1	<u>Original Research Article</u>
2	Questionable International Pediatric Studies in the United States and Russia
3 4	Triggered by Regulatory Authorities
5	Abstract
6 7 8 9	Background: The concept of children as "therapeutic orphans" claims that children were/are denied the use of many modern drugs. Both the United States (US) and the European Union (EU) enacted laws based on this concept. Their regulatory authorities promote industry-sponsored pediatric studies. These studies recruit worldwide. We challenge their medical rationale.
11 12 13	Methods : We analyzed exemplarily international industry-sponsored pediatric studies in cancer and rheumatology listed in www.clinicaltrials.gov with at least one center in the US and Russia, respectively, for their medical value.
14 15 16 17 18 19 20 21 22 23	Findings : Most studies were/are pharmacokinetic (PK) and efficacy studies in young patients with limited or no medical value. Adolescents are physiologically (vis-à-vis drug metabolism) comparable to adults; for children only PK- and dose finding studies are necessary. Only newborns'/babies' organs are physiologically so different that separate proof of efficacy is needed for drugs with a therapeutic potential in this population. The identified studies were/are justified formally, regulatorily, but are medically unnecessary and therefore unethical. Parts of pediatric academia are sullied by industry funds channeled by regulatory decisions into medically superfluous studies. There are resulting substantial conflicts of interest; a blind spot in today's societal perception of drug development prevents us from recognizing them.
24 25 26 27 28 29 30	Interpretation: Pediatric studies triggered by regulatory demands constitute a worldwide systematic abuse of young patients. They are medically redundant at best, deter patients with lethal diseases participating in these studies from getting access to known effective innovative therapy, and have the potential to jeopardize public trust in science, research and authorities. Institutional Review Boards (IRBs)/ ethics committees (ECs) should become alerted. IRBs/ECs worldwide should suspend questionable pediatric studies and reject newly submitted ones. US and EU pediatric laws need revision.
31 32 33	Key Words : Pediatric drug development; pediatric legislation; pediatric laws; FDA pediatric written request (WR); pediatric investigation plan (PIP); absorption, distribution, metabolism, excretion (ADME) in children; pediatric investigation plan (PIP);
34 35 36 37 38 39	Abbreviations in alphabetic order: AAP American Academy of Pediatrics • ADME absorption, distribution, metabolism, excretion • ALL acute lymphatic leukemia • AML acute myelogenic leukemia • CNS central nervous system • EMA European Medicines Agency • EU European Union • FDA US Food and Drug Administration • JIA juvenile idiopathic arthritis • NCT number National Clinical Trial Number • NRSTS non-RMS soft tissue sarcomas • PK pharmacokinetics• PIP pediatric investigation plan • RMS

rhabdomyosarkoma • R/R relapsed/refractory • US United States of America • WR FDA pediatric Written Request •

Introduction

The United States (US) and the European Union (EU) promote pediatric clinical research [1], but the medical value of some of these studies has been challenged [2-4]. We analyzed exemplarily international pediatric studies with at least one center in both the US and the Russian Federation in pediatric oncology and rheumatology for their medical value. We challenge the concept of children as "therapeutic orphans" in the context of pharmaceutical treatment and drug development [5], and delineate the consequences of pediatric clinical research and pharmaceutical laws.

Methods

We identified in www.clinicaltrial.gov international industry-sponsored pediatric studies with at least one center in both the US and the Russian Federation using the terms 'malignancy' and 'juvenile idiopathic arthritis' (JIA) in patients from birth to 17 years of age. We disregarded studies involving adolescents & adults and those involving children, adolescents & adults in an effort to focus on truly pediatric studies; we included studies recruiting children and young adults up to 18/19/20/21/24/30 years of age. We retrieved related Food and Drug (FDA)/ European Medicines Agency (EMA) documents from the internet. Studies' medical value was analyzed in context of physiology, developmental pharmacology, and utilitarianism. EMA pediatric investigation plan (PIP) decisions and studies in www.clinicaltrials.gov are given by PIP/National Clinical Trial (NCT)-number, allowing internet-retrieval.

