
ABSTRACT

We report on all- to- all chaos synchronization in a network of networks based on the Ikeda model.
We consider one of the simplest cases. We ¯nd the existence and stability conditions for such a
synchronization regime. Numerical simulations validate the analytical ¯ndings. The results can
be of certain importance in achieving high level output for the coupled systems and information
processing.

I.INTRODUCTION

Networks or a network of networks is a widespread concept in a world-wide-web, population dy-
namics, neuroscience, power grids, communication, social and computer systems, etc. Research
of such interacting systems is a very hot topic in nonlinear dynamics, see e.g. [1] and references
there-in. Synchronization in such systems is of certain importance in governing and performance
improving point of view, e.g. enhancing emission power from such systems [1-11]. Additionally,
from the fundamental point of view synchronization of coupled (chaotic) systems eliminates some
degrees of freedom of the coupled system and so produces a signi¯cant reduction of complexity,
thus allowing for signi¯cant simpli¯cation of computational and theoretical analysis of the system.

As synchronization in a wider sense is associated with communication, a study of existence and
stability conditions for synchronization is of paramount importance in networks. Synchronization
is important in chaos based communication system to decode the transmitted message [1-11]: At
the transmitter part of the communication system a message is masked with chaos, then chaos
masked message is transmitted to the receiver system. At the receiver part of the communication
system due to the chaos synchronization between the transmitter and the receiver systems chaos
is regenerated. Finally, deducting the receiver input and the receiver output one can decode the
transmitted message, Figure 1.

In this paper we study chaos synchronization in one of the simplest cases of the network of net-
works based on the Ikeda system-paradigmatic model of chaotic dynamics in time delay systems
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[2]. In case of constant time delays we derive analytically the existence and su±cient stability
conditions for complete synchronization between all the constituents of the network. We support
our analytical ¯ndings with the numerical simulations. We also present examples of chaos syn-
chronization between the constituent Ikeda models in case of variable time delay systems.

The organization of the rest of this paper is as follows. In Sec. II we introduce our model.
In Sec. III we present the results of analytical study. Section IV is dedicated to the numerical
simulations of all-to-all chaos synchronization between the Ikeda models, including the case of
modulated time delays. We summarize our results in Sec. IV.

II. SYSTEM MODEL

Consider all-to-all synchronization between the chaotic Ikeda systems with the following coupling
topology ( see, Figure 2):x-Ikeda system governs both networks ((y; z and u; w)) which consists
of only two unidirectionally coupled Ikeda systems. For simplicity consider the case when all the
Ikeda systems are identical and time delays in the network is constant.

dx

dt
= ¡®x+m1 sinx¿ (1)

dy

dt
= ¡®y +m2 sin y¿ +m6 sinx¿1 (2)

dz

dt
= ¡®z +m3 sin z¿ +m8 sin y¿1 (3)

du

dt
= ¡®u+m4 sinu¿ +m7 sinx¿1 (4)

dw

dt
= ¡®w +m5 sinw¿ +m9 sinu¿1 (5)

Here x¿ ´ x(t¡ ¿). The same is valid for the other dynamical variables y; z; u; w. Initally the
Ikeda model was introduced to describe the dynamics of an optical bistable resonator, playing an
important role in electronics and physiological studies and is well-known for delay-induced chaotic
behavior, see e.g.[12,13] and references there-in. Later it was established that the Ikeda model or
its modi¯cations can be used to describe the dynamics of an opto-electronical, an acousto-optical
systems and even the dynamics of the wavelength of the Distributed Bragg Re°ector (DBR) Laser
[13]. Furthermore, this investigation is of considerable practical importance, as the equations of
the class B lasers with feedback (typical representatives of class B are solid-state, semiconductor,
and low pressure CO2 lasers [14]) can be reduced to an equation of the Ikeda type [13].
Physically x is the phase lag of the electric ¯eld across the resonator (it should be noted that in the
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opto-electronical and acousto-optical systems x is proportinal to the voltage fed to a modulator
[12]); ® is the relaxation coe±cient for the driving x and driven y; z; u; w dynamical variables; ¿
is the feedback loop time delay; ¿1 is the coupling time delay between x and y,y and z, x and u,u
and w; Below we will consider the case ¿ = ¿1;m1;m2;m3;m4;m5 are the feedback strengths for
the Ikeda systems x; y; z; u; w respectively; m6;m8;m7;m9 are the coupling strengths between the
systems x and y,y and z, x and u, u and w, respectively. It is noted that system x is directly
connected to system y and connection to system z occurs via system y. Analogously, system x is
directly connected to system u and connection to system w occurs via system u. It should also
be emphasized that there is no direct connection between the networks (y; z) and (u;w).

