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ABSTRACT 

In this study, we revisit the concept of classical capacitor theory-and derive possible new explanations to 
the definition of capacitance, charge stored in a capacitor. We introduce the capacity function with respect 
to time to describe the charge storage in a classical capacitor and a fractional capacitor. Here we will 
describe that charge stored at any time in a capacitor say ( )q t  as ‘convolution integral’ of defined 

capacity function ( )c t  of a capacitor and voltage stress ( )v t across it i.e. ( ) ( )* ( )q t c t v t . This approach 
however is different to the conventional method, where we multiply the capacity and voltage functions to 
obtain charge stored i.e. ( ) ( ) ( )q t c t v t . This new concept is in line with the observation of charge stored 
as a step function and the relaxation current in form of impulse function for ‘ideal geometrical capacitor’ 
of constant capacity when an uncharged capacitor is impressed with a constant voltage stress.  Also this 
new formulation is valid for a power-law decay current that is given by ‘universal dielectric relaxation 
law’ called as ‘Curie von-Schweidler law’, when an uncharged capacitor is impressed with a constant 

voltage stress i.e. ( ) ; 0 1ni t t n    .This universal dielectric relaxation law gives rise to fractional 
derivative relating voltage stress and relaxation current that is formulation of ‘fractional capacitor’. A 
‘fractional capacitor’ we will discuss with this new concept of redefining the charge store definition i.e. 
via this ‘convolution integral’ approach, and obtain the loss tangent value. We will also show how for a 
‘fractional capacitor’ by use of ‘fractional integration’ we can convert the fractional capacity a constant 
that is in terms of fractional units of 1Farad / sec n ; to units of Farad . From the defined capacity function, 
we will also derive integrated capacity of capacitor. We will also give possible physical explanation by 
taking example of porous and non-porous pitchers of constant volume holding water and thus, explaining 
the various interesting aspects of classical capacitor and fractional capacitor that we arrive with this new 
formulation. We note that circuit theory with classical calculus and fractional calculus remains unaltered 
with this new approach of defining charge storage via ‘convolution integral’. 
 
Keywords: convolution integral, fractional derivative, fractional integration, Curie-von Schweidler law, 
fractional capacity, geometrical capacity, time varying capacity function, integrated capacity, loss tangent. 
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1. Introduction 

The classical geometric capacitor or a constant capacitor (that we are used to since our school days) 
having constant value of Farad means that it has constant value at all the frequencies from DC value of 
zero Hertz to infinite Hertz. This is ideal capacitor as though the dielectric used is having loss less relative 
permittivity r  and is a constant (i.e. a purely real number with loss tangent value as zero) at all the 

frequencies. The capacity in this classical sense is given as 1 0 /rC A d  i.e. by using geometric factor 

of ratio of area to the electrode separation. This we have learnt in textbooks. The ideal capacity that is 
constant at all the frequencies is called geometric capacity. This constant value 1C   in frequency domain is 

actually an impulse function in time domain i.e. 1 ( )C t . A general practical capacitor, which is not a 

constant in frequency domain, is having a function in time domain and we call it as capacity function in 
time, representing as ( )c t  .Where the frequency domain representation is via Laplace transformation i.e.  

 ( ) ( )c t C sL . We will derive that charge stored in capacitor, as a function of time is not usual 

multiplication operation of capacity function and voltage stress i.e. ( ) ( ) ( )q t c t v t ; instead, the charge is 

‘convolution integral’ of the two i.e. ( ) ( )* ( )q t c t v t  . Where the convolution is described as integral i.e.

( ) ( ) ( )d
t

q t c v t  


   . However, the charge described in frequency domain as a function of 

frequency is multiplication operation of frequency domain functions of capacity-function and voltage-
function, i.e. ( ) ( ) ( )Q s C s V s . We will revise this concept of capacitor in the paper, and derive various 
interesting concepts. 

The Curie-von Schweidler law relates to the relaxation current in dielectric when a step DC voltage is 

applied and is given by ( ) ni t t , where 0t  and the power (exponent) i.e. n  is called relaxation 

constant or decay constant, where 0 1n   [1]-[4], [12], [21], [22]. We note that n is non-integer. This 
relaxation law is taken as ‘universal law’, for dielectric relaxations. The Curie-von Schweidler behavior 
has been observed in many instances, since late 19th Century, such as those shown in dielectric studies 
and experiments  [3] [4], [12], [13]-[17], [21], [22]. This power law relaxation of the ‘non-Debye’ type 

i.e. ( ) ni t t  is interpreted as a many-body problem but can also be formulated as an infinite number of 
independent relaxing bodies meaning infinite number of relaxation rates varying from near zero to infinity 
[4], [5], [6], [22]. The power law relaxation is observed in the experiments with super-capacitors [7]-[11]. 
These studies [7]-[11] with non-Debye relaxation function (i.e. power-law relaxation) also indicate the 
use of fractional calculus as constituent expression to describe super-capacitors. The Electrical Circuits, 
that is composed of fractional order elements as circuit components are analyzed by Fractional Calculus 
[23]-[26].  