Background

The claim that children are discriminated against in drug development and treatment evolved after US law established in 1962 that clinical trials are the basis for regulatory approval, a principle now recognized worldwide. The same law also transferred jurisdiction over prescription drug advertising to the FDA [6]. In the 1950's, drug toxicities in newborns had been reported [7]. Drug developers thereafter included pediatric warnings into labels to avoid litigation. Due to the new FDA judicial authority, such drugs could not be advertised for children. Shirkey asserted that this denied children the use of drugs and characterized children as "therapeutic orphans" [5]. The American Academy of Pediatrics (AAP) maintained that drug prescription for children without explicit FDA certification was experimental [8] and that children required separate pharmacological evaluation of new drugs for all age groups [7]. FDA and AAP lobbying resulted in the 1997 US law that rewarded pediatric studies with voluntary "pediatric exclusivity": additional six months protection against

- 79 generic competition [1,9]. The company submits a proposal; if the FDA agrees, it issues a
- 80 "Written Request" (WR); upon report submission and FDA acceptance, pediatric exclusivity is
- granted [1,9] A second law authorized the FDA to mandate pediatric studies without reward
- 82 [1].
- 83 Consequently the EU established its own pediatric law, in force since 2007 [1,3,4]. Without a
- PIP, new drugs cannot get adult EU-approval, unless the targeted disease is PIP-exempted.
- 85 [1,3,4]. PIPs must address juvenile animal studies, formulations (liquids vs. tablets), clinical
- studies, & more. The EMA has so far issued >1000 PIPs.
- 87 The toxicities the AAP referred to were reported in premature newborns [7]. The AAP
- 88 warnings "extrapolated" potential toxicities from physiologically immature newborns to all
- 89 children. However, this "extrapolation" used the *legal*, not the *physiological* term of children
- 90 [7]. Pediatric laws responded to the AAP's "moral imperative to formally study drugs in
- children" [7], which was based less on science and more on emotional appeal to protective
- 92 instincts the word "child" triggers. US & EU pediatric laws define children not physiologically,
- 93 but administratively: <16 (FDA)/ <18 years (EU) [1,10].

95 **Results**

94

96 **1. Oncology**

#	NCT#	Study Description	Sponsor	Patients/ Centers	Age	Status
1	NCT00106353	Two-part temsirolimus study in advanced pediatric solid tumors	Pfizer	71/30	1-21y	Completed 2005- 2012
2	NCT03130959	Non-randomized nivolumab vs. nivolumab + ipilimumab study in high grade primary CNS malignancies	BMS	170/59	6mo-21y	Recruiting
3	NCT02190721	PK,PD,S&E of tbo-filgrastim in solid tumors without bone marrow involvement.	Teva	50/28	1mo-16y	Completed 2015- 2017
4	NCT00952380	Dalteparin in treatment of VTE in cancer patients	Pfizer	50/67	<u><</u> 18y	Recruiting
5	NCT03204279	MC R DB PK/PD DF study of netupitant + palonosetron for prevention of CINV	Helsinn	92/16	<u><</u> 17y	Recruiting
6	NCT02197416	S of dabigatran in VTE prevention	ВІ	100/83	<u><</u> 18y	Recruiting
7	NCT01088984	DF, S&E of bendamustine in R/R acute leukemia	Teva	43/50	1-20y	Completed 2010- 2011
8	NCT02341417	Long-term cinacalcet safety extension in SHPT due to CKD	Amgen	28/33	1-17y	Completed 2015- 2017
9	NCT02138838	OL R S&E cinacalcet + SoC vs. SoC alone in SHPT due to CKD	Amgen	55/60	6-17y	Terminated 2014- 2016
10	NCT01277510	R DB PC S&E cinacalcet + SoC vs. SoC alone in SHPT due to CKD	Amgen	43/51	6-17y	Terminated*2011- 2014
11	NCT01439867	OL S & T of cinacalcet + SoC in SHPT due to CKD	Amgen	18/42	<u><</u> 6y	Terminated 2012- 2016
12	NCT00643565	OL S&E bevacizumab + SChT vs. SChT alone in RMS or non-RMS sarcoma	Roche	154/60	6mo-18y	Active, not recruiting
13	NCT01077544	Nilotinib PK in Ph+CML or ALL	Novartis	15/18	1-18y	Completed 2011- 2015
14	NCT01844765	S&E of nilotinib in Ph+CML	Novartis	59/36	1-17y	Active, not recruiting
15	NCT01056341	R PC S&E of propranolol in infantile hemangioma	PFD	512/59	35-150 d	Completed, 2010-

