
A PARALLEL APRIORI-TRANSACTION
REDUCTION ALGORITHM USING HADOOP-

MAPREDUCE IN CLOUD

ABSTRACT
Apriori algorithm is a classical algorithm of association rule mining and widely used for
generating frequent item sets. However, the original Apriori algorithm has many drawbacks
such as it needs to scan the dataset many times to discover all frequent itemset and generate
huge number of candidate itemset. To overcome these limitations, researchers have made a
lot of improvements to the Apriori such as candidate generation, without candidate generation,
transaction reduction, partitioning, and sampling. When it comes to mine massive data, these
algorithms failed to prove efficiency because limitation of the processing capacity, storage
capacity, and main memory constraints. Therefore, parallel and distributed algorithms are
developed to perform large-scale computing in ARM on multiple processors. However, the
problems with most of the parallel and distributed framework are overheads of managing
distributed system, lack of high level parallel programming language, and node failures.
Hadoop-MapReduce is an efficient, scalable, and simplified programming model for massive
data processing and it also available on cloud environment. Cloud computing offers huge
computing resources, and capacities to solve big data challenges. Recently many parallel
algorithms have been proposed on Hadoop-MapReduce to enhance the performance of
Apriori algorithm but there are some drawbacks: since multiple scan over the dataset is
needed to generate candidate itemset, it consume more execution time. The aim of this study
is to propose a parallel Transaction Reduction MapReduce Apriori algorithm (TRMR-Apriori)
which is reduce unnecessary transaction values and transactions from the dataset in parallel
manner to overcome above problems. The experiments show that TRMR-Apriori is able to
achieve better execution time to discover frequent itemset those of previous sequential ARM
algorithms such as Apriori, AprioriTid, Eclat, and FP-Growth and the previous parallel
algorithms such as PApriori, MRApriori, and Modified Apriori with different condition on
homogeneous computing environment using Hadoop-MapReduce platform in cloud. Overall,
the TRMR-Apriori shows the strength to extract the frequent itemset from massive dataset in
cloud.

Keywords: [Apriori, Hadoop-Mapreduce, ARM, Parallel, Cloud, Transaction Reduction]

1. INTRODUCTION

Data mining and knowledge discovery has emerged to extract useful, interesting, and
unknown patterns and knowledge from huge amount of database. Association Rule Mining
(ARM) is one of the most important and popular technique of data mining which find
interesting correlation or association between set of items or attributes and also frequent
patterns in large database [1,2]. The most typical application of ARM is in market basket
analysis which analyses the purchasing behaviour of customers by finding the frequent items
purchased together. In addition to the many business application, it is also applicable to bi-
informatics, medical diagnosis and text analysis [3].

UNDER PEER REVIEW

sdi
Typewritten text
Original Research Article

The Apriori algorithm is one of the most widely used algorithm in ARM that collects the item
sets which frequently occur in order to discover association rule in massive datasets. The
original Apriori algorithm is for the sequential (single node or computer) environment. This
Apriori algorithm has many drawbacks to process huge datasets such as single machine
memory, CPU and storage capacity are insufficient [4].

Parallel and distributed computing is a better solution to overcome the above problems. Many
researches have been carried out for parallelizing the Apriori algorithm. Apriori parallel
algorithms handles gigantic dataset on various platforms with different configurations. There
are many major challenges such as to achieve efficacious load balancing, utilize total memory
system, intended new algorithm for memory utilize, consider different data layout, produce
effective parallel algorithm, reduce communication cost among processors, system failure,
data recovery, simplify parallel programming issue, manage scalability, and high availability.

Cloud systems which can be effectively employed to handle parallel mining since they provide
scalable storage and processing services, as well as software platforms for developing and
running data analysis environments. We exploit Cloud computing platforms for running big
data mining processes designed as a combination of several data analysis steps to be run in
parallel on Cloud computing elements.

To overcome the above stated major challenges, the Hadoop-MapReduce platform is more
suitable solution. Hadoop is an open source programming framework is capable to running
applications for large scale processing and storage on large clusters of commodity hardware.

Numerous techniques have been proposed to improve the efficiency of classical Apriori
algorithm, such as direct hash and pruning (DHP), transaction reduction, partitioning,
sampling, dynamic itemset counting (DIC), vertical layout techniques, and FP-Growth
[5,6,7,8,9,10,11,12,13]. The transaction reduction is one of the best way to extract all frequent
itemset from massive dataset. Transaction reduction is more suitable for big and dense
dataset in parallel and distributed environment because the transaction reduction technique
perform for generating k-frequent itemsets, if the length of a transactions is less than k, the

transaction is not necessary to scan and is the set of entire items that contain -frequent

itemsets, while generating frequent itemsets, any item called including in

is not essential to scan in all transactions[6]. So we can reduce unnecessary transaction value
as well as transaction from the dataset in parallel manner. In this thesis we propose
transaction reduction method to improve the efficiency of Apriori algorithm in parallel and
distributed on cloud using Hadoop-MapReduce platform.

The association rule mining (ARM) is very important task within the area of data mining [14].
The main task of every ARM algorithm is to discover the set of items that frequently appear
together, the frequent itemsets. Finding frequent itemsets in transaction databases has been
demonstrated to be useful in several business field [15]. Apriori is one of the most popular
data mining approaches for finding frequent itemsets from transactional datasets. The Apriori
algorithm is the basis of many other well-known algorithms and implementations. However, it
has some limitations such as it needs to scan the dataset many times and to generate many
candidate itemsets. The main challenge faced by researchers in frequent itemset mining has
been to reduce the execution time. Most of the current data mining algorithms like Apriori are
good for the databases that are small in size. Unfortunately, when the data size is huge, both
memory use and computational cost can still be very expensive.

In addition, single processors memory and CPU resources are very limited, which make the
algorithm performance inefficient. Furthermore, exponential growth of worldwide information,
organizations have to deal with ever growing amount of data. As these data grow past

UNDER PEER REVIEW

hundreds of gigabytes towards a terabyte or more, it becomes nearly impossible to process
them on a single machine. The solution for the above problems is parallel and distributed
computing.

Parallel and distributed computing offer a potential solution for the above problems if the
efficient parallel and distributed algorithm can be implemented. Most of the parallel ARM
algorithms are based on parallelization of Apriori that iteratively generates and tests candidate

itemsets from length until no more frequent itemsets are found. This algorithm can be

categorized into three, those are Count Distribution, Data Distribution and Candidate
Distribution [16].