The use of empirical power law i.e. Curie-von Schweidler Law of relaxation of current to a step input of 
voltage to get constituent relation with fractional derivative was proposed in [12] [21], by taking  the 
concept of charge stored at any time as usual product of capacity function and voltage stressed i.e. 

( ) ( ) ( )q t c t v t . We will revise the concept of capacitor in classical theory and apply the new concept of 
charge stored at any time as convolution integral of capacity function and the voltage stress i.e.

( ) ( )* ( )q t c t v t  and apply this concept in capacitors with observed Curie-von Schewdler relaxation 
current, and obtain same results as in [12] and [21]. We will also point out the differences with this new 
approach to the earlier approach in finding the capacity function and loss-tangent.  

The paper is organized as Sections and Sub-Sections. The Section-2 is about Ideal Capacitor, what the 
classical textbooks say-i.e. the geometrical capacitor. Here we revise the classical loss-less capacity (and 
Loss Tangent), and introduce the charge function in time, as convolution integral of the defined capacity 
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function in time with the voltage stress function-for ideal text book capacitor. Section-3 deals with 
revising the charge storage formulation that we introduced as convolution integral, for the classical (ideal) 
geometric capacitor. We demonstrate in this section the relaxation current as delta function for ideal 
capacitor when a constant voltage stress is applied to it, by using the new formulation of convolution 
approach for charge storage. This section generalizes the convolution approach for charge storage for any 
time varying voltage stress and derives impedance function for classical geometrical capacitor. The 
Section-4 deals with the appearance of fractional derivative in constituent expression for capacitor, that 
relaxes with current as decaying power-law function (instead of delta function), when constant voltage 
stress is applied. This is origination of fractional capacitor based on Curie-von Schwedler law. Section-5 
is deriving the charge function as convolution integral of capacity function and voltage function, when the 
capacitor is a fractional capacitor-that follows power law current decay as impulse response function. 
Section-5 deals with this new formulation of charge storage and gets a new look at the capacitor break 
down mechanism. Here in this section, comparison of earlier literature & results on this aspect is done 
vis-à-vis with this new formulation of charge storage concept.-giving similarities and differences. 
Section-7 deals with devising method to have conjugation of Fractional Capacity with classical capacity, 

and how the fractional units in terms of 1Farads / sec n be converted to usual unit of Farads , for the 
cases of fractional capacitor. The Section-8 deals with appearance of fractional derivative in fractional 
capacitor employing this new formulation of charge storage-i.e. in terms of convolution integral; with 
noting the similarity and differences of earlier researches.  In Section-9, we give the example of a pitcher 
with porous walls holding water, and draw similarity with a fractional capacitor holding the charge. Here 
we demonstrate that charge is infinity at infinite time when the fractional capacitor is placed at a constant 
voltage. In this Section, we define concept of integrated capacity function from defined time varying 
capacity function that we used for describing the new formulation of charge storage via convolution 
integral. Section-10 gives some experimental and analytical results about use of fractional calculus in 
capacitor or dielectric relaxation theory.  In Section-11, we summarized all the expressions obtained in 
our paper for classical as well as fractional capacitor with this new formulation of charge storage i.e. with 
convolution approach; this is followed by Conclusion and References. 

  

2. A brief about ideal capacitor 

2.1: Ideal Loss less capacitor & Loss Tangent 

What we know about geometric capacitor or a constant capacitor of say value 1C is a constant value of 

Farad at all the frequencies from DC value of zero Hertz to infinite Hertz. This is ideal capacitor as 
though the dielectric used r is lossless and is constant at all frequencies; and the capacity is given as 

1 0 /rC A d  i.e. by using geometric factor of area to electrode separation ratio. This ideal capacity is 

constant at all the frequencies is called geometric capacity. Therefore, if we say s as complex frequency 
(Laplace variable) then this constant capacity is given as following function 

1 1( ) i i 1 ( )C s C s C C                                         (1) 

The Laplace complex frequency is written in Eq. (1) as is  for writing sinusoidal or steady state 
frequency domain analysis [12], [19], [21].  

From Eq. (1) we see that     1( ) Re ( ) i Im ( ) i(0)C C C C       has only real part with imaginary 

part as zero at all frequencies.  That gives loss tangent as  
 

Im ( )

Re ( )
tan 0C

C


    Thus; ideal capacitor Eq. 
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(1) is a loss less capacitor. The dielectric loss is expressed as loss tangent for a complex dielectric 

quantity given as    ( ) Re ( ) i Im ( )r r r       where loss tangent is given as  
 

Im ( )

Re ( )
tan r

r

 
   . 

2.2: Representation of time varying capacity function as delta function for a loss-less ideal 
capacitor 

Since the inverse Laplace transform of function i.e. ( ) 1F s  gives time function i.e.

 1( ) ( ) ( )f t F s t L  i.e. a Dirac delta function at 0t   , we say the ‘time varying capacity 

function’ call it ( )c t  of geometric capacitor (ideal-capacitor) is following Eq. (2) by taking inverse 

Laplace transform of Eq. (1), i.e.  1( ) ( )c t C s L . We write the following expression for a time 

varying capacity function for ideal loss-less capacitor    

1( ) ( )c t C t                                                               (2) 

Therefore, we say that a constant ideal capacitor has a ‘capacity function’  ( )c t  as Dirac delta function. 

