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ABSTRACT

We report on all- to- all chaos synchronization in a network of networks based on the Ikeda model.
We consider one of the simplest cases. We find the existence and stability conditions for such a
synchronization regime. Numerical simulations validate the analytical findings. The results can
be of certain importance in achieving high level output for the coupled systems and information
processing.

PACS number(s):05.45.Xt, 05.45.Vx, 42.55.Px, 42.65.5f
Key words: Network of networks; Ikeda model; time-delay systems; modulated feedback and cou-
pling delay times; all-to-all chaos synchronization; existence and stability conditions.

LINTRODUCTION

Networks or a network of networks is a widespread concept in a world-wide-web, population dy-
namics, neuroscience, power grids, communication, social and computer systems, etc. Research of
such interacting systems is a very hot topic in nonlinear dynamics, see e.g. [1-6] and references
there-in.

Chaos synchronization [1] as a control method is of fundamental importance in a
variety of complex physical, chemical and biological systems [7]. Synchronization of
chaos refers to a process wherein two (or many) chaotic systems (either equivalent or
nonequivalent) adjust a given property of their motion to a common behavior due to
a coupling or to a forcing (periodical or noisy)[7]. In the context of coupled chaotic
elements, many different synchronization states have been studied, namely complete
or identical synchronization, phase synchronization, lag synchronization, generalized
synchronization, anticipating synchronization, etc.[7-9]. Complete synchronization
[10] was the first to be discovered and is the simplest form of synchronization in
chaotic systems. It consists in a perfect hooking of the chaotic trajectories of two
systems which is achieved by means of a coupling signal, in such a way that they re-
main in step with each other in the course of the time. Generalized synchronization
[11] goes further in using completely different systems and associating the output
of one system to a given function of the output of the other system. Coupled non-
identical oscillatory or rotatory systems can reach an intermediate regime of phase
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synchronization [12-14], wherein a locking of phases occurs, while correlation in the
amplitudes remain weak. Lag synchronization [15] is a step between phase synchro-
nization and complete synchronization . It implies the asymptotic boundedness of
the difference between the output of one system at time t and the output of the other
shifted in time (lag time). This implies that the two outputs lock their phases and
amplitudes, but with the presence of a time lag. In anticipating synchronization [16-
17] the driven system state is synchronized to the future state of the driver system.
For some other types of synchronization see also [18-21] and references there-in.
Synchronization in complex systems is of certain importance in governing and performance im-
proving point of view, e.g. enhancing emission power from such systems [7]. Additionally, from
the fundamental point of view synchronization of coupled (chaotic) systems eliminates some de-
grees of freedom of the coupled system and so produces a significant reduction of complexity, thus
allowing for significant simplification of computational and theoretical analysis of the system.

As synchronization in a wider sense is associated with communication, a study of existence and
stability conditions for synchronization is of paramount importance in networks. Synchronization
is important in chaos based communication system to decode the transmitted message [7,17]: At
the transmitter part of the communication system a message is masked with chaos, then chaos
masked message is transmitted to the receiver system. At the receiver part of the communication
system due to the chaos synchronization between the transmitter and the receiver systems chaos
is regenerated. Finally, deducting the receiver input and the receiver output one can decode the
transmitted message, Figure 1.

In this paper we study chaos synchronization in one of the simplest cases of the network of net-
works based on the Tkeda system-paradigmatic model of chaotic dynamics in time delay systems
[22]. In case of constant time delays we derive analytically the existence and sufficient stability
conditions for complete synchronization between all the constituents of the network. We support
our analytical findings with the numerical simulations. We also present examples of chaos syn-
chronization between the constituent Tkeda models in case of variable time delay systems.

The organization of the rest of this paper is as follows. In Sec. II we introduce our model.
In Sec. III we present the results of analytical study. Section IV is dedicated to the numerical
simulations of all-to-all chaos synchronization between the Ikeda models, including the case of
modulated time delays. We summarize our results in Sec. IV.

II. SYSTEM MODEL

Consider all-to-all synchronization between the chaotic Ikeda systems with the following coupling
topology ( see, Figure 2):x-lIkeda system governs both networks ((y, z and w,w)) which consists
of only two unidirectionally coupled Ikeda systems. For simplicity consider the case when all the



Ikeda systems are identical and time delays in the network is constant.

dx
I = —axr +misinz, (1)
dy . .
% = —ay + My SNy, + Mg SIN T, (2)
dz ) .
E = —Qaz + m3sin 2z, + Mg SN Y, (3)
du . .
au = —QU + My SIN Uy + M7 SIN T, (4)
dw ) .