Experiment show that the Count Distribution method exhibits better performance and
scalability than the other two methods [17,18,19]. Cloud computing platforms as a possible
solution for mining and analyzing massive data. With the cloud computing paradigm, the data
mining and analysis can be more accessible and easy due to cost effective computational
resources.

The Apache-Hadoop framework is evolving as the best new approach for analyzing big data
in parallel and distributed cloud environment [20,21]. Hadoop is an open source distributed
framework which is design based on the Google MapReduce programming model. Hadoop-
MapReduce is a programming model for easily and efficiently writing applications which
process vast amount of data in parallel on large clusters of commodity hardware in a reliable,
fault tolerance manner.

A MapReduce programme partitions the input dataset into independent splits which are
processed by the map tasks in a completely parallel manner. The Hadoop frameworks
combines and stores the maps output as a set of intermediate key/value pairs which are then
fetched as an input for the reduce tasks.

From literature study it is clear that parallel implementation of Apriori algorithm is more
efficient and has good performance compare to the sequential Apriori algorithm. The use of
Hadoop-MapReduce framework provides further advantages such as the Apriori algorithm
requires frequent transaction set scanning; Hadoop provides HDFS storage with good parallel
reading-writing characteristics, thus the time repeatedly read transaction set is greatly
shortened compared with the traditional storage system, which makes it possible to mine
large amount of data on Hadoop with Apriori algorithm. The calculation with Apriori algorithm
can be regarded as process of counting, and this process is suitable for MapReduce model,
so Apriori algorithm has the natural characteristics of MapReduce [22].

1.1 Problem Statement
Apriori algorithm effectively discover all the frequent itemsets from the data repositories
however it suffers some limitation such as Apriori is time consuming to hold a vast number of
candidate sets with many frequent itemsets, Apriori algorithm checks many sets from
candidate itemsets and it scans database many times repeatedly for finding candidate
itemsets, and Apriori will be very slow and inefficient when memory and storage capacity is
limited with large number of transactions. Researchers have been proposed new algorithms
based on the Apriori algorithm and try to improve the efficiency by making some
modifications, such as reducing the number of passes over the database; reducing the size of
the database to be scanned in every pass; pruning the candidates by different techniques
such as direct hash pruning, transaction reduction, partitioning, sampling, dynamic itemset
counting, vertical dataset layout, and frequent pattern tree [8,17,21,23].

Most of the data mining sequential algorithms are suffering to handle the data dimension and
massive dataset. Sequential algorithms are inefficient to improve run time performance for

UNDER PEER REVIEW

such huge databases [17,21,24,25]. Therefore, parallel and distributed algorithms are
developed to perform large-scale computing in ARM on multiple processors. Researchers
have been proposed numerous algorithms using partitioning, frequent pattern tree, direct hash
pruning techniques on Hadoop-MapReduce platforms to enhance the performance of Apriori
algorithm such well-established algorithms are PApriori, MRApiori, and Modified Apriori, but
there are some drawbacks: since multiple scan over the dataset is needed to generate
candidate itemset, it consume more execution time [8,19,20,21,25,26,27,28,29,].

Transaction reduction is one of the best technique to reduce the execution time for discover
all frequent itemset from massive transaction dataset by reduces the transaction that does not
contain any frequent k+1 itemset and such transaction may be marked and removed. This
technique is more significant when implement in parallel and distributed environment [6,7,8].
This study aims to propose a transaction reduction parallel Apriori algorithm using Hadoop-
MapReduce platform in cloud and investigate the proposed algorithm performance with
existing various sequential ARM algorithms as well as parallel algorithms were developed
using Hadoop-MapReduce platform under the homogeneous system environment.

The objective of this study are

 To investigate the performance of different sequential ARM algorithms in cloud
environment and parallel Apriori algorithm using Hadoop-MapReduce in cloud.

 To propose a transaction reduction algorithm for parallel Apriori based on Hadoop-
MapReduce.

The outcomes of this study are to set-up and configure the cloud environment to test big data
analysis and improving parallel Apriori algorithm using transactional reduction method.
Cloud Data Mining offers tremendous potential for analyzing and extracting the useful
information in various fields of human activities: finance, banking, medicine, genetics, biology,
pharmacy, and marketing. Cloud provides technology that can handle huge amounts of data,
which cannot be processed efficiently and at reasonable cost using standard data mining
technologies and techniques. Hadoop-MapReduce is the current trend in the field of huge
data processing. Based on the algorithms and technologies developed by large Internet
companies, there is a quite widespread ecosystem of solutions for processing and analysis of
huge amounts of data. Proposed transaction reduction algorithm may increase the
performance compared to earlier well developed versions of sequential and parallel versions
Apriori algorithms.

2. METHODOLOGY

This study consists 6 phases to accomplish this research: problem identification, massive
dataset collection (benchmark data), set-up and configure cloud environment, implement
sequential algorithms in cloud, Test the proposed transaction reduction Apriori algorithm as
well as existing some parallel Apriori in cloud environment., evaluation.

Phase 1: Deep and through understanding of related problems area such as ARM problem
description, sequential Apriori algorithm and their drawbacks, way of improvement, parallel
Apriori algorithm using Hadoop-MapReduce by the critical and in depth evaluation of previous
research.

Phase 2: Collect massive dataset from online to evaluate the proposed transaction reduction
MapReduce Apriori algorithm and pre-process the dataset into suitable format that is
convenience to Hadoop-MapReduce framework.

UNDER PEER REVIEW

Phase 3: Set-up and configure the cloud environment to test proposed transaction reduction
MapReduce Apriori algorithm on Amazon web service (AWS) and create Hadoop elastic
MapReduce instances on AWS and upload the pre-processed dataset to simple storage
service (S3) to evaluate the performance of proposed algorithm.

Phase 4: Implement the different techniques versions of sequential Apriori algorithm with
varying min_sup value in cloud.

Phase 5: Test the proposed transaction reduction Apriori algorithm as well as existing some
parallel Apriori MapReduce based algorithm in cloud environment varying min_sup, number of
transaction, and number of nodes.