For example if the capacity of a capacitor is a function of frequency say as ( ) m
mC s C s  ; then the time 

varying capacity function ( )c t  for this capacitor  1( ) ( )c t C s L  is following 

1( ) ; 0
( 1)!

mmC
c t t t

m
 


                                                 (3) 

If the capacity function is constant 0( )c t C for 0t  only if the frequency function is 1
0( )C s C s . 

Therefore, we say 0( ) , 0c t C t  is not a constant capacitor or a lossless capacitor. This capacitor 

with capacity function  0( ) , 0c t C t   in frequency domain in complex notation is

1
0( ) 0 iC C   , i 1  with loss tangent as infinity.  

2.3: The charge function in time is convolution integral of capacity function and voltage 
function 

When we apply a voltage function ( )v t to an uncharged capacitor we write the charge stored at any time 
as convolution integral as follows 

     
( ) ( )* ( )

( ) ( ) d ( ) ( ) d
t t

q t c t v t

c t x v x x c y v t y y
 



    
                          (4) 

This is against conventional way of writing the charge i.e. 

( )
( ) ( ) ( ) ; ( )

( )

q t
q t c t v t c t

v t
                                                                   (5) 

This argument in Eq. (4) we will explain in the subsequent section.  

In reality the capacity of a capacitor, say of 1 F means this value is at particular frequency of 

measurement standard is at 1kHz  (also depends on application) [12]. Practically due to losses in r the 

value of capacity of capacitor is varying in frequency; therefore in reality we have time varying capacity 
function ( )c t  describing a capacitor. 
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3. Reviewing concept of charge storage in constant capacitor in the classical 
theory 

3.1: Impedance Function in Laplace domain for a ideal capacitor 

We have standard expression of ‘impedance of a capacitor’ i.e. ( )Z s expressed in frequency domain as 

following in following expression Eq. (6) with  ( ) ( )V s v t L ,  ( ) ( )I s i t L  

1 1

( ) 1 ( ) 1
( ) ( ) i

( ) ( )

V s V
Z s Z

I s C s I C


 

                                                 (6) 

Thus from Eq. (6), we have the capacity function expressed in Laplace frequency domain as a function as 

1

1

( )

( )

s I s
C

V s



                                                                                 (7) 

We note that the constant 1C is Laplace transformed quantity, i.e.  1 ( )C c t L ; and in this case of 

‘constant capacity’ the capacity function in time is 1( ) ( )c t C t  Eq. (2). Therefore, we have in 

frequency domain representation of capacitor as function of Laplace variable s , so we call it as

 ( ) ( )C s c t L . Therefore, for a general relation of capacity in frequency domain we have following 

expression  

     
1 ( )

( ) ; ( ) ( ) , ( ) ( ) , ( ) ( )
( )

s I s
C s C s c t V s v t I s i t

V s



   L L L                   (8)                           

3.2: Getting charge function in time domain as convolution integral of capacity function 
and voltage function from the impedance function in Laplace domain 

The numerator term in Eq. (8) i.e. 1 ( )s I s in time domain is 
0

( )d
t
i x x [19] that is charge the ( )q t , i.e.

0
( ) ( )d

t
q t i x x   with its Laplace transform as  ( ) ( )Q s q t L . Therefore, from Eq. (8), we write charge 

in frequency domain as following expression 

( ) ( ) ( )Q s C s V s                                                               (9) 

This Eq. (9) is the expression in frequency domain. In the time domain, we write the charge equation as 

convolution integral [19], i.e. using          1 1 1
1 2 1 2 1 2( ) ( ) ( ) * ( ) ( )* ( )F s F s F s F s f t f t   L L L  

where  ( ) ( )j jF s f t L , 1, 2j    i.e.  1( ) ( ) ( )q t C s V s L  gives the following expression 

  
( ) ( )* ( )

( ) ( ) d
t

q t c t v t

c t x v x x




 
                                             (10) 

Where in Eq. (10) convolution operation is denoted as (* ) and the convolution of two functions 1( )f t and  

2 ( )f t  is defined as following convolution integral  

     1 2 1 2 1 2( )* ( ) ( ) ( ) d ( ) ( ) d
t t

f t f t f t x f x x f x f t x x
 

                     (11) 
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3.3: Charge function and current function in time domain when uncharged ideal capacitor 
is stressed with constant voltage by using convolution approach 

Let an uncharged capacitor of constant capacity at 0t  , of value 1C be charged with a constant step 

voltage BBV  applied at 0t   i.e.  ( ) ( ) ; 0BBv t V u t t  . By conventional approach using 

( ) ( ) ( )q t c t v t we say charge stored at any time for 0t  is 1( ) BBq t C V , whereas the charge is ( ) 0q t 

for 0t  . Thus the charge in time domain is a step function, we denote that as  1( ) ( )BBq t C V u t ; with 

( )u t as unit-step function at 0t  . Laplace transform of this step charge is following 

    1
1

1
( ) ( ) ( ) BB

BB

C V
u t Q s C V u t

s s
  L L                            (12) 

 The first derivative of charge i.e. (1) ( )q t gives the charging current (or relaxation current) i.e.  

