport and may contribute to the
- 31 pathogenesis of diabetic and obesity-related nephropathy and kidney fibrosis. Although there
- is no evidence currently that marijuana use plays a role in the pathogenesis of kidney disease,
- data in humans are limited to case reports of AKI(Acute Kidney Injury) in the setting of
- synthetic cannabinoid use (5,6). The present review focuses on the role of the eCB system in
- 35 normal kidney function and in various diseases.
- 36 The relevance of the endocannabinoid system: Marijuana has been found to have
- 37 medicinal effects in addition to its recreational and psychoactive properties that have been
- 38 recognised for centuries (7). In the last few decades, more so over the last decade or so, the
- 39 discovery of cannabinoid molecules and their cannabinoid receptors in the brain and
- 40 elsewhere have enhanced discoveries in the field of cannabinoid research. More than 60
- plant-derived cannabinoid molecules have been identified in marijuana, amongst which ▲9

- 42 tetra-hydrocannabinol (THC) is mainly responsible for its psychoactive properties (8,9). After
- 43 this initial discovery, it took more than two decades to identify the THC binding site in the
- brain. (10) which was later cloned as the cannabinoid -1 receptor (CB1receptor)(11). In
- 45 addition to the brain type CB1 receptor, a second cannabinoid receptor was identified in
- lymphoid tissue named CB2 (12). Both CB1 and CB2 receptors share approximately half
- 47 (44%) of sequence homology and are G-protein coupled receptors that mainly signal via
- 48 G1/G0 protein, though they may also activate G- protein-independent signalling pathways.
- These receptors are also expressed in the brain, liver, skeleton, kidneys and other tissues
- 50 (reviewed in detail in 13, 14). The discovery of specific receptors for plant-derived molecules
- 51 in mammalian cells led to a search for specific endogenous cannabinoid ligands. Two
- endocannabinoids (eCBs) (shown in Fig 1) have been identified-the first is arachidonoyl
- ethanolamide(AEA, anandamide) and 2-arachodonovl glycerol(2-AG) (15). Unlike classical
- 54 neurotransmitters, ECBs are not sored in vesicles, though the mechanism contributing to their
- release is not clear. The CB1 and CB2 receptors, eCBs and enzymes involved in their
- biosynthesis, transport and degradation jointly make up the 'eCB system'

Role of the Renal Ecb system:

- 58 Several reports have identified the presence of the functional CB1 receptor in the entire
- 59 kidney I humans as well as in rat and pig animal models. This includes the afferent and
- 60 efferent arterioles, glomeruli, loop of Henle and collecting duct(14,15). It has also been
- expressed in podocytes and mesangial cells(17). Unlike CB1 receptors, there is still
- 62 controversy regarding the expression of CB2 receptors in the kidney. Some reports have
- 63 found abundant expression in human and rat podocytes, proximal tubule cells and mesangial
- 64 cells(18). While the kidney cortex has similar levels of AEA and 2 A-G, the renal medulla
- has more than two-fold higher levels AEA than 2-AG (19).
- Function of the Ecbs on renal function:
- 67 AEA has been found to cause vasodilatation of the juxtamedullary afferent arterioles via
- 68 CB1 receptor and also stimulate the release of nitric oxide by renal endothelial cells,
- 69 suggesting a key role of the eCB system regulating renal hemodynamics. Thereby renal
- 70 blood flow increases leading to a fall in glomerular filtration rate (GFR). These effects can be
- 71 completely blocked by CB1 receptor antagonists AM 281 and AM 251. AEA also (via CB1
- 72 receptor) stimulates the juxtamedullary production of NO around the loop of Henle, blocking
- 73 the apical Na+/ H+ transporter and Na+/H+/2 Cl_ co-transport activity, creating a diuretic
- 74 action(20).

- 75 Role of eCB in Diabetic Nephropathy (DN): The first direct role of the CB1 receptor
- 76 involvement in DN comes from the clinically relevant animal model of DN produced by
- 77 cisplatin (21). Increased levels of AEA but not 2AG were found. More direct contribution of
- 78 the CB1 receptor to DN were found in murine models for Type -1 and Type-2 DM. In the
- 79 first model induced by streptozotocin (STZ). Kidney expression of the CB1 receptor is
- 80 enhanced in diabetic mice(22) and colonization of the CB1 receptor with nephrin points to
- 81 their predominant expression in podocytes. Using a mouse model, it was shown by Hsu et
- 82 al(23) that CB1 receptor activation/ stimulation increased urinary protein levels. The CB1
- 83 receptor has been found to be one of the mediators involved in mediating high glucose-
- 84 induced podocyte dysfunction, modulation of tubular damage including apoptosis, activation
- 85 of inflammatory pathways and causation of renal fibrosis. Unlike CB1, several lines of