Phase 6: The proposed transaction reduction Apriori algorithm is evaluated and compared
with existing well known versions of sequential and parallel Apriori algorithm with varying
condition min_sup value as well as existing parallel Apriori algorithm with varying condition
such as min_sup, number of nodes, and number of dataset transactions in unique cloud
environment.

2.1 PROPOSED TRANSACTION REDUCTION MAPREDUCE APRIORI
ALGORITHM (TRMR-APRIORI)
We propose an improved Apriori algorithm based on Hadoop-MapReduce model, called
TRMR-Apriori. It reduces the number of transactions values and number of transactions along
with reducing the number of candidate item sets generated. We used pruned and transaction
reduction theory as follows:

A. Theorem 1: In -frequent itemset , if there is an item that

does not satisfy the condition then is infrequent itemset

where and are the number of itemsets containing the item

in the collection of frequent itemset, it is typically denoted as

Proof: - Assume is a k-frequent itemset, then all subset of T are in ,

and every item of named will exit in subsets of . it means that the

number of itemsets containing item is , so every item named of could

make the value of to be no less than because the collection

named includes all subsets of , but this is contradicts with the condition, so the

assumption does not hold, so is not a frequent itemset.

B. Theorem 2: For generating k-frequent itemsets, if the length of a transactions is less

than k, the transaction is not necessary to scan.

Proof:- generating k-frequent itemsets must scan the transaction database to
calculate the frequency of frequent itemsets, if the length of a transaction is less than
k. it means the number of items it contains is no more than k, indicates that the
transaction cannot contains the k-frequent itemsets, so there is no need to scan this
transaction.

C. Theorem 3: Assume is the set of entire items that contain -frequent itemsets,

while generating frequent itemsets, any item called including in

 is not essential to scan in all transactions.

Proof: - for any item called including in , is not subsist in -frequent

itemsets, moreover, is not subsist in frequent itemsets definitely, so

UNDER PEER REVIEW

cannot help the generation of frequent itemsets, therefore not necessary to

scan the item .

In general, theorem 1 is using for pruned optimization that is generating k-candidate itemsets,

using current frequent itemsets, we can count and save the all frequency items from the

transaction database. If the frequency of any item in the transaction database is less than

, this item cannot be utilized to produce the , so we eliminate all the

frequent itemsets enclosing the item in , this can helps to efficiently trim the scale of

 and produce more effectively. The theorem 2 and 3 based on transaction reduction

optimization strategy means to generate k+1 frequent itemset scan the database and delete
all infrequent k-itemset from all transactional database, delete the transaction whose length is
less than k+1 directly [30].

The proposed parallel transaction reduction MapReduce Apriori (TRMR-Apriori) algorithm is
based on pruned optimization techniques to optimize the generation of frequent itemsets and
meanwhile, transaction reduction technique is to shorten the transaction database. All of
these techniques such as transaction reduction, pruning, and parallel implementation on
Hadoop-MapReduce will effectively decrease the system overhead and improve the execution
time, improve the efficiency of earlier existing well known sequential ARM algorithm as well as
parallel algorithm based on Hadoop-MapReduce. The proposed TRMR-Apriori algorithm flow
chart is illustrated in Figure 1.

UNDER PEER REVIEW

Figure 1. TRMR-Apriori flow chart

Step 1: The dataset (DB) pre-processed <key, value> format which contains information about
particular transaction id and items.

Step 2: For processing parallel scan, partition the complete dataset (DB) into number of

available processors where n is number of processors

available to distribute the dataset.

Step 3: The split chunk of the data file fed to the available mapper. The Map function reads
one line a time and assigns each item a key and the value associated with the key to find the
frequent 1-itemset.

TRMR-Apriori mapper algorithm

Map (key=Tid, value=itemset in transaction)

{
//split itemset based on space
String items{} = itemset.split(“ “)

for all transaction {

 for all item {

 output ;

 }
}

Step 4: Shuffle and sort takes place in between map and reduce steps. It is responsible for
ordering the <key, value> pairs from map function.

UNDER PEER REVIEW

Step 5: The reducer’s job is to process the data that come after shuffle and sort and
intermediate results means candidate itemset store in HDFS.

TRMR-Apriori reducer algorithm
Reduce (key=item, value=count)

for all key { /* initial x.count=0*/

 for all value in value list {

 y;

 }

 if {

 output ; /*collected in */

 }
}

Step 6: Compare the intermediate results with predefined minimum support value and find the
all 1-frequent itemset and store in the distributed cache.

Step 7: Ready to find the 2-candidate itemset.

Step 8: Implement our proposed transaction reduction methods with all split transaction that
are contain the transaction length less than with next candidate itemset so can reduce the
multiple scanning time and also pruned all non-frequent itemset transaction also should
eliminated from the whole sub divided transaction. Finally we can increase the execution time
performance from pruning and transaction reduction method to extract whole frequent itemset
from given massive data.

Step 9: Repeat the process to find all frequent itemset efficiently

Detail architecture diagram of TRMR-Apriori algorithm using Hadoop-MapReduce on
AWS presented in Figure 2.

UNDER PEER REVIEW

2.1.1 TRMR-Apriori pseudo code

Input: transaction database partition

TRMR-Apriori mapper algorithm

Map (key=Tid, value=itemset in transaction)

{
//split itemset based on space
String items{} = itemset.split(“ “)

for all transaction {

 for all item {

 output ;

 }
}
TRMR-Apriori reducer algorithm
Reduce (key=item, value=count)

for all key { /* initial x.count=0*/

 for all value in value list {

 y;

 }

 if {

 output ; /*collected in */

 }
}

Input: transaction database partition and

TRMR-Apriori mapper algorithm

Map (key=Tid, value=itemset in transaction)

read from DistributedCache;

for

{

for ;

for all transaction {

;

for all candidate

If {

emit_transaction_value ;

emit_transaction_row ;

{

Output ;

}
}

}
TRMR-Apriori reducer algorithm
Reduce (key=item, value=count)

for all key { /* initial x.count=0*/

 for all value in value list {

UNDER PEER REVIEW

 y;

 }

 if

 output ; /*collected in */

 }

Procedure emit_transaction_value (: Database; : frequent k-itemsets; : frequent k-1

itemsets, : transaction_value)

for all itemset

{

for all transaction

{

for all

{

if

update tv=null;
}}}

Procedure emit_transaction_row (: Database; : frequent k-itemsets; : transaction_row)

for all transaction

{

for all

{

{

;

}}

{

delete ;

2.2 CASE STUDY

Assume that Table 1 be a transaction database D to briefly describe how the proposed
transaction reduction MapReduce algorithm works. This transaction database of seven
transactions, min_sup= 2/7 or 28%, and three map nodes.