 

(1)

1 1

d ( )
( ) ( )

d
d

( ) ( )
d BB BB

q t
i t q t

t

C V u t C V t
t



 

 
                                              (13) 

This Eq. (13) is classical result that we all know is as per classical capacitor-theory that is charging 
current is impulse function at the time of application of voltage step, to an uncharged capacitor. This 

impulse current also comes from circuit equation i.e.  
1

1 ( )d ( )BBC i t t V u t ; and the classical theory 

deals with geometrical capacitor given by 1 0 /rC A d  .  

Now let us look at convolution integral, for   ( ) ( )* ( ) ( ) ( ) d
t

q t c t v t c t x v x x


     for 0t   i.e. 

where we have ( ) BBv t V , for 0t  . Only if we define ( )c t as function of time as the capacity function 

i.e.  1( ) ( )c t C t  we will be getting 1( ) BBq t C V   for 0t   demonstrated in following steps 

    

    

1

1 10 0

1

( ) ( )* ( ) ( ) ( ) d ; ( ) ( ) , ( ) , 0

( ) d ( ) d ; 0

; 0

t

BB

t t

BB BB

BB

q t c t v t c t x v x x c x C x v x V x

C t x V x C V t x x t

C V t



 


     

    

 


         (14) 

We have used identity  0( ) d 1x x x   , i.e. property of delta function. Thus from above Eq. (14) we 

get charge as step function at 0t  , given as following expression 

 1( ) ( )BBq t C V u t                                                             (15) 

The meaning of capacity function ( )c t in time domain is  1( ) ( )c t C t i.e. an impulse of height 1C (in 

units Farad ) at the time of application of voltage excitation (i.e. 0t  ), refer Figure-1. Whereas, in the 
frequency domain, the definition of capacity i.e. for geometrical capacity is,  1( )C s C  i.e.

 
 1 1( ) ( )C s C t C L that is a constant (in unit of Farad ) value at all frequencies that we have 

discussed earlier Eq. (1).
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3.4: For a loss-less ideal capacitor phase between charge function and voltage function is 
zero 

With ( ) /BBV s V s we get 1( ) ( ) ( ) /BBQ s C s V s C V s  . Thus when we say a capacitor is having a 

constant value, it implies that its capacity function is an ‘impulse’ function at the time of application of 
voltage stress; in time domain, say at 0t   . The constant capacity 1C  is written as capacity function of 

time as  1( ) ( )c t C t . For any other time say at time, say 0t t  of application of voltage-stress the 

classical geometrical constant capacitor is expressed as capacity function  1( ) ( )c C   , with 

considering 0t t    . From now on we will state 0t  as time of application of voltage stress to 

uncharged capacitor with capacity function as ( )c t . 

Say we apply ( ) cosv t at at 0t  , for 0t  ; then Laplace transform of ( )v t  is 2 2( ) / ( )V s s s a   , to 

an uncharged constant capacitor 1( )C s C . This gives  2 2
1( ) / ( )Q s C s s a  implying 

1( ) cos ; 0q t C at t   . Thus we observe for a constant capacitor, there is no phase difference between 

( )v t and ( )q t . We do the same deduction following the convolution integration formulation Eq. (16). 

Also, refer Figure-1 for curves of ( )v t and ( )q t that have no delay implying no phase difference for a 
constant capacity case.

      
 

    

  

1

10

1

( ) ( )* ( ) ( ) ( ) d ; ( ) ( ) , ( ) cos ; 0

( ) cos d ; 0

cos ; 0

t

t

q t c t v t c t x v x x c x C x v x ax x

C t x ax x t

C at t






     

  

 


     (16) 

We have used identity   0 0( ) ( ) d ( )x x f x x f x   , i.e. property of delta function.  

3.5: Generalizing the charge function and current function for arbitrary voltage stress 

Thus, we have general expression for any time varying voltage ( )v t applied at uncharged capacitor with 

geometrical capacity given by capacity function as  1( ) ( )c t C t , will have charge ( )q t for 0t  as 

following Eq. (17) convolution integral 

    

  
 

1

10

1

( ) ( )* ( ) ( ) ( ) d ; ( ) ( ) , ( ); 0

( ) ( ) d ; 0

( ) ; 0

t

t

q t c t v t c t x v x x c x C x v x x

C t x v x x t

C v t t






    

  

 


           (17) 

Now we differentiate the expression above Eq. (17) of ( )q t to write following expression 
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  

      

(1)

1

1
1

1 1 1 1

d ( )
( ) ( )

d
d

( ) , 0
d

d d ( )
( )

d d
d ( ) d ( )

( ) ( ) (0) ( )
d d

(0) ( ) , 0

q t
i t q t

t

C v t t
t

C v t
v t C

t t
v t v t

v t C t C C v t C
t t

i i t t

 

 

 

 

   

  

                            (18) 