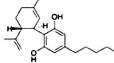
- 86 evidence have shown that CB2 receptor has a protective role in the diabetic kidney.
- 87 Downregulation of the CB2 receptor occurred following exposure to high glucose by
- 88 reduction of mRNA levels. While CB2 receptor expression is unaffected in STZ –induced
- 89 diabetic mice and rats (18), its glomerular expression is downregulated in patients with
- 90 advanced DN. Chronic treatment of STZ-induced diabetic mice with the selective CB2
- agonist AM 1241 ameliorated albuminuria and antagonistically CB2 receptor deletion in STZ
- 92 -treated mice exacerbated albuminuria, renal function, nephrin and podocin loss and caused
- 93 mesangial expansion(24).
- 94 **ECBs and Kidney –dysfunction in obesity**: Obese individuals have a three –fold greater
- 95 risk of developing endstage renal disease (ESRD) than non –obese individuals(25). Even in
- 96 the absence of DM and hypertension, which may be co-existing conditions in obese
- 97 individuals ,obesity induces hemodynamic and morphological changes in the kidney,e.g
- 98 glomerular hypertrophy, glomerular basement membrane thickening, mesangial matrix
- 99 expansion and increased tubular inflammation. Recent evidence suggests that
- overstimulation of the eCB system via the CB1 receptor contributes to the pathogenesis of
- obesity and the metabolic syndrome. By activating CB1 receptors in the brain, eCBs produce
- marijuana-like effects including an increase in appetite and lipogenesis(26). CB1 receptor
- null mice are resistant to diet-induced obesity(D10) hepatic steatosis and associated hormonal
- and metabolic changes even though their calorie intake may be similar to wild type mice. The
- kidney being the major source of eCBs and contains the CB1 receptor, the possible role of
- the eCB system in regulating obesity-related kidney dysfunction has to be explored further.

Relevance of Cannabis use in India:

- 108 Cannabis has been reported to be a commonly used psychoactive substance among treatment
- seekers in various Indian studies (27). Venkatesan et al observed changing characteristics
- among treatment –seeking substance users across three decades (1985-2006) and reported
- cannabis use in 28% of the polysubstance users ,second only to alcohol(27). Long term trends
- in cannabis use have been studied in other countries as well. National prevalence of daily
- cannabis users among the general population in Australia fluctuated between 14.9% and
- 114 16.4% over the previous decade(28). The 2011 annual report from European Monitoring
- 115 Center for Drugs and Drug Addiction (EMCDDA) reported the age group of 15-24 years to
- have the lifetime prevalence of cannabis use (30%) in Europe (29). Recent worldwide trends
- indicate rising prevalence rates of cannabis use and cannabis-related hospitalization with
- adolescents and young adults being especially vulnerable. It is in this context that the long
- term side effects including those on the kidney of marijuana use need to be seen.

120 Role of cannabinoids and their therapeutic use in symptom management in chronic

121 kidney disease:


- Pain is one of the most commonly experienced and debilitating symptom of patients with
- 123 CKD. Approximately 50% of dialysis patients and those with advanced CKD who choose to
- be managed conservatively experience chronic pain with 82% reporting this pain as moderate
- to severe in intensity (30,31). Pain is experienced in the context of numerous other physical
- and emotional symptoms, all of which impact HRQOL negatively. The overall symptom
- burden of patients with advanced CKD is similar to that of many cancer patients in palliative
- care. Till now NSAIDS and opioids have remained the treatment of choice for these
- patients. Despite pain relief, opioid adverse effects may lead to adverse side effects and add