Here z, = z(t — 7). The same is valid for the other dynamical variables y, z, u, w. Initally the
Ikeda model was introduced to describe the dynamics of an optical bistable resonator, playing an
important role in electronics and physiological studies and is well-known for delay-induced chaotic
behavior, see e.g.[22] and references there-in. Later it was established that the Tkeda model or
its modifications can be used to describe the dynamics of an opto-electronical, an acousto-optical
systems and even the dynamics of the wavelength of the Distributed Bragg Reflector (DBR) Laser
[22]. Furthermore, this investigation is of considerable practical importance, as the equations of
the class B lasers with feedback (typical representatives of class B are solid-state, semiconductor,
and low pressure C'O; lasers [23]) can be reduced to an equation of the Ikeda type [24].
Physically x is the phase lag of the electric field across the resonator (it should be noted that in the
opto-electronical and acousto-optical systems x is proportinal to the voltage fed to a modulator
[12]); « is the relaxation coefficient for the driving = and driven y, z, u, w dynamical variables; T
is the feedback loop time delay; 7, is the coupling time delay between x and y,y and z, x and u,u
and w; Below we will consider the case 7 = 71;m1, mo, m3, my, ms are the feedback strengths for
the Tkeda systems z,y, z, u, w respectively; mg, mg, mr, mg are the coupling strengths between the
systems x and y,y and 2z, x and u, v and w, respectively. It is noted that system =z is directly
connected to system y and connection to system z occurs via system y. Analogously, system x is
directly connected to system u and connection to system w occurs via system u. It should also
be emphasized that there is no direct connection between the networks (y, z) and (u,w).

As mentioned above we will consider the all-to-all synchronization for the coupling topology
presented in Fig.2. First we consider the complete synchronization case between the variables x
and y. It is straightforward to establish that the synchronization error A,, = x — y under the
condition

Mo = 11 — Mg (6)
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obeys the dynamics
dA,

dt

Obviously A, , = 0 is a solution of system (7).
The sufficient stability condition of the synchronization regime

= —al,, +meA, , cosx, (7)

x=y (8)
can be found by applying the Lyapunov-Krasovskii functional approach [25-26]:
a > |me (9)

By applying this procedure to synchronization between the dynamical variables y and z, x
and z,x and u, v and w, x and w,y and u, z and u,y and w, z and w we establish that for the
configuration in Fig.2 all-to-all complete synchronization

r=y=z=u=w (10)
occurs under the following conditions:
my = 2Mao, Mo = M3 = My = My = Mg = My = Mg = My (11)

We note that formula (11) is the existence condition and formula (9) is the stability
(9) condition for all-to-all complete synchronization (10). In the next Section we present
the results of the numerical simulations of this synchronization regime.

III. NUMERICAL SIMULATIONS AND DISCUSSION

In this Section we numerically demonstrate how the analytical findings of the previous Section
are validated. Synchronization quality is characterized by the cross-correlation coefficient C' [27]
between the dynamical variables say = and y:

<(z(t)—<z>)(y(t+At)— <y >) >

Cla) = \/< (z(t)— <x>P2>< (Yt + At)— <y >)% >

, (12)

where the brackets < . > represent the time average; At is a time shift between the dynamical
variables.In our case At = 0. This coefficient indicates the quality of synchronization: C' = 1
means perfect complete synchronization.

Figure 3 portrays time series of the system z for parameter values a = 8.01,mg = mg = my =
ms = Mg = My = Mg = Mg = 8, m; = 2my = 16,7 = 5. Figure 4 presents synchronization error
dynamics A, ,, = z—w versus time for parameters as in figure 3. C,,, = 0.99 is the cross-correlation
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coefficient between the systems z and w.For parameter values as in for Figure 3 the other cross-
correlation coefficients are C,, = C,, = Cppy = Cry = Cy . = Cyoy = Cyyy = C oy = Cyyyy = 0.99.
The value of the cross-correlation coefficients testify to the high quality chaos synchronization,
which is vital for information processing in chaos-based communication systems and other possible
applications. In numerical simulations we mainly presented the synchronization case between the
most outer Ikeda models- z and w.