The first term at RHS of Eq. (18), indicate the value of current at 0t  . The constant function starting at 
0t  i.e. 1C when differentiated gives 1 ( )C t . This unit delta functions at 0t  , i.e. ( )t when multiplied 

by ( )v t gives (0) ( )v t . This comes from property   0 0( ) ( ) d ( )x x f x x f x   , differentiation of 

this gives   d
0 0 0d( ) ( ) ( ) ( ) ( )xx x f x f x f x x    . Thus at 0t  we have 1(0) (0)i C v and (0) 0i 

for 0t  . Compositely we write  1(0) (0) ( )i C v t , i.e. specifying its value at only 0t  . The second 

term is ( )i t for 0t  , that is  (1)
1( ) ( )i t C v t  (refer Figure-1). We write the following expression for ( )i t

as  

 1 1

d ( )
( ) (0) ( )

d

v t
i t C v t C

t
                                                                  (19) 

The obtained expression Eq. (19) via the formulation ( ) ( )* ( )q t c t v t is consistent with expression 

obtained in [21], where ( ) ( ) ( )q t c t v t is used.  

As an example, we take ( ) ( )BBv t V u t a step input at time 0t  , to an uncharged capacitor. We have 
(1) ( ) 0v t  for 0t  ; and at 0t  we have, (0) BBv V  . Using Eq. (19), we get  1(0) ( )BBi C V t ; this 

makes  1( ) ( ) , 0BBi t C V t t  .This is for geometrical capacity charging current is impulse function. 

Generally the capacitance is not a constant parameter of the capacitor, it varies in frequency and therefore 
in time too. The constant capacitor concept is approximation when we assume the relative permittivity r
to be constant (note that geometrical capacity we define as 1 0 /rC A d  ) [12], [21]. We note that only a 

loss free capacitor has a constant capacitance in frequency domain. Losses manifest themselves in 
frequency domain as a phase angle,  by which ( )q t lags ( )v t , or given as loss tangent i.e. tan  in the 
charge expression of capacitor i.e.  

  ( ) ( )* ( ) or ( ) ( ) ( )q t c t v t Q s C s V s                                  (20) 

For 1( )C C  , the constant geometrical capacitor with capacity function as 1( ) ( )c t C t Eq. (1) and 

Eq. (2), we have Im ( )
Re ( )tan 0C

C

   ; that is ideal lossless capacitor. 

Therefore, we say that charge stored in capacitor, as a function of time is not multiplication operation of 
capacity and voltage i.e. ( ) ( ) ( )q t c t v t  ; instead, the charge is convolution integral, i.e. ( ) ( )* ( )q t c t v t  
however, the charge as a function of frequency is multiplication operation of frequency domain functions 
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of capacity and voltage, i.e. ( ) ( ) ( )Q s C s V s . A time varying capacity say ( ) , 0 1nc t t n    has a 

delay between ( )v t and ( )q t that is shown in Figure-1 (for time varying capacity case), where ( )q t lags

( )v t . We will see that ( ) , 0 1nc t t n   will have non-zero loss-tangent i.e. it represents a lossy 

capacitor-and thus phase delay between ( )q t and ( )v t . 

3.6: Time varying capacity function as convolution integral of charge function and inverse 
voltage function 

From the expression Eq. (20), ( ) ( ) / ( )C s Q s V s  we write the time varying capacity ( )c t  by use of 
convolution integral in the following steps 

     
   
   

11 1

1 1 1

1

( )
( )

( )

( ) ( ) ( )

( ) ( ) * ( ( )

( ) * ( )

Q s
C s

V s

C s Q s V s

c t Q s V s

q t v t

 

  











L L

L L

                                                         (21) 

From above derivation Eq. (21), we say that capacity i.e. ( ) ( ) / ( )c t q t v t i.e. not the usual ratio of 
charge to voltage in time domain, but it is given as convolution expression i.e. 

    1
( ) ( ) * ( )

( ) ( )
d d

( ) ( )

t t

c t q t v t

q t x q x
x x

v x v t x



 




 

 
                                              (22) 

Let us verify, with   1( ) ( )BBq t C V u t i.e. at 0t  and ( ) 0q t  for 0t  , and ( ) ( )BBv t V u t i.e. a step 

voltage at 0t  , gives following steps 

   

 
 

1

1 1

1
1

1

( ) ( ) * ( )

( ) ( )
d d

( ) ( )

( )* ( )

( )

t t
BB BB

BB BB

c t q t v t

C V u t x C V u x
x x

V u x V u t x

C u t u t

C t



 






 







 
                              (23) 

We have used inverse identity i.e. 1*f f    in Eq. (23). 

Therefore, capacity at any time is the history of ratio of charge to voltage given by convolution integral 

Eq. (22). We can verify with say  1( ) cos ( )q t C at u t for 0t  with  1( ) cos ( )v t C at u t for 0t 
gives the following 
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   

 
    
 

1

1 1

1

1

1

( ) ( ) * ( )

cos ( ) cos
d d

cos cos ( )

cos( ) * cos( )

( )

t t

c t q t v t

C a t x C ax
x x

ax a t x

C at at

C t



 






 







 
                               (24) 

We have used inverse identity i.e. 1*f f    in Eq. (24). We note here the formula used in [12], [21] is

( ) ( ) / ( )c t q t v t , whereas we used     1
( ) ( ) * ( )c t q t v t

 . 