130	to the symptom burden. The rationale of considering cannabis-based medication is based on
131	the encouraging results of CB agonists in the treatment of not only intractable pain but also in
132	the treatment of other symptoms problematic in CKD such as nausea, anorexia, pruritus,
133	anxiety and an overall lack of well being. A systematic meta-analysis of seven double-blind,
134	placebo-controlled trails of CB-based treatments for multiple sclerosis-related neuropathic
135	pain demonstrated the efficacy of cannabis therapy in controlling pain when compared to
136	placebo(32). A more recent randomised placebo-controlled study of CBs as adjunctive
137	treatment for refractory cancer-related pain in 177 patients (33). CBs are thought to act
138	centrally through activation of the CB1 receptor to inhibit emesis. There is a growing body of
139	evidence that cannabis-based medicine may be beneficial for many of the symptoms
140	experienced by CKD patients, some of which opioids can exacerbate.
141	CBs are metabolised rapidly in the liver by the cytochrome P450 enzyme system. Although
142	the risk of clinically significant reactions is thought to be low, there remains the possibility of
143	potential drug interactions with other medications and immunosuppressive agents given the
144	polypharmacy in patients with CKD. All CBs have a large volume of distribution and are
145	highly lipid soluble and protein bound with high tendency to accumulate in fatty tissue. They
146	are unlikely to be removed effectively by hemodialysis. Although there are no data for oral
147	cannabis-based medicine in CKD, tolerability and safety data in other patient population
148	with chronic illnesses such as rheumatoid arthritis, multiple sclerosis and cancer are
149	encouraging and show that cannabis-based therapy may be tolerated than conventional
150	therapies for many symptoms. Dizziness appeared to be the most common symptom, ranging
151	in prevalence from 9 to 59%(33). There is no current evidence to suggest tolerance to
152	therapeutic effects, unlike in chronic opioid use.
153	Conclusions: The eCB system is present in the kidney where it is involved in various renal
154	functions with important therapeutic implications. eCBs acting via CB1 receptor in
155	podocytes, proximal tubule cells and mesangial cells have emerged as mediators of both
156	diabetic nephropathy and obesity-associated renal dysfunction. We are only just beginning to
157	realise the therapeutic potential of CBs in an alleviation of symptoms in CKD. The paucity of
158	long-term efficacy data does not allow for the routine use of CBs in the management of
159	symptom burden in CKD. However, they may present a reasonable alternative to pain and
160	symptom management. The legal issues around their use and potential misuse need to be
161	addressed before marijuana can be routinely prescribed medically in CKD.

Fig 1: Cannabinoid structure

Exocannabinoids (plant-derived)

Tetrahydrocannabinol (Δ9-THC)

Cannabidiol (CBD)

Endocannabinoids

Anandamide (AEA)

Arachidonoylglycerol (2-AG)

163164

165

166

167

168

169

170

171

172

173

174175

176

177

178

179

180

181

182

183

184

185

186

187 188

189 190

191

192

193

References:

- 1) Report of the International Narcotics Control Board (2008): DIANE Publishing May 2009 : pp90-ISBN 978-1-4379-1361-3.
- 2) Hasin DS, Saha TD, Kerridge BT, Goldstein RB, Chou SP, Zhang H et al. Prevalence of marijuana use disorder in the United States between 2001-2002 and 2012-2013. JAMA Pschyiatry2015; 72: 1235-42.
 - 3) Bonn-Miller MU, Harris AH, Traffon JA. Prevalence of cannabis use disorder diagnoses among veterans in 2002, Co2008 and 2009. Psychol Serv 2012; 9: 404-416.
 - 4) Compton WM, Han B, Jones CM, Blanco C, Hughes A. Marijuana use and use disorders in adults in the USA, 2002-14: Analysis of annual cross-sectional surveys. Lancet Psychiatry 2016; 3: 954-964.
 - 5) Bhanushali GK, Jain G, Fatima H, Leisch LJ, Thornley –Brown D .AKI associated with synthetic cannabinoids: A case series. Clin J Am Soc Nephrol 2-13; 8: 523-526.
 - Kazory A, Aiyer R: Synthetic marijuana and acute kidney injury: An unforeseen association. Clin Kidney J 2013; 6: 330-333.
 - 7) Abel EL. Cannabis: effects on hunger and thirst. Behav Biol 1975; 15: 255-81.
 - 8) Tam J. the emerging role of the endocannabinoid system in the pathogenesis and treatment of kidney diseases. J Basic Clin Physiol Pharmacol 32016; 27(3): 267-76.
 - 9) Ghoni Y, Mechoulam R. Isolation, structure and partial synthesis of an active constituent of hashish. J Am Chem Soc 1964; 86: 1646-67.
 - 10) Devane WA, Dysarz FA 3rd, Johnson MR, Melvin LS, Howlett AC. Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol 1988; 34: 605-13.
 - 11) Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 1990; 346: 561-4.
- 12) Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 1993; 365: 61-5.

13) Pacher P, Kunos G. Modulating the endocannabinoid system in human health and disease-successes and failures FEBST 2013; 280: 1918-43.