						2014
16	NCT02703272	Ibrutinib PK (phase 1) and E of ibrutinib + RICE or	Jannsen	96/99	<u><</u> 30y	Recruiting
		ibrutinib + RVICI vs. RICE or RVICI alone (phase 2)				
17	NCT00777036	Dasatinib in newly diagnosed chronic phase CML or	BMS	145/82	<u><</u> 18y	Active, not
		Ph+ Leukemias resistant or intolerant to imatinib				recruiting

Abbreviations in alphabetic order: ALL acute lymphatic leukemia • BI Boehringer Ingelheim • BMS Bristol Myers Squibb • CKD chronic kidney disease • CNS central nervous system • CINV chemotherapy-induced nausea and vomiting • d day(s) • DB double-blind • DF dose finding • E efficacy • MC multicenter • OL open label • PD pharmacodynamics • PK pharmacokinetics • PFD Pierre Fabre Dermatology • Ph+ Philadelphia-positive • Ph+CML Philadelphia-positive chronic myelogenous leukemia • RICE rituximab, ifosfamide, carboplatin, etoposide • R/R relapsed or refractory • RVICI rituximab, vincristine, ifosfamide, carboplatin, idarubicin • Roche Hoffmann-La Roche • S safety • SHPT secondary hyperparathyroidism • S&E safety & efficacy • T tolerability • SoC standard of care • VTE venous thromboembolism •

Explanations: Study #10: Terminated: study was suspended in agreement between sponsor and FDA due to concerns about the study design after a fatality had occurred in the presence of hypocalcemia •

Table 2 indicates which oncology studies correspond to PIPs/ FDA WRs (WRs: temsirolimus [11], palonosetron [12], bendamustine [13]. We didn't find FDA/EMA documents for dalteparin (study#4 table 1); the dalteparin study design corresponds to regulatory-demanded pediatric studies in other drugs.

Table 2: Oncology PIPs/WR	s
Compound	PIP#/WR
Temsirolimus	FDA WR 2011 + 5 amendments
	Final study description in Amendment 5 [11]
Nivolumab	EMEA-001407-PIP02-15
Tbo-filgrastim	EMEA-001042-PIP02-11
Dalteparin	?
Netupitant/ palonosetron	FDA WR + 3 amendments on palonosetron [12]
	• waiver EMEA-001198-PIP01-11
Dabigatran	EMEA-000081-PIP01-07-M09
Bendamustine	FDA WR (16)
Cinalcalcet	EMEA-000078-PIP01-07-M08
Bevacizumab	EMEA-000056-PIP01-07-M02
Nilotinib	EMEA-000290-PIP01-08-M04
Propranolol	EMEA-000511-PIP01-08-M04
Ibrutinib	EMEA-001397-PIP03-14-M02
Dasatinib	EMEA-000567-PIP01-09-M04
Nilotinib	EMEA-000290-PIP01-08-M04

