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Abstract 6 

Author proposed an abstract model represents an ideal conceptual model to describe 7 

one edge of computation theory. The deaf machine is an automaton that has not any 8 

acceptance state, Deaf machine may have one or many normal states or even have infinite 9 

states (uncountable normal states). The deaf machine can not recognize any languages, either 10 

formal or other. So, there is at least one finite state machine FSM without accept state, cannot 11 

recognize any language neither accepts an empty string Ԑ. 12 
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1. Deaf Machine in Computation Theory 17 

The computational theory in computer science examines the possibility of solving 18 

problems efficiently through a computer and examines what the computer can calculate 19 

currently and what they can develop to solve problems.  Computational theory deals with the 20 

mathematical models of computing. To produce a systematic study of computation, computer 21 

scientists form an abstract mathematical model of computers called model of computation [2, 22 

3].One of these model is the deterministic finite automata DFA that works with finite state 23 

machine FSM. This model consists of five tuples, the first tuple is represents the set of states 24 

that is governed by rules of transition from one state to another according to input symbol, 25 

the movement is done by transition function as an example the transition function of moving 26 

the process from state x to the next state y, when the input symbol is 1 is δ (x, 1) = y.[4, 27 

5]from definition: Let machine M is a deterministic finite automaton then M has a 5-tuple, 28 

(Q, Σ, δ, q0, F),[6, 7] consisting of: 29 

1. a finite set of states (Q) 30 

2. a finite set of input symbols called the alphabet (Σ) 31 

3. a transition function (δ : Q × Σ → Q) 32 

4. an initial or start state (q0∈ Q) 33 

5. a set of accept states (F ⊆ Q) 34 

Let machine M figure 1, If alphabet of the machine Σ= {0, 1}, then: 35 



36 

37 

M= ({x}, {1}, δ, x, {}) 38 

δ: 39 

 

X

δ (x, 1) = x, the transition function represents the movement from one state to another except 40 

the case of machine M. The important41 

allowed to be {} or ф (there is not accept states)42 

at the same time, the problem is 43 

string Ԑ nor the empty language.44 

not recognize any human language. 45 

the solution is the DFA machine46 

represents the deaf machine in computation theory47 

represents an ideal conceptual model to describe one edge of computation theory.48 

machine is an automaton that has not any acceptance state, figure 1 for example. Deaf 49 

machine may have one or many normal states or even h50 

normal states) [8, 9]. The deaf machine can not recognize any languages, either formal or 51 

other. 52 

 53 

 54 

2. Conclusion 55 

Deaf machine is abstract model represents an ideal conceptual model to describe one edge 56 

of computation theory. The deaf machine is an automaton th57 

Deaf machine may have one or many normal states or even have infinite states (uncountable 58 

normal states). The deaf machine can not recognize any languages, either formal or other. 59 

This leads to conclude that there is at least one finite state machine FSM without accept state, 60 

cannot recognize any language neither accepts an empty string.61 

of this model is to halt or break function in programming.62 

 63 
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Figure 1- Machine M. 
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