Table 1. Sample transaction dataset

TID Items

t1 Mango, Banana
t2 Orange, Apple
t3 Mango, Banana, Durian
t4 Mango, Durian
t5 Banana, Orange, Durian
t6 Orange, Durian
t7 Durian

Phase one: Given transaction database D divided into three sub dataset as T1 consist

t1 and t2, T2 with t3, t4, and T3 with t5, t6, and t7. Now three subdivided dataset are
distributed to three map nodes that is T1, T2, and T3 to M1, M2, and M3 respectively. So, we

able to obtain 1 candidate items Cm1 with itemset pair on the map nodes

UNDER PEER REVIEW

M1, M2, and M3. M1 handles transaction database T1 by

outputting . M2

handles transaction database T2 by generating output

as . M3 handles transaction

database T3 by outputting

}

From the all map nodes, reducer sums up candidate 1 item pairs and find the 1-

frequent item pair that value.

 , not greater than equal to min_sup. Apple is not frequent itemset anymore, so we

can eliminate the transaction which consist Apple item by using theorem 1. Finally we can

generate 1-frequent itemset as follows:

The Figure 3 illustrates the phase 1 process

Figure 3. TRMR-Apriori phase one process

Phase two: check the transaction before generating next candidate itemset if number

of transaction is less than candidate itemset then remove the particular transactions. Here t7
has only one transaction this is less than to generate 2-candidate itemset. So t7 eliminate
before generating 2-candidate and frequent itemset and transaction t2 consist Apple item set,
we already found Apple is not frequent itemset so we can eliminate item Apple from the
transaction t2 so now t2 has only one transaction this is less than 2-candidate itemset. So t2
eliminate before generating 2-candidate itemset too. In this phase, T1 consist t1, T2 with t3,

and t4, and T3 with t5, and t6, and each mapper reads , means maps to M1, M2, and M3,

thus

We can generate Cm2 by using Apriori property as joining and sorting in hash tree,
where the duplicate itemsets are removed.

UNDER PEER REVIEW

}

}

From the all map nodes, reducer sums up candidate 2 item pairs C2 and find the 2-
frequent item pair L2 that C2>= min_sup value.

From the above result the two itemset are not

greater than equal to min_sup value. We can generate 2-frequent itemset

Figure 4 illustrates the above procedure in graphical view.

Figure 4. TRMR-Apriori find the frequent 2-itemset

Phase three: in this phase we check the transaction before generating next candidate

itemset if number of transaction is less than candidate itemset then remove the particular
transactions. Here t1, t2, t4, and t6 has only two transactions this is less than to generate 3 –
candidate itemset. So t1, t2, t4, and t6 removed before generating 3- candidate and frequent
itemset. In this phase, T1 no transaction, T2 with t3, and T3 with t5, and each mapper reads L2,
means L2 maps to M1, M2, and M3, thus

UNDER PEER REVIEW

We can generate by using Apriori property as joining and sorting in hash tree,

where the duplicate itemsets are removed.

}

}

As the time size is greater than or equal 3, prune step takes the part to remove non

frequent itemset that violates Apriori property that is all nonempty subset of frequent items

must be also frequent. When using prune step becomes as follows:

}

Above itemsets

removes from because are not

member of removes from because

 are not member of , and

 removes from

because are not member of . Finally

becomes

From the all map nodes, reducer sums up candidate 3 item pairs and find the 3-

frequent item pair that value.

 does not have the value greater than min_sup value since is empty and

algorithm terminated.

Therefore, we can generate efficiently using the proposed transaction

reduction parallel Apriori algorithm on Hadoop-MapReduce framework.

UNDER PEER REVIEW

Figure 5 illustrates the above procedure in graphical view

Figure 5. TRMR-Apriori find the frequent 3-itemset

2.3 TESTING CLOUD ENVIRONMENT AND DATASETS

In this study, we used Amazon web as a cloud service provider to evaluate the proposed
algorithm performance on cloud. Elastic computing cloud (EC2), simple storage service (S3),
and elastic map reduce (EMR) services have been used to analyse the performance of the
proposed transaction reduction Apriori parallel algorithm on AWS cloud platform and we
tested existing sequential versions of ARM algorithm on Amazon EC2 using SPMF open-
source data mining library.

2.3.1 SPMF

SPMF is an open-source data mining library for frequent pattern mining. It was developed
under the GPL v3 license and written java programming language. It has 93 data mining
algorithms for sequential pattern mining, association rule mining, itemset mining, sequential
rule mining, and clustering. SPMF can be used as a standalone program with a simple user
interface or from the command line.

In this thesis, we used SPMF in command line prompt on Amazon EC2 instance to
evaluate the performance of selected sequential algorithms with selected benchmark dataset.

2.3.2 Amazon EC2

Amazon EC2 which is also known as Elastic Compute Cloud provides resizable computing
capacity in the AWS cloud platform. It eliminates the need to invest in computing hardware up
front which saves money but also allows applications to be developed and deployed faster.
Amazon EC2 can uses to launch a virtual machine and can configure all of the associated
security and network settings. Amazon EC2 instances will automatically scale-up to add
capacity to handle user needs. Amazon EC2 environment typically called instances. There are
wide range of instance types that have varying combinations of CPU power, amount of
memory, storage size, and networking capacity.

Amazon EC2 also provides pre-configured templates for user instances known as Amazon
Machine Images (AMI). These AMI templates can include just an operating system like
Windows or Linux they can include a wide range of components such as operating system,
and pre-installed software packages. Amazon EC2 instances range start from small “micro”
instances for small jobs to high performance “X-large” instances for like data warehousing.

UNDER PEER REVIEW

2.3.3 Amazon S3

Amazon Simple Storage Service also known as S3 is safe, secure, and highly scalable object
storage in the cloud. It can be used to store and retrieve any amount of data anytime from
anywhere on the web. Amazon S3 is a very affordable solution for hosting data on the web
since user only pay for the storage in bandwidth user use. Amazon S3 users can also use S3
to securely store their own information and backup their own critical date offsite. Amazon S3
is designed for more durability, and very reliable. Amazon S3 storage data as objects and
objects restored within folders that are called buckets to store an objects in Amazon S3. If
user want to store the files on S3 buckets, they can upload that file with set of permission on
the objects so it is should be private.