2. Rheumatology

#	NCT#	Study Description	Sponsor	Pts/ Centers	Age	Status	PIP#/WR
1	NCT01844518	Abatacept PK, S&E in pJIA	BMS	187/55	2-17y	A, non recr	WR + EMEA-000118- PIP02-10-M02
2	NCT01357668	Observational abatacept registry in JIA	BMS	900/82	<u><</u> 17y	recruiting	WR + EMEA-000118 PIP02-10-M02
3	NCT02296424	Canakinumab S&E in JIA	Novartis	180/68	2-20y	recruiting	EMEA-000060- PIP02-08-M06
4	NCT00891046	OL canakinumab extension	Novartis	270/73	2-19y	Completed	EMEA-000060-

		study in JIA				2009-2014	PIP02-08-M06
5	NCT00652925	S&E of celecoxib vs.	Celecoxib	225/58	2-18y	Completed	WR 14
		naproxen in JIA				2002-2005	
6	NCT01550003	Certulizumab in pediatric	UCB	163/36	2-17y	A, not recr	EMEA-001071-
		arthritis					PIP03-14
7	NCT00807846	Etanercept in 3 subtypes of	Pfizer	201/39	2.17y	Completed	EMEA-000299-
		pediatric arthritis				2009-2012	PIP01-08-M03
8	NCT02277444	PK, S&E of golimumab in pJIA	Jannsen	130/38	2-17y	A, not recr	EMEA-000265-
							PIP01-08-M03
9	NCT01230827	S&E of golimumab in JIA	Jannsen	173/35	2-18y	Terminated*	EMEA-000265-
						2010-2014	PIP01-08-M03
10	NCT02991469	Repeated sarilumab DF in	Sanofi	36/34	1-17y	Suspended**	EMEA-001045-
		sJIA					PIP01-10
11	NCT02776735	OL ascending repeated	Sanofi	36/41	2-17y	recruiting	EMEA-001045-
		sarilumab DF in pJIA					PIP01-10
12	NCT03031782	Secukinumab S&E in JPsA &	Novartis	80/28	2-17y	Recruiting	EMEA-000380-
		ERA					PIP01-08-M03
13	NCT00988221	Tocilizumab in pJIA	Roche	188/69	2-17y	Completed	EMEA-000309-
						2009-2013	PIP01-08-M07
14	NCT01904292	Tocilizumab in sJIA	Roche	52/42	1-17y	Completed	EMEA-000309-
						2013-2017	PIP01-08-M07
15	NCT01904279	Tocilizumab in pJIA	Roche	52/35	1-17y	Completed2013-	EMEA-000309-
						2016	PIP01-08-M07
16	NCT02165345	S&E tocilizumab extension	Roche	96/31	2-18y	A, not recr	EMEA-000309-
		study in sJIA+ pJIA		1			PIP01-08-M07
17	NCT01734382	Decreased dose frequency	Roche	65/30	2-17y	Recruiting	EMEA-000309-
		tocilizumab in sJIA					PIP01-08-M07
18	NCT02592434	E of tofacitinib in pediatric	Pfizer	210/101	2-17y	Recruiting	EMEA-000576-
		JIA					PIP01-09-M06
19	NCT01500551	Long-term safety of	Pfizer	340/104	2-18y	Recruiting	EMEA-000576-
		tofacitinib in JIA					PIP01-09-M06

Abbreviations: JIA juvenile idiopathic arthritis • BMS Bristol Myers Squibb • Roche Hoffmann-La Roche • DF dose finding • sJIA systemic JIA• pJIA poliarticular JIA • OL open label • S&E safety & efficacy • E efficacy • PK pharmacokinetics • JPsA juvenile psoriatic arthritis • ERA enthesitis-related arthritis

107

108

109

The celecoxib study was WR-related [14]; all other rheumatology studies correspond(ed) to PIPs (table 3)

110111

112

Discussion

Table 4 lists description/indication(s) of oncology drugs. The order of studies discussed below corresponds to the order in tables 1,2,4.

