
1

Method Article2

3

The bitwise operations in relation to the4

concept of set5

6
ABSTRACT7

8
We contemplate this article to help the teachers of programming in his aspiration for

giving some appropriate and interesting examples. The work will be especially useful for
students-future programmers, and for their lecturers.

The use of bitwise operations is a powerful means during programming with the
languages C/C++ and Java. Some of the strong sides of these programming languages are
the possibilities of low-level programming. Some of the means for this possibility are the
introduced standard bitwise operations, with the help of which, it is possible directly operate
with every bit of an arbitrary variable situated in the computer’s memory.

In the current work, we are going to describe some methodical aspects for work with the
bitwise operations and we will discuss the benefit of using bitwise operations in
programming. The article shows some advantages of using bitwise operations, realizing
various operations with sets.

9
Keywords: Bitwise operation; Set; integer representation of sets, Class; Overloading of10
operators.11

12
1. INTRODUCTION13

14
In the paper [1], we described an algorithm for receiving a Latin square of arbitrary order15

using operations with sets. Unfortunately, the programming languages C/C++ and Java do16
not support a standard type ''set'' [2], whereas for example the Pascal language does. For17
this reason, if there should be a need to use the operations with sets in the realization of18
some of our algorithms, we have to look for additional instruments to work with sets, such19
as, for example, the associative containers set and multiset, realized in Standard Template20
Library (STL) [3, 4, 5, 6]. We can also use the template class set of the system of computer21
algebra ''Symbolic C++'', which programming code is given in details in [7], or abstract class22
IntSet, that presents the interface of set realized through a dynamic array and ordered23
binary tree, described in [8]. Of course, another class set also can be built, and specific24
methods of this class can be described, as a means of training. This is a good exercise for25
students when the cardinality of the basic (universal) set is not very big. For example, the26
standard Sudoku puzzle has basic set the set of the integers from 1 to 9 plus the empty set.27

The purpose of this paper is to show the advantages of bitwise operations to work with28
sets in the C++ programming language. This, of course, can be easily converted in the Java29
programming language, which has a similar syntax as in C++ [9, 10]. Here we will create30
own class set by describing specific methods for working with sets.31

32

UNDER PEER REVIEW

2. BITWISE OPERATIONS - BASIC DEFINITIONS, NOTATIONS AND33
EXAMPLES34

35
Bitwise operations can be applied for integer data type only, i.e. they cannot be used for36

float and double types.37
We assume, as usual that bits numbering in variables starts from right to left, and that the38

number of the very right one is 0.39
Let x, y and z are integer variables or constants of one type, for which bits are needed.40

Let x and y are initialized (if they are variables) and let the assignment z = x & y; (bitwise41
AND), or z = x | y; (bitwise inclusive OR), or z = x ^ y; (bitwise exclusive OR), or z = ~x;42
(bitwise NOT) be made. For each = 0,1,2, … , − 1, the new contents of the -th bit in z will43
be as it is presented in the Table 1.44

45
Table 1. Bitwise operations in programming languages C/C++ and JAVA46

47
-th bit of -th bit of -th bit of -th bit of -th bit of -th bit of

x y z = x & y; z = x | y; z = x ^ y; z = ~x;

0 0 0 0 0 1

0 1 0 1 1 1

1 0 0 1 1 0

1 1 1 1 0 0
48

In case that k is a nonnegative integer, then the statement z = x<<k (bitwise shift left) will49
fill the (+)-th bit of z the value of the bit of x, where = 0,1, … , − − 1, and the very50
right bits of x will be filled by zeroes. This operation is equivalent to a multiplication of x by51 2 .52

The statement z=x>>k (bitwise shift right) works the similar way. However, we must be53
careful if we use the programming language C or C++. In various programming54
environments this operation has different interpretations – somewhere bits of z from the55
very left place are compulsory filled by 0 (logical displacement), and elsewhere the very left56

bits of z are filled with the value from the very left (sign) bit (arithmetic displacement), i.e. if57
the number is negative, then the filling will be with 1. Therefore, it is recommended to use58
unsigned type of variables (if the opposite is not necessary) while working with bitwise59
operations. In the Java programming language, this problem is solved by introducing the two60
different operators: z=x>>k and z=x>>>k [9, 10].61

Bitwise operations are left associative.62
The priority of operations in descending order is as follows: ~ (bitwise NOT); the63

arithmetic operations * (multiplication), / (division), % (remainder or modulus); the arithmetic64
operations + (addition) - (subtraction); the bitwise operations << and >>; the relational65
operations <, >, <=, >=, ==, !=; the bitwise operations &,^ and |; the logical operations &&66
and ||.67