2.3.4 Amazon EMR

Amazon elastic map reduce gives the ability to process huge amount of data such as GB, TB,
and more without the need to buy or manage hardware. It offers the ability to easily launch,
scale up/down, and manage apache Hadoop clusters on Amazon web services, and can
quickly leverage the large ecosystem of tools and applications in the Hadoop ecosystem.
Amazon EMR provides a managed framework to easily create, customize, and use Hadoop
clusters created with Amazon EC2 instances.

Amazon EMR also has tight integration with other Amazon web services like Amazon S3
where can store input and output data for Amazon EMR cluster analysis. Amazon EMR takes
much of the complexity out of managing cluster of Amazon EC2 instances. Amazon EMR
takes care to setting up hardware, installing, tuning, and tuning Hadoop. So user can focus on
the analysis of data instead of managing infrastructure and software. Amazon EMR can easily
expand or shrink the cluster by adding and removing Amazon EC2 nodes according to the
user needs. If data store in Amazon S3, it can be access by multiple Amazon EMR clusters to
run separate workload simultaneously.

User can speed up their innovation and experimentation results using Amazon EMR service
and they can pay only for their usage. It is easy to use a verity of customize efficient programs
in the Hadoop ecosystem on specific cluster such as MapReduce, Apache Hive, and Pig.
Amazon EMR can access via AWS management console, command line, or SDK.

We deployed the proposed TRMR-Apriori algorithm, selected parallel Map-Reduced based
Apriori algorithm jar files on Amazon EC2 for evaluating the performance by increasing the
number of nodes, dataset size, and varying min_sup value in the set up. The data input files
were saved on S3. Amazon S3 is a data storage service. Transfer between S3 and Amazon
EC2 is free. This makes use of S3 attractive for Hadoop users who run clusters on EC2. The
details related like path and permission to S3 is configured. The output data are also written
back in the bucket of S3 at the end. The temporary data is written in the HDFS files so
transaction reduction techniques can apply to find the frequent itemset effectively.

Amazon EMR takes care of provisioning a Hadoop cluster, running the job flow, terminating
the job flow, moving the data between Amazon EC2 and Amazon S3, and optimizing Hadoop.
Amazon EMR removes most of the difficulties associated with the Hadoop configuration like
setting up the hardware and networking required by the Hadoop cluster, such as monitoring
the setup, configuring Hadoop, and executing the job flow.

UNDER PEER REVIEW

Figure 6. Hadoop job flow on the AWS-EC2

Hadoop on the cloud can be shown in Figure 6. The request is sent to the EMR model, to start
the job with all the details required for the job, such as path to S3 etc. The Hadoop cluster with
master and slave instances is created. The Hadoop cluster works on the job and finishes the
job. The temporary created during the run of job files can be stored in HDFS or S3. Storing in
S3 may not be the right choice for all the cases as it may add to communication overhead.
The output after the job is stored in S3. Only the error or fatal messages are written on the
screen during the entire run of job. Once the job is complete response is sent indicating the
completion of the job.

2.4 DATASET DETAILS

In order to prove the effectiveness and efficiency of our proposed TRMR-Apriori algorithm, the
experiment is done using well-known datasets which are available online. Those selected
datasets are generating frequent itemsets, and commonly used in many pervious research
experiments [20,25,26,31]. We have selected five benchmark dataset to evaluate the
performance of proposed method comparing with selected existing sequential ARM
algorithms. Those selected dataset details are as follows in Table 2 and Figure 7 illustrates
the sample snapshot of accidents dataset:

Table 2. Selected dataset details

Dataset Total instances Total attributes

Connect 64,557 42
Retail 88,162 72

Accidents 340,184 45
Kosarak 990,002 625
Webdocs 1,692,082 71,472

For experiments T40I10D100K dataset which has been generated by IBM’s Quest Synthetic
Data Generator is used and it was obtained from FIMI repository. It has 100000 transactions;
each transaction contains 40 items in average.

UNDER PEER REVIEW

For the T40I10D100K, we have replicated it to 2fold, 4fold, 8fold, and 16fold to increase the
number of transaction and size and we denote them T40I10D200K, T40I10D400K,
T40I10D800K, T40I10D1.6M respectively. Figure 8 illustrates the sample snapshot of
T40I10D100K dataset.

All the experiments were performed in AWS cloud environment. We used EC2, S3, and EMR
services to evaluate the proposed TRMR-Apriori algorithm performance with existing selected
sequential versions of algorithm as well as existing parallel Apriori Hadoop-MapReduce
algorithms. The details of EC2 instance are the type named “t2.medium” that contain 4GB
memory, 2unit EC2 compute units (ECU)- one ECU compute unit provides the equivalent
CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor, Elastic block store,
and 2 cores. We run the sequential algorithm on t2.medium EC2 instance.

Figure 7. Accidents dataset sample snapshot

UNDER PEER REVIEW

Figure 8. T40I10D100K dataset sample snapshot

TRMR-Apriori and Existing parallel algorithm were run on EMR. We created Hadoop cluster
using same type of EC2 instance, S3 storage to store the data, Hadoop version 1.0.3, and
HDFS.

3. RESULTS AND DISCUSSION
Experiments that have been carried out to verify the performance of the proposed parallel
transaction reduction Apriori algorithm on Hadoop-MapReduce. The results of the
experiments are presented in tables as well as appropriate graphs. The description and
analysis about the performance improvement in the proposed method are compared against
the performance of existing well known sequential algorithm as well as parallel Apriori on
Hadoop-MapReduce problem researches.

The results are divided into two categories, one comparison of the proposed method against
sequential algorithms in cloud environment. The second category is the comparison of the
proposed method against some parallel Apriori algorithm which were implemented on
Hadoop-MapReduce in unique environment.

3.1 TRMR-Apriori comparison results with sequential algorithms

Figure 9 illustrates the EC2 logon screen with Amazon Linux AMI. We have uploaded the
selected dataset on it and customized SPMF-open source data mining library uploaded as
named “p68509.jar”.

UNDER PEER REVIEW

Table 3 summarises the sequential Apriori algorithm results for Retail dataset. The table also
shows that we found the frequent itemset varying the value of min_sup. We have tested every
experiment three times for more accuracy and calculated the average execution time in
millisecond.