115

Table 4: Description/Indications of discussed drugs in malignancy			
Compound	Description/Indications		
Temsirolimus	Renal cell carcinoma.		
Nivolumab	Malignant melanoma in combination with ipilimumab		
Tbo-filgrastim	Neutropenia due to chemotherapy		
Dalteparin	Prophylaxis/ treatment of deep vein thrombosis		
Netupitant + palonosetron	Prevention of chemotherapy-induced nausea & vomiting		
Dabigatran	Oral anticoagulant		
Bendamustine	Cytotoxic for chemotherapy		

^{*}Terminated: trial failed to meet primary & major secondary endpoints • **Suspended: In order to optimize the study design and procedures, sponsors have decided to amend the current protocol before initiating the patient recruitment

Cinalcalcet	Seconday hyperparathyroidism in chronic kidney disease	
Bevacizumab	Colon cancer, lung cancer, glioblastoma, renal-cell carcinoma	
Nilotinib	tyrosine kinase inhibitor approved for imatinib-resistant CML	
Propranolol Beta blocker against high blood pressure		
Ibrutinib	Mantle cell lymphoma, CLL, Waldenström's macroglobulinemia	
Dasatinib	Cytotoxic for CML and ALL	
Abbreviations: CML chronic myelogenous leukemia • CLL chronic lymphatic leukemia • CML chronic		
myelogenous leukemia ● All acute lymphoblastic leukemia ●		

116

117

118119

120

121122

123

124

125126

127

128

129

130

131

132

133134

135136

137138

139

140

141

142

143

144

145

It is unclear why a drug, as temsirolimus, that works in adults with various solid tumors should not work in adolescents or children if appropriately dose adjusted. The report from the temsirolimus study (that included some children but also adolescents and adults) suggested further studies [15]. Similarly, nivolumab has been studied, so far failed to show efficacy beyond melanoma and was not approved for various malignancies including those involving the central nervous system (CNS). There is no solid scientific rationale that nivolumab should work in young patients with brain cancer just because they are <21 years old. The tbo-filgrastim study report confirmed that tbo-filgrastim was as efficacious in children as in adults [16]. Bendamustine monotherapy clinical trials failed to be helpful in children with relapsed/refractory (R/R) acute lymphatic leukemia (ALL) or acute myelogenous leukemia; the authors suggested further studies [17], but in our opinion the availability of innovative therapy like tisagenlecleucel for R/R ALL makes this suggestion questionable. Separate clinical trials were not needed to show that cinacalcet works in young patients. The EMA reports the PIP as completed and approved cinacalcet in children. Rhabdomyosarcoma (RMS) affects predominantly patients <14 while non-RMS soft tissue sarcomas (NRSTS) impacts adolescents and young adults [18]. Bevacizumab, added to chemotherapy, appeared tolerable in metastatic RMS/NRSTS, but showed no efficacy. The EMA justifications for this study were regulatory, not science-based. The study authors suggested further studies in NRSTS subtypes, but fail to address that the NRSTS age limit for this drug was regulatory and administrative, but medically arbitrary [19]. Evaluating nilotinib pharacokinetics (PK) in school age patients is medically appropriate, but not in adolescents with mature absorption, distribution, metabolism and excretion (ADME) [20]. In 2008, propranolol efficacy in infantile hemangioma was reported [21]. The propranolol PIP required PK measurement (justified), and randomized double-blind placebo-controlled proof of efficacy of four propranolol regimens in babies [22]. The serendipitously found efficacy of

146147

148

propranolol in infantile hemangioma led to regulatory excesses. In our opinion, PK and

confirmation of clinical efficacy in a small study would have sufficed.

Measuring ibrutinib PK in children is justified; separate efficacy studies are not.

Table 5: Description/Indications of drugs discussed in JIA				
Compound	Description/Indications			
Abatacept	Fusion protein IgG1 Fc region + CTLA-4 extracellular domain; antiinflammatory			
Canakinumab	Human MAB against IL-1 beta, antiinflammatory			
Celecoxib	COX-2 selective nonsteroidal anti-inflammatory drug			
Etanercept	TNF inhibitor, antiinflammatory			
Golimumab	Human MAB against TNF-alpha; antiinflammatory			
Salimumab	Human MAG against IL-6 receptor; antiinflammatory			
Secukinumab	Human IgG1к MAB against IL-17A; antiinflammatory			
Tocilicumab	Humanized MAB against IL-6 receptor; antiinflammatory			
Tofacitinib	Janus kinase inhibitor, antiinflammatory			
Abbreviations: C	Abbreviations: CTLA-4 cytotoxic T-lymphocyte-associated protein 4 (protein receptor that works as			
immune checkpo	oint • Ig immunoglobulin • IL interleukin • MAB monoclonal antibody • TNF tumor			
necrosis factor ●				