198

199 200

201

202

203204

205

206 207

208

209

210211

212

213

214

215

216217

218

219220

221

222

223

224

225226

227

228

229

- 14) Larrinaga G, Varona A, Perez I, Sanz B. Ugalde A, Candenas ML et al. Expression of cannabinoid receptor in human kidney. Histol Histopathol 2010; 25: 1133-8.
 - 15) Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 1992; 258: 1946-9.
 - 16) Koura Y, Tahihara A, Tada Y, Kaneshiro Y, Okada H, Temm CJ et al. Anadamide decreases glomerular filtration rate through predominant vasodilatation of efferent arterioles in rat kidneys. J Am Soc Nephrol 2004; 15: 1488-94.
 - 17) Lim JC, Lim SK, Park MJ, Kim GY, Han HJ, Park SH. Cannabinoid receptor 1 mediates high glucose-induced apoptosis via endoplasmic reticulum stress in primarycultured rat mesangial cells. Am J Physiol Renal Physiol 2011; 30: F 179-88.
 - 18) Jenkin KA, McAinch AJ, Briffa JF, Zhang Y, Kelly DJ, Pollock CA et al. Cannabinoid receptor 2 expression in human proximal tubule cells is regulated by albumin independent of ERK1/2 signalling. Cell Physiol Biochem 2013; 32: 1309-19.
 - 19) Ritter JK, Li C, Xia M, Poklis JL, Lichtmann AH, Abdullah RA et al. Production and actions of the anandamide metabolite prostamide E2 in the renal medulla. J Pharmacol Exp Ther 2012; 342: 770-9.
 - 20) Silva GB, Atchison DK, Juncos LI, Garcia NH. Anandamide inhibits transport-related oxygen consumption in the loop of Henle by activating CB1 receptors. Am J Physiol Renal Physiol 2013; 304: F 376-81.
 - 21) Mukhopadhyay P, Pan H, Rajesh M, Bathai S, Patel V, Harvey-White J et al. CB1 cannabinoid receptors promote oxidative/nitrosative stress, inflammation and cell death in a murine nephropathy model. Br J Pharmacol 2010; 160: 657-68.
 - 22) Barutta F, Corbelli A, Mastrocolo R, Gambia OR, Di Marzo V, Pinach S et al. Cannabinoid receptor 1 blockade ameliorates albuminuria in experimental diabetic nephropathy. Diabetes 2010; 59: 1046-54.
 - 23) Hsu YC, Lei CC, Shih YH, Ho C, Lin CL. Induction of proteinuria by cannabinoid receptors 1 signalling activation in CB1 transgenic mice. Am J Med Sci 2015; 349: 162-8.
 - 24) Barutta F, Grimaldi S, Franco I, Bellini S, Gambino R, Pinach S et al. Deficiency of cannabinoid receptor of Type-2 worsens renal functional and structural abnormalities in streptozotocin –induced diabetic mice. Kidney Int 2014; 86: 979-90.
 - 25) Ejerbald E, Fored CM, Lindblad P, Fryzek J, McLaughlin JK, Nyren O. Obesity and risk for chronic renal failure. J Am Soc Nephrol 2006; 17: 1695-702.
 - 26) DiMarzo V, Goparaju SK, Wang L, Liu J, Batkai S. Jarai Z et al. Leptin –regulated endocannabinoids are involved in maintaining food intake. Nature 2001; 410: 822-5.
- 232 27) Venkatesan J, Suresh SS. Substance dependence: Decades apart in a teaching hospital 233 . Indian J Psychiatry 2008; 50: 100-5.
- 28) Roxburgh A, Ritter A, Grech K, Slade T, Burns L. Trends in drug use and related harm in Australia, 2001 to 2011. Sydney, National drug and Alcohol Research Centre , University of New South Wales, 2013.
- 237 29) European Monitoring Centre for Drugs and Drug Addiction. European Drug Report
 238 2011. Trends and Development. 2011.

239 30) Davison SN. Pain in hemodialysis patients: prevalence, cause, severity and management. Am J Kidney Dis 2003; 42: 1239-47.

241

242

243

- 31) Murtagh FE, Addington –Hall J, Higginson IJ. The prevalence of symptoms in end-stage renal disease: a systematic review. Adv Chronic Kidney Dis 2007; 14: 82-99.
 - 32) Iskedijan M, Bereza B, Gordon A, Piwko C, Einarson TR. Meta-analysis of cannbis based treatments for neuropathic and multiple sclerosis pain. Curr Med Res Opin 2007; 23: 17-24.
- 33) Johnson JR, Burnell-Nugent M, Lossignol D et al. Multicentre, double blind ,
 randomised, placebo-controlled , parallel-group study of the efficacy , safety and
 tolerability of THC: CBD extract and THC extract in patients with intractable cancer related pain. J Pain Symptom Manage 2010; 39: 167-179.