 

4. Fractional Derivative directly from Curie-von Schweidler Law-Fractional 
Capacitor 

4.1: Impedance and Admittance in Laplace domain for a fractional capacitor  

Practically on applying a step input voltage  ( ) BBv t V  Volts at 0t  to a capacitor which is initially 

uncharged; we get a power-law decay of current given by empirical Curie-von Schweidler as

( ) ; 0 1ni t t n    [12], [21]. That we write in following way as indicated by experimental studies 
[12]-[17], [21], and [22] 

( ) 0BB
n n

V
i t K t

t
                                                                    (25) 

The parameter nK is proportionality constant, while in [12], [21] the proportionality constant is 11/ h . This 

is from observation and the evaluation of order of power-law function is 0.5 1n  [7]-[12], [21]. Let the 

uncharged capacitor be excited by a constant step input of BBV Volts, i.e. written as  ( ) ( )BBv t V u t , 

where ( )u t  is unit step function at 0t  . The Laplace transform of step input is following 

    ( ) ( ) ( ) BB
BB

V
V s v t V u t

s
  L L                                                 (26) 

and then taking Laplace transform of Eq. (25) i.e. of power-law decay current by using 

  ( 1)!m mt m s L ,  [19] we write following expression for  ( ) ( )I s i t L  

   

1

( ) ( )

( )!

n
n BB

n BB n

I s i t K V t

n
K V

s



 

 

   
 

L L

                                                     (27) 

Using the formula for generalization of factorial i.e. ( 1)! ( )    [6], [20], we get the following 
expressions 
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1

(1 )
( )

(1 )

BB
n n

BB
n n

n V
I s K

s
Vn

K
s s





 


     
 

                                                         (28) 

We get Transfer function [19] of capacitor as following expression for admittance ( )Y s  

   

(1 )
( )

( )
( )

(1 ) (1 )

BB
n n

BB

n n
n n n n

Vn
K

I s s s
Y s

VV s
s

K n s C s C K n



   
 
  

 
 
 
      

          (29) 

This expression i.e. ( ) ( ) / ( )Y s I s V s  in Eq. (29) is ‘admittance’ expression in complex frequency ( s ) 

domain of a capacitor. Putting, is    in Eq. (29) we get  2 2( ) cos isin ( )nn n
nI C V     . This 

means current leads voltage in fractional capacitor by angle 2
n . For 1n  , i.e. for a classical geometrical 

ideal capacitor we have 1( ) i ( )I C V   , that is current leading voltage by angle of 090 .  

4.2: Current voltage relation by fractional derivative for fractional capacitor 

From Eq. (29), we write impedance expression ( ) ( ) / ( )Z s V s I s  for fractional-capacitor as following 

1
( ) , 0 1

n
n

Z s n
C s

                                                                     (30) 

From the obtained Eq. (29) i.e.  ( ) ( )n
nI s C s V s  and by Laplace inversion by using the identity

   1
0( ) ( )n n

ts F s D f t L i.e. fractional derivative operation [6], [20], we get the constituent relation 

for capacity as following 

  0( ) ( ) , 0 1n
n ti t C D v t n                                                       (31) 

4.3: Fractional units for fractional capacitor 

The ‘fractional capacity’ nC is in unit of 1Farad / sec n ; [12], [21] which is constant given by

 (1 )n nC K n   . This fractional derivative expression of Eq. (31) gives a new capacitor theory [12], 

[21] and we utilize this above formula Eq. (31) to find characteristics of super-capacitors, variation of n
with current excitation, and efficiency of energy discharged to energy stored [13]-[17]. Classically the 

expression of capacitor is   (1)
1( ) ( )ti t C D v t i.e. with one-whole order (classical) derivative.  

Curie-von Schweidler law gives a different approach for capacitor theory based on fractional calculus 
[12], [21], [22]. In experimental observations, we find that capacitor has fractional order impedance [7]-
[17], [21]. This section gives us the understanding that this empirical law i.e. Curie-von Schweidler law 
gives a relation of voltage and current of capacitor by using fractional derivative. We will derive this Eq. 
(31) by the new approach of the definition of charge in the subsequent section. 
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5. Charge stored in a fractional capacitor using convolution integral of time 
varying capacity due to Curie-von Schweidler relaxation current  

5.1: Expression of charge storage from Curie-von Schweidler relaxation current in a 
fractional capacitor  

For Curie-von Schweidler law we have relaxation current as noted earlier Eq. (25) empirically expressed 

as ( ) , 0 1n
n BBi t K V t n     for 0t  , i.e. when uncharged capacitor is applied with a step voltage 

 ( ) ( )BBv t V u t at 0t   . This empirical expression of current relaxation gives a relation of incremental 

charge q  (or dq  in infinitesimal small limit) when ‘pulse’ of a voltage of magnitude BBV is applied for 

a duration t (or in infinitesimal small limit dt ) given by following expressions 

d
dn BB n BB

n n

K V t K V t
q q

t t


                                                      (32) 