150

151152

153

154155

156

157

158

159

160

161

162163

164

165

166167

168

169170

171172

173

174

175

176177

178

Numerous publications confirm unsurprisingly the efficacy of antiinflammatory drugs in minors. These studies were *regulatorily* justified, but *medically* a waste of time and money. Why should antiinflammatory compounds work differently above/below a specifc age (tables 3,5)? Although PK measurement in pre-adolescents is justified, safety registries would suffice. Separate efficacy trials in children >1-2 years lack medical utility. Pediatric oncology developed by systematic testing cytotoxics in children [23] with survival rates of ~90% in ALL. Although the FDA & EMA claim to promote pediatric cancer studies, they define children as <16 (FDA)/ <18 (EU) [1,10]. Adolescents are no longer children. Even school-age children have a mature ADME [20]. In table 1, only RMS is a truly pediatric cancer; even NRSTS is not. Many of these pediatric studies even recruit(ed) young adults. Although newborns and infants have different ADME [20]; the body matures over months and years and not at a specific age. WRs/PIPs appear to be in line with the AAP's definition of pediatric age [24], but the AAP discusses clinical care. The "therapeutic orphans" theory has led to a regulatory concept of two distinctive populations above/below 16/18 years, for which FDA/EMA demand separate efficacy studies. This has resulted in an "industry" in pediatric academia for medically unnecessary studies that are expensive and delay accessibility of medications to children. Representatives of pediatric oncology and rheumatology publicly support pediatric legislation despite obvious conflicts of interest [25,26]. Regulatory decisions have channeled industry funds into medically unnecessary "pediatric" studies [2-4]. The number of patients and study centers in tables 1 and 3 reveal the dimension of the diverted funds. While the FDA/EMA have strengthened their position in the triangle of influence between clinical care, industry and regulators,2 minors and their families paid/pay the price. Overall, children have profited from medical/pharmaceutical progress. Pediatric cancer was not even a footnote in medical textbooks a century ago, but is today the most frequent cause of nonviolent death in minors. Most diseases that in the past killed children can today be prevented or treated. Historically pediatric oncologists ignored drug labels and treated their patients. Shirkey noted that most pediatricians simply ignored pediatric warnings [5].

179 Chemotherapy combinations increased leukemia survival. Regulatory clinical trials for persons <18 became required despite the fact that confirmation by double-blind randomized 180 181 placebo-controlled clinical trials was not truly needed. The demand to prove efficacy of parachutes via double-blind randomized trials mocks clinicians' and regulators' obsession for 182 183 clinical studies [27]. Today's definition of "children" and "pediatric" confuses legal age and physiology [4]. Many malignancies in minors are the same or similar to adult malignancies 184 185 despite the fact that minors' bodies are different and dose adjustment is required. There are also differences we still don't understand completely, such as young patients' reserves. 186 187 Novartis' decision to develop tisagenlecleucel first in young patients was physiology-based, in contrast to FDA/EMA's obsession for "pediatric" trials. 188

The first FDA pediatric report to congress described expected clinical outcomes: "quicker recoveries from childhood illnesses, with fewer attendant hospital stays, physician visits and parental work days lost" [28]. The FDA in 2016 reported "significant progress in terms of the number, timeliness, and successful completion of studies of drugs in pediatric populations" [29]. This is an obvious shift towards a *regulatory* focus. Most FDA/EMA-triggered "pediatric" studies are justified based on regulations, but *medically* unnecessary with resultant wastage of money and delays in therapies becoming available to children.