It should be noted that the approach based on the Lyapunov-Krasovskii method gives a sufficient
stability condition for synchronization, but does not forbid synchronization [25] when the condition
(9) is not met. In Figures 5 and 6 we present the case of chaos synchronization when the stability
condition for all-to-all synchronization (9) is violated. Figure 5 shows the dynamics of the system
z for parameter values a = 3.01,my = m3 = my = M5 = Mg = M7 = Mg = Mg = 8, M1 =
2my = 16, 75. Error A, ,, = z — w dynamics is presented in Figure 6.It is seen that despite the
fact that condition (10) is violated, there is a high degree of synchronization. C., = 1 is the
cross-correlation coefficient between the systems x and z. For this case the other cross-correlation
coefficients are Cpy = Cy ., = Chyy = Cryy =Cy . = Cyyy = Cy oy = C,y = Cyy = 1.

We notice that larger values of the relaxation coefficient o decrease the amplitude of the chaotic
vibrations.Comparing the dynamics of the variable z (Figures 3 and 5) and the error z—w dynamics
(Figures 4 and 6) one should pay attention to the scale on the ordinate axis.

Next we consider the case of variable time delays in the constituent Ikeda models, e.g. both
the feedback and coupling time delays are variable. The role of modulated feedback and coupling
time delays in controlling chaos in some laser systems was studied in [28].

We will consider three cases of time delay modulations: a) sinusoidal modulation of time delays;
b)chaotic modulation of time delays; ¢)combined sinusoidal and chaotic modulation of time delays.
For sinusoidal modulations we take

T(t) = 7 + 7o sin(wpt), (13)

where 7 is the zero-frequency component (constant time delay),7, is the amplitude,w,, is the
frequency of the modulation. For this case we use the following set of the new parameters: 7 =5,
Ta = Lw, = 0.1. Figure 7 shows dynamics of the Tkeda model x.Numerical simulations show that
for this case the correlation coefficients between the junctions are:Cy, = C, . = Cyy = Cppy =
Cy.=Cyy=Cyy =C,, = Cyy = 1. Figure 8 demonstrate highest quality synchronization
between lkeda models z and w:Correlation coeflicient C,,, = 1. Figure 8(a) pictures the
dynamics of variables z (solid line) and y (dotted line) in one plot. It is clear that
after some transient processes the dynamics of both variables coinside with each
other.Correlation coefficient C, , = 1.

For the case of chaotic modulations of the coupling time delays we choose the following form:

7(t) = 5+ 0.824(t), (14)
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where x1(t) is the chaotic solution of the Ikeda model:

dl’l

- —2x1(t) + 10sinz1(t — 5) (15)

Chaotic dynamics of x for parameters as in Eq.(15) and a = 3.01,my = m3 = mg = ms = mg =
m7 = mg = mg = 8, my = 2my = 16, 75 is shown in Figure 9.
According to the numerical simulations, for the case of chaotically modulated feedback and cou-
pling time delays the correlation coefficients between the Ikeda models are:C,, = C, ., = C,,, =
Cow=0Cy.=Cyy=0Cypy=0C,,=Cuyp=1=0C,, =1.

Finally, we consider the case of the combined sinusoidal and chaotic modulations of the cou-
pling time delays:

7(t) = 5+ 0.5x(f) sin(0.1 « t). (16)

The results of the numerical modeling for this case are:Cy, = C, ., = Crpy = Cpoy = Cyy ., = Cyyy =
Cyw =00 =Cuuw=0C,p =1

In support of high quality synchronization between the driven Ikeda models, in Fig.10 dependence
of z on w is demonstrated.

We have also numerically experimented with different amplitudes and frequencies of the modula-
tion and obtained that the synchronization quality is quite robust to such modulations. As shown
by the numerical simulations the effect of dithering coupling and feedback time delays on the
synchronization quality between the Ikeda models is not pronounced. In other words, the studied
configuration of Ikeda models is quite robust to the modulation of the coupling and feedback
delays. Thus, these results testify that driven Ikeda models, although are not coupled directly
between themselves, can be synchronized quite robustly by a single driver model even under the
conditions of the dithered feedback and coupling time delays.