Below we show some elementary examples of using the bitwise operations.68
69

Example 1:1 To compute the value of the i-th bit (0 or 1) of an integer variable x we can use70
the function:71

72
int BitValue(int x, unsigned int i) {73

UNDER PEER REVIEW

int b = ((x & 1<<i) == 0) ? 0 : 1;74

return b;75

}76
77

Example 2: 2 Directly from the definition of the operation bitwise shift left (<<) follows the78
efficiency of the following function computing 2 , where is a nonnegative integer:79

80
unsigned int Power2(unsigned int n) {81

return 1<<n;82

}83
84

Example 3:3 The integer function () = % 2 implemented using operation bitwise shift85
right (>>).86

87
int Div2(int x, unsigned int n) {88

int s = x<0 ? -1 : 1;89

/* s = the sign of x */90

x = x*s;91

/* We reset the sign bit of x */92

return (x>>n)*s;93

}94
95

When we work with negative numbers we must consider that in the computer the96
presentation of the negative numbers is through the so called true complement code. The97
following function gives us how to code the integers in the memory of the computer we work98
with. For simplicity we are going to work with type short, but it is not a problem for the function99
to be overloaded for other integer types, too.100

101
Example 4:4 A function showing the presentation of the numbers of type short in the102
memory of the computer.103

104
void BinRepl(short n) {105

int b;106

int d = sizeof(short)*8 - 1;107

while (d>=0) {108

b= 1<<d & n ? 1 : 0;109

cout<<b;110

d--;111

}112

}113
114

In Table 2 we give some experiments with the function BinRepl:115
116
117
118
119

UNDER PEER REVIEW

Table 2. Presentation of some numbers of type short in the memory of the computer120
121

An integer of type short Presentation in memory

0 0000000000000000

1 0000000000000001

-1 1111111111111111

2 0000000000000010

-2 1111111111111110

16 = 24 0000000000010000

-16 = -24 1111111111110000

26=24+23+2 0000000000011010

-26= -(24+23+2) 1111111111100110

41 = 25+23+1 0000000000101001

-41 = -(25+23+1) 1111111111010111

32767 = 215 - 1 0111111111111111

-32767 = -(215 – 1) 1000000000000001

32768 = 215 1000000000000000

-32768 = -215 1000000000000000

122
Compare the function presented in Example 4 to the next function presented in Example123

5.124
125

Example 5:5 A function that prints an integer in binary notation.126
127

void DecToBin(int n) {128

if (n<0) cout<<'-';129

/* Prints the sign - , if n<0: */130

n = abs(n);131

int b;132

int d = sizeof(int)*8 - 1;133

while (d>0 && (n & 1<<d) == 0) d--;134

/* Skips the insignificant zeroes at the beginning: */135

UNDER PEER REVIEW

while (d>=0) {136

b= 1<<d & n ? 1 : 0;137

cout<<b;138

d--;139

}140

}141
142

Example 6:6 The following function calculates the number of 1 in an integer written in a143
binary notation. Here again we ignore the sign of the number (if it is negative) and we work144
with its absolute value.145

146
int NumbOf_1(int n) {147

n = abs(n);148

int temp=0;149

int d = sizeof(int)*8 - 1;150

for (int i=0; i<d; i++)151

if (n & 1<<i) temp++;152

return temp;153

}154
155

3. A PRESENTATION OF THE SUBSETS OF A SET156
157

Let = { , , … , }, | | = , be a finite set. Each subset of could be denoted by158
means of a Boolean vector () = ⟨ , , … , ⟩, where = 1 ⇔ ∈ and = 0 ⇔ ∉159

, = 0,1,2, . . . , − 1. As we proved in [11], a great memory economy could be achieved, if160
instead of boolean vectors, we use the presentation of the non-negative integers in a binary161
notation, where the integer 0 corresponds to empty set, while the integer 2 − 1, which in a162
binary notation is written by means of identities, corresponds to the basic set . Thus, a163
natural one to one correspondence between the integers of the closed interval [0, 2 − 1]164
and the set of all subsets of is achieved. The integer ∈ [0, 2 − 1] corresponds to the165
set ⊆ , if for every = 0,1,2, . . . , − 1 the -th bit of the binary representation of equals166
1 if and only if ∈ . In this way, the need of the use of bitwise operations naturally arises in167
cases involving the computer realization of various operations with sets.168