196

197

218

195

189190

191192

193194

Conclusions

- 198 With the exception of newborns and babies, pre-pubertal children need PK and dose-finding, 199 not separate efficacy studies. Adolescents with mature ADME deserve adult treatment. Rare 200 adverse events are rarely caught in clinical trials; registries should be used more.
- 201 Parts of pediatric academia are corrupted by industry funds, channeled voluntarily (US)/
- involuntarily (EU) into medically unnecessary studies in underage (and adult) patients.
- 203 Minors and young adults with serious and lethal diseases are enrolled in needless studies
- that are potentially the largest systematic abuse of patients in history, reminding us of past
- 205 historical abuses as the Tuskegee study or the Willowbrook experiment [30].
- The "therapeutic orphans" concept emerged when regulatory clinical trials entered the 206 207 world of clinical medicine, drug development and drug approval. Pediatric laws intend to 208 improve child healthcare. Trial centers worldwide that participate in pediatric studies, that in our opinion are questionable, perform good medical care on a daily base and also participate 209 210 in other valid clinical studies. Most clinicians that participate in questionable studies are not aware of the regulatory background of drug development and welcome the opportunity for 211 212 international networking. The "therapeutic orphans" concept was not born with dishonest 213 intentions. It was born in a period when drug development was still beginning, when the 214 horror of the thalidomide tragedy was still around and when thinking about childrens' rights 215 and wellbeing became a major issue in societal thinking. But today it is time to challenge the 216 "therapeutic orphans" concept that has become a regulatory dogma which exposes children, 217 adolescents and young adults to unnecessary clinical studies worldwide, including the US

and the Russian Federation.

- 219 US and EU pediatric legislation need revision. Institution Review Boards (IRBs)/ ethics
- 220 committees (ECs) have failed to detect medically unwarranted studies. We recommend that
- 221 IRBs/ECs suspend ongoing superfluous studies and reject new ones. Also, in our opinion,
- 222 IRBs/ECs need urgent emergency training in developmental physiology to become aware of
- the flaws of most pediatric studies triggered by regulatory-authorities' demands.
- 224 While false prophets promise improvement of childhood diseases by medically unnecessary
- studies [25,26], ordered by bureaucracy, innovation against cancer and autoinflammatory
- diseases continues, but we could do better. Continued innovation needs the unleashed
- forces of science and the market.

228

229

230

References

- Hirschfeld S, Saint-Raymond A. Pediatric Regulatory Initiatives. Handb Exp Pharmacol
 2011, 205,245-68
- Rose K, Grant-Kels JM. Most adolescents' melanomas are conventional malignant adult type melanomas. Eur J Cancer 2018, in press
- 3. Rose K, Walson PD. Do the European Medicines Agency (EMA) Decisions Hurt Pediatric Melanoma Patients? Clin Ther 2017, 39, 253-265
- 4. Rose K, Walson PD. Do Pediatric Investigation Plans (PIPs) Advance Pediatric Healthcare?
 Pediatr Drugs 2017, 19, 515-522
- 239 5. Shirkey H. Therapeutic Orphans. J Pediatr 72, 119-120 (1968)
- Donohue JA. History of Drug Advertising: The Evolving Roles of Consumers and Consumer
 Protection. Milbank Q. 2006, 84, 659–699
- Guidelines for the Ethical Conduct of Studies to Evaluate Drugs in Pediatric Populations.
 Committee on Drugs. American Academy of Pediatrics. Pediatrics 1995, 95, 286-94
- 8. American Academy of Pediatrics. Committee on Drugs. Guidelines for the Ethical
 Conduct of Studies to Evaluate Drugs in Pediatric Populations. Pediatrics 1977,60,91-101
- 9. Li JS, Eisenstein EL, Grabowski HG, et al. Economic return of clinical trials performed under the pediatric exclusivity program. JAMA 2007, 297, 480-8
- 248 10. Karesh A. Pediatric Drug Development: Regulatory Expectations
- 249 https://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/SmallBusinessAss
- istance/UCM466469.pdf
- 251 11. Temsirolimus FDA Written Request final version
- 252 https://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/DevelopmentRes
- 253 ources/UCM295688.pdf