We also note that complete synchronization between two Ikeda models was in-
vestigated in previous work [29] where the authors considered the case of sinusoidal
modulation of the feedback time delays. In this paper we considered complete syn-
chronization under the modulation of both feedback and coupling time delays (in-
cluding the case of chaotic modulation) in a network (however simple) Ikeda systems.

It should also mentioned that chaos synchronization is not the only phenomenon
observed in an ensemble of chaotic systems. Another very interesting phenomenon
is the realization of chimera states in chaotic systems. In [30] the authors have stud-
ied dynamical properties of one-dimensional ensembles of identical chaotic oscillators
with non-local coupling. The authors have established that such systems can demon-
strate the transition from complete chaotic synchronization to spatiotemporal chaos
when the coupling coefficient decreases. This transition is called the coherence in-
coherence transition and, for certain networks, is accompanied by the appearance of
chimera states.



Apart from this, breathers and traveling waves can also be observed in some net-
works [31]. The study of these very interesting phenomena is beyond the scope of
this research.

IV. CONCLUSIONS

To summarize, we have reported on all-to-all complete chaos synchronization in unidirectionally
nonlinearly coupled Tkeda systems. We have considered both constant time delays (feedback and
coupling times) and variable time delays cases. In case of constant time delays we have derived
analytically the existence and stability conditions for complete chaos synchronization. Numeri-
cal simulations fully support the analytical findings.As synchronization is vital in communication
systems, these results are of certain importance for information processing purposes. Additionally
the results are useful for obtaining high emission power from such networks. Besides these results
testify that driven Tkeda models, although are not coupled directly between themselves, can be
synchronized quite robustly by a single driver model even under the conditions of the dithered
feedback and coupling time delays. This studied configuration can serve as a motif( building
block) for much more complex networks.
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Figure captions

FIG.1. Schematic view of chaos based communication system. For details, see,text.
FIG.2. Schematic view of the system under consideration, see text for details.

FIG.3. Numerical simulation of all-to-all synchronization between Ikeda systems with the coupling
scheme described in Fig.2, Egs.(1-5) for a = 8.01,my = m3 = my = ms = mg = my = mg = mg =
8, m1 = 2mg = 16, 7 = 5.Dynamics of the system z is shown. Dimensionless units.

FIG.4. Error dynamics A,, = z — w versus time ¢ for parameters as in FIG.3. C,,, is the
cross-correlation coefficient between the systems z and w. Dimensionless units.

FIG.5. Numerical simulation of all-to-all synchronization between Ikeda systems with the coupling
scheme described in Fig.2, Egs.(1-5) for o = 3.01,my = mg = my = mz = mg = my = mg =
mg = 8,my = 2ms = 16,7 = 5. Note that stability condition (4) is not fulfilled.Time series of the
system z is shown. Dimensionless units.

FIG.6. Error dynamics A,, = z — w versus time ¢ for parameters as in FIG.5. C,, is the
cross-correlation coefficient between the systems z and w. Dimensionless units.

FIG.7. Chaotic dynamics of Ikeda model = for sinusoidal modulations of the feedback and cou-
pling time delays.Dimensionless units.

FIG.8.Synchronization between Ikeda models z and w in case of sinusoidal modulations of the
feedback and coupling time delays:z versus w for parameters a = 3.01,my = m3 = my = my =
me = My = Mg = Mg = 8, m; = 2my = 16,7 = 5,7, = 1w, = 0.1. Correlation coefficient
(', = 1.Dimensionless units.

FIG.8(a).Dynamics of Ikeda models z (solid line) and y(dotted line) for the parameter
values as in Figure (8). Correlation coefficient C,, = 1.

FIG.9.Chaotic dynamics of Tkeda model x for chaotic modulations 7(¢) = 5 + 0.8z1(t) of the
feedback and coupling time delays. Dimensionless units.

FIG.10. Synchronization between lkeda models z and w in case of combined chaotic and si-
nusoidal modulations of the feedback and coupling time delays: z versus w for parameters a =
3.01,my = mg = my = ms = mg = my = mg = mg = 8, My = 2my = 16,7 = 5,7(t) =
5+ 0.5z (t) sin(0.1 = t).Correlation coefficient C, ,, = 1. Dimensionless units.
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