With this above Eq. (32) expression (and by
0

( ) d
t

q t q   ) we write the charge accumulated for this 

power law decay current as following 

0 0

1

d
( ) d

, 0 1 0
(1 )

t t
n BB

n

nn BB

K V x
q t q

x
K V

t n t
n



 

   


 
                           (33) 

5.2: Expression for time varying capacity function from admittance relation of a fractional 
capacitor 

From the expression in frequency domain Eq. (8) i.e.        1( ) ( ) / ( ) ( ) / ( )C s s I s V s Q s V s   we 

have for ( ) n
n BBi t K V t  with   1( ) (1 ) n

n BBI s K n V s    , and ( ) /BBV s V s , gives ( )C s  as following 

    

 

1 1 1

1

1

1 ( )

( ) (1 )
( )

( )

(1 )
; ! (1 )

( )!

n
n BB

BB

n

n

n n

s I s s K n V s
C s

V s V s

K n
m m

s
n

K
s

  





 

 
 

 
   




                                      (34) 

Now doing inverse Laplace transform by using  1 (1 )( !) / m mm s t  L   of above Eq. (34) we get ‘time 

dependent’ capacity function ( )c t as following 

( ) ; 0 1, 0n
nc t K t n t                                                        (35) 

5.3: Using convolution integral and time dependent capacity function evaluation of charge 
storage in time for a constant voltage applied to fractional capacitor 

Using the convolution integral with this time dependent capacity function Eq. (35) step voltage applied at 
time zero, i.e. we get following expression for charge stored   
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      

  
0

1
1

0

( ) ( ) * ( ) ( ) ( ) d , ( ) , ( ) ; 0

( ) d , 0 1

( )

1 1

t n
n BB

t n
n BB

x tn
nBB n

BB n

x

q t c t v t c t x v x x c x K x v x V t

K t x V x n

V Kt x
V K t

n n












     

   


  

 


      (36) 

The expression above Eq. (36) obtained expression 1
1( ) BB nV K n

nq t t 
 obtained via our formula 

( ) ( )* ( )q t c t v t is same as we got via 
0

( ) d
t

q t q  above in Eq. (33).  

 

6. Observations on breakdown mechanism of a fractional capacitor and loss 
tangent and comparison with earlier theory 

6.1: When a fractional capacitor is float on a constant voltage the charge accumulated at 
large times is infinity-giving electrostatic break down 

We note here from Eq. (36) that for 0 1n  , the charge store is lim ( )
t

q t    when the capacity 

function is ( ) n
nc t K t , following Curie-von Schweidler decay current. Whereas for a classical capacity 

function i.e. given as 1( ) ( )c t C t  , the charge at large times  is 1lim ( ) BBt
q t C V   Eq. (15). This 

observation i.e. lim ( )
t

q t   in our derivation is with convolution formula i.e. ( ) ( )* ( )q t c t v t is in 

line with the observations in [12], [21], where the used expression for charge is   ( ) ( ) ( )q t c t v t . This 

is the new idea of breakdown of capacitors due to accumulation of enough charge (electrostatic 
breakdown) at a constant voltage even though voltage is less than the breakdown limit of dielectric 
proposed in [12], [21]. 

6.2: Evaluation of loss tangent by using earlier approach and the convolution approach of 
charge storage concept for fractional capacitor 

In [12] and [21] the charge formula used is ( ) ( ) / ( )c t q t v t and not via convolution approach that we 

discussed in this paper. In addition, with this formula ( ) ( ) / ( )c t q t v t in [12] and [21] gets the time 

dependent capacity function as following where the constant 1h is used in Curie von-Schweidler 

relaxation current i.e.   1

1 nh K
  

1

1

( ) , 0; 0 1
(1 )

nt
c t t n

h n



   


                                              (37) 

The frequency domain representation for ( )c t obtained in [12] and [21] is following 

 

1

2 2
1

(1 )!
( ) , 0 1, i

(1 )

(1 )!
( ) cos i sin

(1 )

n

n
n n

n
C s s n s

h n

n
C

h n
 






   



 
   

                                                (38) 
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Here from Eq. (38) if we expresses loss tangent as  
   Im ( )

2Re ( )
tan tanC n

C

 
    , which is not correct, as 

the loss tangent is 2tan tan(1 ) ; 0 1n n      for a fractional capacitor.  

Therefore, in [12] and [21], the loss tangent is not calculated by the using capacity function ( )c t Eq. (37), 

instead, phase difference  is calculated between current ( )I   and voltage ( )V   by using  admittance 

expression 
i

( )
s

Y s


 Eq. (29) and then doing steady state (sinusoidal) analysis, and then writing loss 

tangent as   2tan tan     , which is  (1 )
2tan tan n   . 

This above expression Eq. (37) and Eq. (38) of [12] and [21] says that the time varying capacity function 
will be growing to infinity as time grows. Also in frequency domain, we will be getting infinite value at 
infinite frequency. This gives us notion of unrealistic property of capacity function, which is unstable.  