As mentioned above we will consider the all-to-all synchronization for the coupling topology
presented in Fig.2. First we consider the complete synchronization case between the variables x
and y. It is straightforward to establish that the synchronization error ¢x;y = x ¡ y under the
condition

m2 = m1 ¡m6 (6)

obeys the dynamics
d¢x;y

dt
= ¡®¢x;y +m2¢x;y cosx¿ (7)

Obviously ¢x;y = 0 is a solution of system (7).
The su±cient stability condition of the synchronization regime

x = y (8)

can be found by applying the Lyapunov-Krasovskii functional approach [15,16]:

® > jm2j (9)

By applying this procedure to synchronization between the dynamical variables y and z, x
and z,x and u, u and w, x and w,y and u, z and u,y and w, z and w we establish that for the
con¯guration in Fig.1 all-to-all complete synchronization

x = y = z = u = w (10)

occurs under the following conditions:

m1 = 2m2;m2 = m3 = m4 = m5 = m6 = m7 = m8 = m9 (11)

Thus we have derived both the existence (11) and stability (9) conditions for all-to-all complete
synchronization (10). In the next Section we present the results of the numerical simulations of
this synchronization regime.
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III. NUMERICAL SIMULATIONS

In this Section we numerically demonstrate how the analytical ¯ndings of the previous Section
are validated. Synchronization quality is characterized by the cross-correlation coe±cient C [17]
between the dynamical variables say x and y:

C(¢t) =
< (x(t)¡ < x >)(y(t+¢t)¡ < y >) >

q
< (x(t)¡ < x >)2 >< (y(t+¢t)¡ < y >)2 >

; (12)

where the brackets < : > represent the time average; ¢t is a time shift between the dynamical
variables.In our case ¢t = 0: This coe±cient indicates the quality of synchronization: C = 1
means perfect complete synchronization.

Figure 3 portrays time series of the system z for parameter values ® = 8:01;m2 = m3 = m4 =
m5 = m6 = m7 = m8 = m9 = 8;m1 = 2m2 = 16; ¿ = 5. Figure 4 presents synchronization error
dynamics ¢z;w = z¡w versus time for parameters as in ¯gure 3. Cz;w = 0:99 is the cross-correlation
coe±cient between the systems z and w.For parameter values as in for Figure 3 the other cross-
correlation coe±cients are Cx;y = Cx;z = Cx;u = Cx;w = Cy;z = Cy;u = Cy;w = Cz;u = Cu;w = 0:99.
The value of the cross-correlation coe±cients testify to the high quality chaos synchronization,
which is vital for information processing in chaos-based communication systems and other possible
applications. In numerical simulations we mainly presented the synchronization case between the
most outer Ikeda models- z and w.
It should be noted that the approach based on the Lyapunov-Krasovskii method gives a su±cient
stability condition for synchronization, but does not forbid synchronization [18] when the condition
(9) is not met. In Figures 5 and 6 we present the case of chaos synchronization when the stability
condition for all-to-all synchronization (9) is violated. Figure 5 shows the dynamics of the system
z for parameter values ® = 3:01;m2 = m3 = m4 = m5 = m6 = m7 = m8 = m9 = 8;m1 =
2m2 = 16; ¿5. Error ¢z;w = z ¡ w dynamics is presented in Figure 6.It is seen that despite the
fact that condition (10) is violated, there is a high degree of synchronization. Cz;w = 1 is the
cross-correlation coe±cient between the systems x and z. For this case the other cross-correlation
coe±cients are Cx;y = Cx;z = Cx;u = Cx;w = Cy;z = Cy;u = Cy;w = Cz;u = Cu;w = 1.
We notice that larger values of the relaxation coe±cient ® decrease the amplitude of the chaotic
vibrations.Comparing the dynamics of the variable z (Figures 3 and 5) and the error z¡w dynamics
(Figures 4 and 6) one should pay attention to the scale on the ordinate axis.

Next we consider the case of variable time delays in the constituent Ikeda models, e.g. both
the feedback and coupling time delays are variable. The role of modulated feedback and coupling
time delays in controlling chaos in some laser systems was studied in [19].
We will consider three cases of time delay modulations: a) sinusoidal modulation of time delays;
b)chaotic modulation of time delays; c)combined sinusoidal and chaotic modulation of time delays.
For sinusoidal modulations we take

¿ (t) = ¿ + ¿a sin(!mt); (13)
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where ¿ is the zero-frequency component (constant time delay),¿a is the amplitude,!m is the
frequency of the modulation. For this case we use the following set of the new parameters: ¿ = 5,
¿a = 1,!m = 0:1. Figure 7 shows dynamics of the Ikeda model x.Numerical simulations show that
for this case the correlation coe±cients between the junctions are:Cx;y = Cx;z = Cx;u = Cx;w =
Cy;z = Cy;u = Cy;w = Cz;u = Cu;w = 1. Figure 8 demonstrate highest quality synchronization
between Ikeda models z and w:Correlation coe±cient Cz;w = 1:
For the case of chaotic modulations of the coupling time delays we choose the following form:

¿(t) = 5 + 0:8x1(t); (14)

where x1(t) is the chaotic solution of the Ikeda model:

dx1

dt
= ¡2x1(t) + 10 sinx1(t¡ 5) (15)

Chaotic dynamics of x for parameters as in Eq.(15) and ® = 3:01;m2 = m3 = m4 = m5 = m6 =
m7 = m8 = m9 = 8;m1 = 2m2 = 16; ¿5 is shown in Figure 9.
According to the numerical simulations, for the case of chaotically modulated feedback and cou-
pling time delays the correlation coe±cients between the Ikeda models are:Cx;y = Cx;z = Cx;u =
Cx;w = Cy;z = Cy;u = Cy;w = Cz;u = Cu;w = 1 = Cz;w = 1.