Such an approach is comfortable and significantly effective when the basic set is with169
relatively small cardinal number = | |. A significant importance has also the operating170
system and programming environment that is used. This is so, because to encode a set,171
which is a subset of , where | | = , with the above mentioned method bits are172
necessary. If bits are necessary for the integer type in the programming environment, then173 + 1 variables of that certain type will be necessary, so as to put the above mentioned174
ideas into practice, where ⌊ ⌋ denotes the function ”the whole part of ”. For example, when175 ≤ 5, four bytes (thirty-two bits) are necessary to write a program that can solve a Sudoku176
puzzle in the size of × if we use the set theory method [12]. In this case, every set of177
the kind = { , , . . . , } ⊆ {1,2, … , } and the empty set could be simply encoded with an178
integer.179

In particular, let ⊆ {1,2, … , }. We denote by (), = 1,2, … the functions180
181

UNDER PEER REVIEW

() = 1 ∈0 ∉ (1)182

183

Then we represent uniquely the set by the integer184
185 () = ∑ ()2 , 0 ≤ () ≤ 2 − 1, (2)186
187

where (), = 1,2, … , is given by formula (1). In other words, each subset of [], we will188
represent uniquely with the help of an integer from the interval [0, 2 − 1] (integer189
representation of sets).190

It is readily seen that191
192 ({1,2, … , }) = 2 − 1. (3)193
194

Evidently if = { }, i.e.| | = 1, then195
196 ({ }) = 2 . (4)197
198

The empty set ∅ is represented by199
200 (∅) = 0. (5)201
202

4. A PRESENTATION OF THE SUBSETS OF A SET203
204

We consider the set205 = {1,2, … ,32},
which we call basic.206

Here we will describe a class whose objects can be all subsets of , including the empty207
set. The class will contain a single field – an integer n of type unsigned int, the binary208
record of which will represent the considered set. Thus -th bit of this record is 1 if and only209
if the integer + 1 belongs to the set represented by n (Bit numbering starts from zero).210
Methods of this class will be various operations with sets.211

The class Set_N, which we create, will have two constructors. The first one has no212
parameters and initializes the empty set. The second one has one parameter – a213
nonnegative integer, the binary record of which determines the set. Thus, the empty set can214
be initialized in two ways – with no parameter or with a parameter equal to 0. In many215
programming environments, the basic set is initialized with the standard constant Maxint,216
which in our case is equal to 2 − 1. Using the operation << (bitwise shift to the left), this217
constant can be calculated as shown in the following example:218

219
Example 7:220

221
Set_N A, B(0);222

unsigned int mx = ((1<<31) - 1)*2 + 1;223

Set_N U(mx);224
225

In Example 7, the sets A and B are initialized as empty sets in both different ways, and U226
is the basic set, i.e. U is the set containing all integers from 1 to 32.227

Let the sets , ⊆ = {1,2, … }, which will be the objects of the class we create and let228
the integer ∈ . Consider the following operations with sets that will realize as methods of229

UNDER PEER REVIEW

the class Set and which, by overloading some operators, will have their own suitable230
notations:231

 The intersection ∩ of two sets. This operation we will denote with A*B.232

 The union ∪ of two sets. This operation we will denote with A+B.233

 The union ∪ { } of the set with the one-element set { }. This operation we will234
denote with A+k.235

 Adding the integer ∈ to the set . This operation we will denote with k+A.236

Remark: Here we have to note that from the algorithmic point of view A + k and k + A are237
realized differently, taking into account the standard of C++ programming language,238
regardless of commutativity for the operation of union of two sets.239

 Removing the integer k from the set A. If ∉ then A does not change. This240
operation we will denote with A-k.241

 Let \ = { | ∈ & ∈ }. This operation we will denote with A-B.242

 Checking whether ⊇ , that is, whether the set contains the proper subset . This243
operation we will denote with A>=B. The result is true or false.244

 Checking whether ⊆ , that is, whether the set is proper subset of the set . This245
operation we will denote with A<=B. The result is true or false.246

 Verifying that sets and are equal to each other we will denote with A==B. The247
result is true or false.248

 Checking whether the sets and are different will be denoted by A!=B. The result is249
true or false.250

 To verify that an integer ∈ belongs to the set ⊆ , we will use the method251
(function) A.in(k). The result is true or false.252

253
Below we offer a specification the class Set_N:254

255

class Set_N256

{257

/*258

The set is encoded by non-negative integer n in binary notation:259

*/260

unsigned int n;261

public:262

/*263

Constructor without parameter – creates empty set:264

*/265

Set_N();266

/*267

UNDER PEER REVIEW

Constructor with parameter – creates a set containing the integer i, if and only if the268
i-th bit of the parameter k is 1:269