Figure 9.AWS-EC2 logon screen

Table 3. Sequential Apriori algorithm results using Retail dataset

Min_Sup
frequent_

itemset_count
Test 01 Test 02 Test 03 Avg Time(ms)

0.5 1 377 371 382 377

0.4 2 392 386 378 385

0.3 3 410 394 398 401

0.2 3 399 402 407 403

0.1 9 411 417 411 413

0.08 13 417 411 406 411

0.06 15 416 420 418 418

0.04 18 424 422 420 422

0.02 55 579 592 634 602

0.01 159 2555 2536 2543 2545

0.008 243 4886 4898 4910 4898

Similarly, Tables 4, 5, and 6 summarises the sequential AprioriTid, Eclat, and FP-Growth
algorithm results for Retail dataset respectively. Those tables also shows that we found the
frequent itemset varying the value of min_sup. We have tested every experiment three times
for more accuracy and calculated the average execution time in millisecond.

Table 4. Sequential AprioriTid algorithm results using Retail dataset

Min_Sup
frequent_

itemset_count
Test 01 Test 02 Test 03 Avg Time(ms)

0.5 1 849 815 865 843

0.4 2 893 869 858 873

0.3 3 890 888 890 889

0.2 3 892 881 875 883

0.1 9 909 919 926 918

UNDER PEER REVIEW

0.08 13 918 920 919 919

0.06 15 933 928 916 926

0.04 18 939 935 936 937

0.02 55 1111 1188 1165 1155

0.01 159 1600 1572 1530 1567

0.008 243 1848 1846 1840 1845

Table 5. Sequential Eclat algorithm results using Retail dataset

Min_Sup
frequent_

temset_count
Test 01 Test 02 Test 03 Avg Time(ms)

0.5 1 2462 2405 2334 2400

0.4 2 2325 2373 2318 2339

0.3 3 2369 2332 2363 2355

0.2 3 2375 2321 2489 2395

0.1 9 2408 2345 2378 2377

0.08 13 2389 2380 2432 2400

0.06 15 2355 2343 2364 2354

0.04 18 2392 2462 2387 2414

0.02 55 2383 2368 2323 2358

0.01 159 2417 2517 2388 2441

0.008 243 2386 2428 2385 2400

Table 6. Sequential FP-Growth algorithm results using Retail dataset

Min_Sup frequent_itemset_count Test 01 Test 02 Test 03 Avg Time(ms)

0.5 1 500 515 514 510

0.4 2 527 531 521 526

0.3 3 500 538 542 527

0.2 3 524 528 550 534

0.1 9 568 562 560 563

0.08 13 549 546 555 550

0.06 15 551 578 561 563

0.04 18 557 571 584 571

0.02 55 594 600 593 596

0.01 159 728 721 750 733

0.008 243 831 816 814 820

Table 7 summarises the proposed TRMR- Apriori algorithm results for Retail dataset using
only one node. The table also shows that we found the frequent itemset varying the value of
min_sup. We have tested every experiment three times for more accuracy and calculated the
average execution time in millisecond.

UNDER PEER REVIEW

Table 7. TRMR-Apriori algorithm results using Retail dataset

Min_Sup
frequent_

itemset_count
Test 01 Test 02 Test 03 Avg Time(ms)

0.5 1 256 249 259 255

0.4 2 272 273 269 271

0.3 3 287 281 285 284

0.2 3 306 299 299 301

0.1 9 321 329 327 326

0.08 13 354 349 340 348

0.06 15 365 362 360 362

0.04 18 379 384 401 388

0.02 55 401 410 396 402

0.01 159 434 432 438 435

0.008 243 441 444 462 449

Table 8 summarises the above tables (3, 4, 5, 6, and 7) to compare the performance of the
proposed TRMR-Apriori algorithm with existing sequential algorithm on unique cloud
environment. The retail dataset results show that the Apriori algorithm is better than other
three sequential algorithms until min_sup=0.04 because extracting number of frequent itemset
is less and beyond that min_sup value, FP-growth is better than Apriori algorithm but our
proposed TRMR-Apriori algorithm is outperform than the other four sequential algorithms
when varying min_sup values. Figure 10 also illustrates the graphical analysis view for more
prominent.

Table 8. Retail dataset result summarization for all algorithms

Min_Sup Apriori AprioriTid Eclat FP-Growth TRMR-Apriori

0.5 377 843 2400 510 255

0.4 385 873 2339 526 271

0.3 401 889 2355 527 284

0.2 403 883 2395 534 301

0.1 413 918 2377 563 326

0.08 411 919 2400 550 348

0.06 418 926 2354 563 362

0.04 422 937 2414 571 388

0.02 602 1155 2358 596 402

0.01 2545 1567 2441 733 432

0.008 4898 1845 2400 820 449

UNDER PEER REVIEW

Figure 10. Retail dataset result summarization for all algorithms

3.2 TRMR-Apriori performance results increasing number of nodes

The performance of the proposed TRMR Apriori algorithm over different dataset such that
connect dataset that is more dense dataset and number of frequent itemset is very high and
webdocs dataset is massive dataset on multi-node Hadoop cloud are depicted in Table 9 and
10, and Figure 11 and 12. We found that when applying the proposed TRMR Apriori algorithm
on multiple Hadoop nodes. We found that when applying the proposed TRMR-Apriori
algorithm on multiple Hadoop nodes, the performance over the connect dataset is better than
webdocs dataset.

The reduction of execution time is more evident when increasing the number of nodes. So
proposed algorithm also proves very good scalability when tested on the scale of 1 node to 8
node cluster. So we concluded the performance also depends on the number of nodes in the
Hadoop cluster. In our experiments, with the increase of the number of nodes in the cluster,
the performance improves.

Table 9. TRMR-Apriori connect dataset results with different nodes.

of
Nodes|
Connects

0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5

1Node 386 414 497 775 1485 3721 8114 16074 32241 64426

2Node 179 221 310 615 753 1936 4315 9256 17589 36258

4Node 96 124 172 521 503 1032 2856 5689 9254 20489

8Node 53 65 96 142 222 396 924 1495 5062 9329

UNDER PEER REVIEW

Figure 11. TRMR-Apriori connect dataset results with different nodes.