254	Palonosetron	FDA	Written	Request
-----	--------------------------------	-----	---------	---------

255 https://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/DevelopmentRes

- ources/UCM396089.pdf
- 257 13. Bendamustine FDA Written Request
- 258 https://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/DevelopmentRes
- 259 ources/UCM307141.pdf
- 260 14. Celecoxib FDA Written Request
- 261 https://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/DevelopmentRes
- ources/UCM449287.pdf
- 15. Geoerger B, Kieran MW, Grupp S, et al. Phase II trial of temsirolimus in children with
- high-grade glioma, neuroblastoma and rhabdomyosarcoma. Eur J Cancer 2012,48,253-
- 265 262
- 16. Federman N, Dragomir MD, Kizyma Z, et al. A Phase 2, International, Multicenter,
- 267 Prospective Clinical Trial of Subcutaneous Tbo-Filgrastim in Pediatric Patients with Solid
- 268 Tumors Undergoing Chemotherapy.
- 269 https://ash.confex.com/ash/2017/webprogram/Paper106027.html
- 17. Fraser C, Brown P, Megason G, et al. Open-label Bendamustine Monotherapy for
- 271 Pediatric Patients With Relapsed or Refractory Acute Leukemia: Efficacy and Tolerability.
- 272 J Pediatr Hematol Oncol2014, 36:e212–e218)
- 18. Loeb DM, Thornton K, Shokek O. Pediatric soft tissue sarcomas. Surg Clin North Am 2008,
- 274 88, 615-27
- 19. Chisholm JC, Merks JHM, Casanova M, et al. Open-label, multicentre, randomised, phase
- 276 II study of the EpSSG and the ITCC evaluating the addition of bevacizumab to
- chemotherapy in childhood and adolescent patients with metastatic soft tissue sarcoma
- 278 (the BERNIE study). Eur J Cancer 2017,83, 177-184
- 279 20. Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE.
- Developmental pharmacology drug disposition, action, and therapy in infants and
- 281 children. N Engl J Med 2003, 349, 1157-67
- 282 21. Léauté-Labrèze C, Dumas de la Roque E, Hubiche T, Boralevi F, Thambo JB, A. Taïeb A.
- Propranolol for severe hemangiomas of infancy. N Engl J Med 2008, 358, 2649-51
- 22. Léauté-Labrèze C, Hoeger P, Mazereeuw-Hautier J, et al. A randomized, controlled trial of
- oral propranolol in infantile hemangioma. N Engl J Med 2015, 372, 735-46
- 23. Adamson PC. Improving the outcome for children with cancer: Development of targeted
- 287 new agents. CA Cancer J Cli 65, 212-20 (2015)
- 24. Hardin AP, Hackell JM; Committee On Practice And Ambulatory Medicine. Age Limit of
- Pediatrics. Pediatrics 2017, 140(3)

290 291 292	25. Vassal G, Rousseau R, Blanc P, et al. Creating a unique, multi-stakeholder Paediatric Oncology Platform to improve drug development for children and adolescents with cancer. Eur J Cancer 51 2015, 218-24
293 294 295	26. Ruperto N, Vesely R, Saint-Raymond A, Martini A, for the Paediatric Rheumatology International Trials Organisation (PRINTO). Impact of the European paediatric legislation in paediatric rheumatology: past, present and future. Ann Rheum Dis 2013, 72, 1893-6
296 297 298	27. Smith GC, Pell JP. Parachute use to prevent death and major trauma related to gravitational challenge: systematic review of randomized controlled trials. BMJ 2003, 237 (7427), 1459-61
299 300 301	28. The Pediatric Exclusivity Provision. January 2001. Status Report to Congress. https://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/DevelopmentRes ources/UCM049915.pdf
302 303 304 305 306	29. Best Pharmaceuticals for Children Act and Pediatric Research Equity Act. July 2016. Status Report to Congress. Department of Health and Human Services. Food and Drug Administration. https://www.fda.gov/downloads/ScienceResearch/SpecialTopics/PediatricTherapeuticsResearch/UCM509815.pdf
307 308 309	30. Rose CD. Ethical Conduct of Research in Children: Pediatricians and Their IRB (Part 1 of 2). Pediatrics 2017, 139(5)
310	