*/270

Set_N(unsigned int k);271

/*272

Returns the integer n that encodes the set:273

*/274

int get_n() const;275

/*276

Overloading of the operators *, +, -, >=, <=, == and !=277

*/278

Set_N operator * (Set_N const &);279

Set_N operator + (Set_N const &);280

Set_N operator + (unsigned int);281

friend Set_N operator + (unsigned int, Set_N const &);282

Set_N operator - (unsigned int);283

Set_N operator - (Set_N const &);284

bool operator >= (Set_N const &);285

bool operator <= (Set_N const &);286

bool operator == (Set_N const &);287

bool operator != (Set_N const &);288

/*289

Checks whether the integer k belongs to the set:290

*/291

bool in(unsigned int k);292

/*293

Destructor294

*/295

~Set_N();296

}297

Below we describe a realization of the methods of class Set_N, with substantial use of298
bitwise operations:299

300
Set_N::Set_N()301

{302

n = 0;303

}304

UNDER PEER REVIEW

Set_N::Set_N(unsigned int k)305

{306

n = k;307

}308

309

int Set_N::get_n()310

{311

return n;312

}313

314

Set_N Set_N::operator * (Set_N const &s)315

{316

return (this->n) & s.get_n();317

}318

319

Set_N Set_N::operator + (Set_N const &s)320

{321

return (this->n) | s.get_n();322

}323

324

Set_N Set_N::operator + (unsigned int k)325

{326

return (this->n) | (1<<(k-1));327

}328

329

Set_N operator + (unsigned int k, Set_N const &s)330

{331

return (1<<(k-1)) | s.get_n();332

}333

334

Set_N Set_N::operator - (unsigned int k)335

{336

int temp = (this->n) ^ (1<<(k-1));337

return (this->n) & temp;338

}339

UNDER PEER REVIEW

340

Set_N Set_N::operator - (Set_N const &s)341

{342

int temp = this->n ^ s.get_n();343

return (this->n) & temp;344

}345

346

bool Set_N::operator >= (Set_N const &s)347

{348

return (this->n | s.get_n()) == this->n;349

}350

351

bool Set_N::operator <= (Set_N const &s)352

{353

return (this->n | s.get_n()) == s.get_n();354

}355

356

bool Set_N::operator == (Set_N const &s)357

{358

return ((this->n ^ s.get_n()) == 0);359

}360

361

bool Set_N::operator != (Set_N const &s) {362

return !((this->n ^ s.get_n()) == 0);363

}364

365

bool Set_N::in(int k)366

{367

return this->n & (1<<(k-1));368

}369

REFERENCES370
371

1. Yordzhev, K. Bitwise Operations in Relation to Obtaining Latin Squares. British372
Journal of Mathematics & Computer Science, 2016, 17(5), 1–7, doi:373
10.9734/BJMCS/2016/26471.374

2. Todorova, M. Data structures and programming in C ++. Sofia: Ciela, 2011, ISBN375
978-954-28-0990-6, Bulgarian.376

UNDER PEER REVIEW

3. Collins, W. Data Structures and the Standard Template Library, New York: McGraw-377
Hill, 2003, ISBN 978-0072369656.378

4. Horton, I. Beginning STL: Standard Template Library, Apress, 2015, ISBN379
9781484200056.380

5. Lischner, R. STL Pocket Reference, O'Reilly Media, 2009, ISBN 978-0-596-55638-381
9.382

6. Wilson, M. D. Extended STL: Collections and Iterators, Addison-Wesley, 2007 ISBN383
9780321305503.384

7. Kiat Shi Tan, Steeb, W.-H. and Hardy, Y. Symbolic C++: An Introduction to385
Computer Algebra using Object-Oriented Programming, London: Springer-Verlag, 2000,386
2012, ISBN 978-1-85233-260-0.387

8. Todorova, M., Armianov, P., Georgiev, K. Workbook of Exercises on Programming388
in C++. Part Two – Object-Oriented Programming Sofia: TechnoLogica, 2008, ISBN 978-389
954-9334-09-8, Bulgarian.390

9. Evans, B. J. and Flanagan, D. Java in a Nutshell Sixth Edition, O'Reilly, 2015.391
10. Schildt, H. Java: A Beginner’s Guide, Seventh Edition, McGraw-Hill, 2017, ISBN392

978-1259589317, ISBN 978-1-449-37082-4.393
11. Kostadinova, H. and Yordzhev, K. A Representation of Binary Matrices. In:394

Mathematics and education in mathematics, Volume 39. Sofia: Union of Bulgarian395
Mathematicians, 2010, 198–206.396

12. Yordzhev K. and Kostadinova, H. (2011). On some entertaining applications of the397
concept of set in computer science course. Informational Technologies in Education, 2011,398
10, 24–29, doi: 10.14308/ite000261.399

UNDER PEER REVIEW

