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Original Research Article

Deaf Machine Theory

Abstract

In this maﬂ&seﬂ-pt—paper, the author presents an abstract model fepfeseﬂts—aﬂ—}elea-l
; of a

computable machine that is passive to 1nputs The model 18 conceptuallv a deaf machine that
is basically an automaton that has-doesnot have any acceptance state.;The Deaf machine may
have one or many-morenormal states er-and caneven have infinite states (uncountable normal
states). The deaf—mMachine can not recognize any languages; either formal er
otherinformal.Se—there4s—atleast-oneThe Proposed model is a finite state machine ESM

without the accept state— andcannot recognize any language. neither—acecepts—an—empty
stripe€.

Keywords:Theory of Computation, Computer Science, Deaf Machine, Automata, FSM.

1. Deaf Machine in Computation Theory

The computational theory in computer science examines the possibility of solving
problems efficiently through a computer and also examines what the computer can ealewlate

agtematecompute currently-and—what-they—ean-develop—to—selve—problems. Computational
theory deals with the mathematical models of computing. Fe-preduce-a-—systematicThe study

of computation;—eomputer—setentistsform—an_is aided by abstract mathematical models of
computers called model of computation [2, 3].0One of these models is the deterministic finite
automata DFA that works with finite state machine FSM. This model consists of five
tuples;.tThe first tuple is—represents the set of states that is governed by rules of transition
from one state to another according to input symbol;—with the movement being is dene
described by transition function.aAs an example the transition function of moving the process
from state x to the next state y, when the input symbol is 1 isgiven by & (x, 1) = y.f4SHrem
definition=Let machine M is-beadDeterministic fFinite aAutomaton thenr-M-has-adescribed by

the S5-tuple, (Q, Z, 3, qo, F),}6-Heonsisting-that consistsof:

a finite set of states (Q)

a finite set of input symbols called the alphabet (X)
a transition function (3 : Q x X — Q)

an initial or start state (qo€ Q)

a set of accept states (F € Q)

EetFor the machine M shown figure 1, H-alphabet-of-the-machine =={0;1+}then:
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Figure 1- Machine M.
M= ({x}, {1}, &, x, {})_with

0:

XX X

o (x,1)=x,

In this case.the transition function represents the movement from ene-state_x to anether

except-the-case-ofmachine- M X itself on input 1 . For the deaf machine,Fhe-impertant-part

t-hat—rs—presented—her%rs the accept states set, #-is allowed to be {} or (p (there is not accept
states) [1]. 5k e

an—e*ampleThe deaf machlne functlonlngrs is analogous to the healthy human ears, but—t-he
persen-doesnot_that can hear but cannot recognize any-_the human language unknown to the

person. One example of application of this model is the te halt or break function in

programming.

inthe DFA machrnethat has does not have

e ats_The similarity lies
any acceptance state but 1taeeemplrshesgenerates a

model that represents the deaf machine in computatron theory [4 5] Beeaus&thrs—abstraet

2. Conclusion

A model of a computable machine that is basically deaf to the inputs is presented in the

paper. The proposed machine does not have Deaf—maehrne—rs—abstraet—medel—repfesents—an
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conclude-that-thereds-atleast-one-Basic idea proposed in the paper is the concept of the finite

state machlne FSM w1th0ut acceptance state —eaﬂnet—feeegn&eaﬂy—mnguag%neﬁher—aeeepts
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