Table 10. TRMR-Apriori webdocs dataset results with different nodes.

of Node|
Webdocs

0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.4 0.3

1Node 12483 12559 12638 12714 12942 13110 13226 13313 13979

2Node 10342 10423 10651 10703 10825 10853 10936 11172 11329

4Node 5853 5906 5994 6126 6327 6528 6594 6683 7812

8Node 1963 2007 2121 2358 2459 2536 2549 2793 3212

UNDER PEER REVIEW

Figure 12. TRMR-Apriori webdocs dataset results with different nodes.

3.3 TRMR-Apriori compared with existing parallel

The comparison of the performance of the proposed TRMR Apriori algorithm with well-
established existing parallel Hadoop-MapReduce algorithms such as PApriori [26], MRApriori
[25], and Modified Apriori [20] over increasing the T40I10100K dataset transaction from 100K
to 1.6M on multi-node Hadoop cloud with fixed min_sup value=0.001 are depicted in Table
11, 12, 13, and 14 and graphical view illustrates in Figure 13, 14, 15 and 16.

We found that the proposed TRMR Apriori algorithm when compared with existing

parallel algorithms the proposed algorithm performance was good when increasing the
number of transaction size as well as increasing the number of nodes in Hadoop clusters. The
proposed TRMR Apriori algorithm works more efficiently comparing with some existing
parallel Hadoop-MapReduce algorithms.

A. Comparison with 1 Node

Table 11. TRMR-Apriori comparison with existing parallel-1Node

1-Node
T40I10
100K

T40I10
200K

T40I10
400K

T40I10
800K

T40I10
1.6M

TRMR-Apriori 389 736 1098 1875 3156

Papriori 496 896 1326 2135 3339

MRApriori 529 958 1369 2231 3489

Modified Apriori 689 1126 1589 2314 3579

Figure 13. TRMR-Apriori comparison with existing parallel-1 Node

B. Comparison with 2 Node

Table 12. TRMR-Apriori comparison with existing parallel-2 Node

2-Node
T40I10
100K

T40I10
200K

T40I10
400K

T40I10
800K

T40I10
1.6M

TRMR-Apriori 350 610 833 1311 2048

UNDER PEER REVIEW

Papriori 460 762 1175 1752 2541

MRApriori 488 811 1190 1869 2655

Modified Apriori 602 960 1321 1903 2890

Figure 14. TRMR-Apriori comparison with existing parallel-2 Node

C. Comparison with 4 Node

Table 13. TRMR-Apriori comparison with existing parallel-4 Node

4-Node
T40I10
100K

T40I10
200K

T40I10
400K

T40I10
800K

T40I10
1.6M

TRMR-Apriori 321 529 709 1120 1624

Papriori 413 614 965 1421 2122

MRApriori 430 744 1021 1556 2233

Modified Apriori 512 831 1123 1753 2410

UNDER PEER REVIEW

Figure 15. TRMR-Apriori comparison with existing parallel-4 Node

D. Comparison with 8 Node

Table 14. TRMR-Apriori comparison with existing parallel-8 Node

8-Node
T40I10
100K

T40I10
200K

T40I10
400K

T40I10
800K

T40I10
1.6M

TRMR-Apriori 290 411 512 689 863

PApriori 359 526 668 863 1147

MRApriori 398 633 821 1122 1396

Modified Apriori 452 711 937 1221 1556

UNDER PEER REVIEW

Figure 16. TRMR-Apriori comparison with existing parallel-8 Node

4. CONCLUSION

This study attempted to examine the performance of extracting frequent itemset from massive
dataset. The main aim of this study was discover whole frequent itemset from huge dataset on
cloud environment using Hadoop-MapReduce parallel techniques. An algorithm proposed to
extract entire frequent itemset using transaction reduction technique that is reduce
unessential transaction values and transactions from the dataset in parallel manner.

The transaction reduction is one of the best way to find the frequent itemset from massive
dataset with efficiently. Our experimental results also exhibit the performance of our proposed
parallel transaction reduction algorithm compared with existing sequential as well as parallel
algorithms on cloud environment.

The proposed Transaction Reduction MapReduce Apriori (TRMR-Apriori) algorithm was
tested on Amazon Web Service (AWS) cloud environment.

UNDER PEER REVIEW

Moreover, the experiments results show that the proposed TRMR-Apriori algorithm was
implemented to extract entire frequent itemsets from big dataset with effectively and
efficiently by comparing existing sequential Apriori algorithms as well as parallel Hadoop-
MapReduce Apriori algorithms on unique environment.

This study mainly proposed an Apriori parallel algorithm using transaction reduction method.
The proposed algorithm was experimented using Hadoop-MapReduce techniques on cloud
environment. The implications of finding in the context of the research objectives addressed
by this study are discussed in the following.

To achieve the first objective, we tested selected existing well established sequential
frequent itemset mining algorithms in association rule mining such as Apriori, AprioriTid,
Eclat, and FP-Growth on cloud environment. In this test we analyzed the performance
varying the minimum support (min_sup) value using selected all benchmark dataset. We
was analyzed with existing Apriori parallel algorithms which based on the Hadoop-
MapReduce platform with different conditions such as varying min_sup value, increase
number of nodes, and replicated the transaction size to evaluate the existing algorithms
performance.

To achieve the second objective, the proposed TRMR-Apriori algorithm was compared their
performance with experimental results which were achieved by objective one such as
existing well established sequential frequent itemset mining algorithms in association rule
mining (Apriori, AprioriTid, Eclat, and FP-Growth). In this test we analyzed and compared the
performance varying the minimum support (min_sup) value using selected all benchmark
dataset.

The proposed TRMR-Apriori algorithm was tested in different conditions such as varying
min_sup value, increase number of nodes, and replicated the transaction size to evaluate
the proposed algorithm performance. The proposed TRMR-Apriori algorithm was analyzed
with existing Apriori parallel algorithms which based on the Hadoop-MapReduce platform.

We implemented our proposed transaction reduction MapReduce algorithm (TRMR-Apriori)
on Amazon web service (AWS) to evaluate the performance. We used EC2, S3, EMR
services from AWS and uploaded selected and pre- processed bench mark dataset to EC2
and S3. We also used SPMF open source data mining library for the experimental results of
existing versions of sequential Apriori algorithm such as Apriori, AprioriTid, FP-Growth, and
Eclat on cloud environment.