Finally, we consider the case of the combined sinusoidal and chaotic modulations of the cou-
pling time delays:

¿(t) = 5 + 0:5x1(t) sin(0:1 ¤ t): (16)

The results of the numerical modeling for this case are:Cx;y = Cx;z = Cx;u = Cx;w = Cy;z = Cy;u =
Cy;w = Cz;u = Cu;w = Cz;w = 1.
In support of high quality synchronization between the driven Ikeda models, in Fig.10 dependence
of z on w is demonstrated.
We have also numerically experimented with di®erent amplitudes and frequencies of the modula-
tion and obtained that the synchronization quality is quite robust to such modulations. As shown
by the numerical simulations the e®ect of dithering coupling and feedback time delays on the
synchronization quality between the Ikeda models is not pronounced. In other words, the studied
con¯guration of Ikeda models is quite robust to the modulation of the coupling and feedback
delays. Thus, these results testify that driven Ikeda models, although are not coupled directly
between themselves, can be synchronized quite robustly by a single driver model even under the
conditions of the dithered feedback and coupling time delays.

IV. CONCLUSIONS

To summarize, we have reported on all-to-all complete chaos synchronization in unidirectionally
nonlinearly coupled Ikeda systems. We have considered both constant time delays (feedback and

5

UNDER PEER REVIEW



coupling times) and variable time delays cases. In case of constant time delays we have derived
analytically the existence and stability conditions for complete chaos synchronization. Numeri-
cal simulations fully support the analytical ¯ndings.As synchronization is vital in communication
systems, these results are of certain importance for information processing purposes. Additionally
the results are useful for obtaining high emission power from such networks. Besides these results
testify that driven Ikeda models, although are not coupled directly between themselves, can be
synchronized quite robustly by a single driver model even under the conditions of the dithered
feedback and coupling time delays. This studied con¯guration can serve as a motif( building
block) for much more complex networks.
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Figure captions

FIG.1. Schematic view of chaos based communication system. For details, see,text.

FIG.2. Schematic view of the system under consideration, see text for details.

FIG.3. Numerical simulation of all-to-all synchronization between Ikeda systems with the coupling
scheme described in Fig.2, Eqs.(1-5) for ® = 8:01;m2 = m3 = m4 = m5 = m6 = m7 = m8 = m9 =
8;m1 = 2m2 = 16; ¿ = 5.Dynamics of the system z is shown. Dimensionless units.

FIG.4. Error dynamics ¢z;w = z ¡ w versus time t for parameters as in FIG.3. Cz;w is the
cross-correlation coe±cient between the systems z and w. Dimensionless units.

FIG.5. Numerical simulation of all-to-all synchronization between Ikeda systems with the coupling
scheme described in Fig.2, Eqs.(1-5) for ® = 3:01;m2 = m3 = m4 = m5 = m6 = m7 = m8 =
m9 = 8;m1 = 2m2 = 16; ¿ = 5. Note that stability condition (4) is not ful¯lled.Time series of the
system z is shown. Dimensionless units.

FIG.6. Error dynamics ¢z;w = z ¡ w versus time t for parameters as in FIG.5. Cz;w is the
cross-correlation coe±cient between the systems z and w. Dimensionless units.

FIG.7. Chaotic dynamics of Ikeda model x for sinusoidal modulations of the feedback and cou-
pling time delays.Dimensionless units.

FIG.8.Synchronization between Ikeda models z and w in case of sinusoidal modulations of the
feedback and coupling time delays:z versus w for parameters ® = 3:01;m2 = m3 = m4 = m5 =
m6 = m7 = m8 = m9 = 8;m1 = 2m2 = 16; ¿ = 5; ¿a = 1,!m = 0:1: Correlation coe±cient
Cz;w = 1:Dimensionless units.

FIG.9.Chaotic dynamics of Ikeda model x for chaotic modulations ¿ (t) = 5 + 0:8x1(t) of the
feedback and coupling time delays. Dimensionless units.

FIG.10. Synchronization between Ikeda models z and w in case of combined chaotic and si-
nusoidal modulations of the feedback and coupling time delays: z versus w for parameters ® =
3:01;m2 = m3 = m4 = m5 = m6 = m7 = m8 = m9 = 8;m1 = 2m2 = 16; ¿ = 5; ¿(t) =
5 + 0:5x1(t) sin(0:1 ¤ t).Correlation coe±cient Cz;w = 1: Dimensionless units.
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