REFERENCES
1. Fayyad, U., Piatetsky-Shapiro, G. & Smyth, P. 1996. The Kdd Process for

Extracting Useful Knowledge from Volumes of Data. Communications of the ACM
39(11): 27-34.

2. Agrawal, R. & Srikant, R. 1994. Fast Algorithms for Mining Association Rules.
Proceeding 20th international conference on very large data bases, VLDB, 487-499.

3. Han, J. & Kamber, M. 2006. Data Mining, Southeast Asia Edition: Concepts and
Techniques. Morgan kaufmann.

4. Patel, A. B., Birla, M. & Nair, U. 2012. Addressing Big Data Problem Using
Hadoop and Map Reduce. Engineering (NUiCONE), 2012 Nirma University
International Conference on, 1-5.

5. Park, J. S., Chen, M.-S. & Yu, P. S. 1995. Efficient Parallel Data Mining for
Association Rules. Proceedings of the fourth international conference on
Information and knowledge management, 31-36.

UNDER PEER REVIEW

6. Singh, J., Ram, H. & Sodhi, D. J. 2013. Improving Efficiency of Apriori Algorithm
Using Transaction Reduction. International Journal of Scientific and Research
Publications 3(1): 1-4.

7. Thevar, R. E. & Krishnamoorthy, R. 2008. A New Approach of Modified
Transaction Reduction Algorithm for Mining Frequent Itemset. Computer and
Information Technology, 2008. ICCIT 2008. 11th International Conference on, 1-6.

8. Yu, H., Wen, J., Wang, H. & Jun, L. 2011. An Improved Apriori Algorithm Based
on the Boolean Matrix and Hadoop. Procedia Engineering 15(1827-1831).

9. Zaki, M. J. 1999. Parallel and Distributed Association Mining: A Survey. IEEE
concurrency 7(4): 14-25.

10. Toivonen, H. 1996. Sampling Large Databases for Association Rules. VLDB,
134-145.

11. Brin, S., Motwani, R., Ullman, J. D. & Tsur, S. 1997. Dynamic Itemset Counting
and Implication Rules for Market Basket Data. ACM SIGMOD Record, 255-264.

12. Zaki, M. J. & Gouda, K. 2003. Fast Vertical Mining Using Diffsets. Proceedings of
the ninth ACM SIGKDD international conference on Knowledge discovery and data
mining, 326-335.

13. Zheng, Z., Kohavi, R. & Mason, L. 2001. Real World Performance of Association
Rule Algorithms. Proceedings of the seventh ACM SIGKDD international
conference on Knowledge discovery and data mining, 401-406.

14. Agrawal, R., Imieliński, T. & Swami, A. 1993. Mining Association Rules between
Sets of Items in Large Databases. ACM SIGMOD Record, 207-216.

15. Chen, Ming-Syan, Jiawei Han, and Philip S. Yu. "Data mining: an overview from a
database perspective." Knowledge and data Engineering, IEEE Transactions on 8.6
(1996): 866-883.

16. Agrawal, R. & Shafer, J. C. 1996. Parallel Mining of Association Rules. IEEE
Transactions on Knowledge and Data Engineering 8(6): 962-969.

17. Kovacs, F. & Illes, J. 2013. Frequent Itemset Mining on Hadoop. Computational
Cybernetics (ICCC), 2013 IEEE 9th International Conference on, 241-245.

18. Li, L. & Zhang, M. 2011. The Strategy of Mining Association Rule Based on Cloud
Computing. Business Computing and Global Informatization (BCGIN), 2011
International Conference on, 475-478.

19. Modgi, M. P. & Vaghela, D. 2014. Mining Distributed Frequent Itemset with
Hadoop.

20. Li, J., Roy, P., Khan, S. U., Wang, L. & Bai, Y. 2012. Data Mining Using Clouds:
An Experimental Implementation of Apriori over Mapreduce. 12th International
Conference on Scalable Computing and Communications (ScalCom)

21. Oruganti, S., Ding, Q. & Tabrizi, N. 2013. Exploring Hadoop as a Platform for
Distributed Association Rule Mining. FUTURE COMPUTING 2013, The Fifth
International Conference on Future Computational Technologies and Applications,
62-67.

22. enqi, W., Qiang, L., 2013 Algorithm for Map/Reduce-based association rules data
mining, International Conference on Information Science and Computer Applications
(ISCA) 334-339.

23. Dhamdhere Jyoti, L. & Deshpande Kiran, B. 2014. A Novel Methodology of
Frequent Itemset Mining on Hadoop. International Journal of Emerging Technology
and Advanced Engineering 4(7): 851-859.

24. Woo, J. & Xu, Y. 2011. Market Basket Analysis Algorithm with Map/Reduce of
Cloud Computing. The 2011 International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA 2011), Las Vegas.

25. Yahya, O., Hegazy, O. & Ezat, E. 2012. An Efficient Implementation of Apriori
Algorithm Based on Hadoop-Mapreduce Model. International Journal of Reviews in
Computing 12.

UNDER PEER REVIEW

26. Li, N., Zeng, L., He, Q. & Shi, Z. 2012. Parallel Implementation of Apriori
Algorithm Based on Mapreduce. Software Engineering, Artificial Intelligence,
Networking and Parallel & Distributed Computing (SNPD), 2012 13th ACIS
International Conference on, 236-241.

27. Ezhilvathani, A. & Raja, K. 2013. Implementation of Parallel Apriori Algorithm on
Hadoop Cluster.

28. Qureshi, Z. & Bansal, S. 2014. Improving Apriori Algorithm to Get Better
Performance with Cloud Computing.

29. Itkar, S. A. & Kulkarni, U. V. 2013. Distributed Algorithm for Frequent Pattern
Mining Using Hadoopmap Reduce Framework. International Conference on
Advances in Civil Engineering, AETACE. 15-24.

30. Chen, Z., Cai, S., Song, Q. & Zhu, C. 2011. An Improved Apriori Algorithm Based
on Pruning Optimization and Transaction Reduction. Artificial Intelligence,
Management Science and Electronic Commerce (AIMSEC), 2011 2nd International
Conference on, 1908-1911.

31. Moens, S., Aksehirli, E. & Goethals, B. 2013. Frequent Itemset Mining for Big
Data. Big Data, 2013 IEEE International Conference on, 111-118.

UNDER PEER REVIEW