Whereas we have from our new derivation Eq. (35) the following for a fractional capacitor  

 
   

(1 )

(1 ) (1 )(1 )
2 2

( ) ; 0 , 0 1

( ) (1 ) ; i

( ) (1 ) cos i sin

n
n

n
n

n nn
n

c t K t t n

C s K n s s

C K n  



 



 

  

   

   

   

                                (39) 

where the capacity function tends towards zero for large time and large frequency. From above Eq. (39), 
we get loss tangent as 

 
   (1 )

2

Im ( )
tan tan

Re ( )
nC

C





                                                                (40) 

which is also as reported in [12], [21]; obtained differently than demonstrated in Eq. (39). However, [12] 
and [21] gives other expressions, same as that we will derive and report subsequently. 

 

7. Further derivations regarding fractional capacitor in conjugation to 
classical capacitor 

7.1: Getting charge function in time domain as convolution integral of capacity function 
and voltage function from the impedance function in Laplace domain for fractional 
capacitor 

Now we do the steps as we did for classical capacitor, from the obtained impedance relation of fractional 
capacitor i.e. 

11
( ) ; 0 1 (1 ) Farad / secn n

n n n
n

Z s s n C K n C
C

                       (41) 

 with    ( ) ( ) (1 )n n n nC s c t C K n    L as obtained in earlier section Eq. (30), a constant in units 

of 1Farad / sec n . We note that  (1 )n nC K n   is in units of 1Farad / sec n  ; a “fractional form” of 

unit [12], [21], defining a “fractional capacity” as constant in the frequency domain. Thus, we expect that 
in time domain the fractional capacity call it ( )nc t  be given by delta function at 0t  i.e. following 

   ( ) (1 ) ( ) ( )n n nc t K n t C t                                                  (42) 
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The meaning of capacity function ( )nc t in time domain is  ( ) ( )n nc t C t i.e. an impulse of height nC

(in units 1Farad / sec n ) at the time of application of voltage excitation (i.e. 0t  ). Whereas, in the 

frequency domain, the definition of fractional capacity is  ( )n nC s C  i.e.
 

 ( ) ( )n n nC s C t C L  that 

is a constant (in unit of 1Farad / sec n ) value at all frequencies.  

We say here that classical geometrical capacitor presents a Farad  value as impulse function at the time of 

application of voltage stress, while the fractional capacitor presents a 1Farad / sec n value at the time of 
application of voltage. 

From this Eq. (42) we write following steps, with  ( ) ( )n nC s c t L ,  1
0( ) ( )n n

ts F s f t  L I where

0
n

tI  is defining fractional integration operation [6], [20] of fractional order 0 1n   

  
     

  
 

 
 

  
 

        
    

0 1 1
0 0 0

11 1
0 00 0

0

1
0 1 1

0 0

1
0

1
0

( )( )
( ) ; 0 1 ( ) ( )

( ) ( )

( )d( )
; ( ) ( )d

( ) ( )

( )
; ( ) ( )

( )

( ) ( ) ( )

( ) ( )

nn
t n n

n t t t

tnn
t tt t

n
t n n

t t

n
t n

n
n t

i ts I s
C s n f t f t

V s v t

i x xi t
q t i x x

v t v t

D q t
f t D f t

v t

D q t v t c t

c t D q t







 





    

  

 








L I
I I I

L

L IL I I

L L

L
I

L

L L L

L L L   
    

1

11
0

( )

( ) ( ) * ( )n
n t

v t

c t D q t v t





        (43) 

7.2: Defining capacity function as fractional integration of fractional capacity function 
thereby converting the units in fractional units to Farads-for a fractional capacitor 

In Eq. (43) 1
0

n
tD  is fractional derivative operation with order (1 )n .Therefore, we write following 

formulas for fractional capacitor in with conjugation to classical capacitor theory 

    
     

       
         
 

   

11
0

1
0

1 1
0 0

1 1
0 0

def
1

0

( ) ( ) * ( ) ; 0 1

( ) ( ) * ( )

( ) ( ) * ( ) ( ) * ( )

( ) ( ) * ( ) or ( ) ( ) * ( )

( ) ( )

( ) ( ) * ( )

n
n t

n
t n

n n
t n t n

n n
t n n t

n
t n

c t D q t v t n

D q t c t v t

q t D c t v t c t v t

q t c t v t q t c t v t

c t c t

q t c t v t





 

 



  



       

 

   


I

I I

I

                        (44) 
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In the steps of Eq. (44), we have    1
0( ) ( ) * ( )n

t nq t c t v t    I doing Laplace transform we will get

    (1 )( ) ( ) * ( )n
nQ s s c t v t  L  . Further, we get     (1 ) (1 )( ) ( ) ( ) ( ) ( )n n

n nQ s s C s V s s C s V s     . 

Writing  (1 ) ( ) ( )n
ns C s C s   , i.e.  1

0 ( ) ( )n
t nc t c t I ; we have     1

0( ) ( ) * ( )n
t nq t c t v t I .  

In Eq. (44), thus we defined  
def

1
0( ) ( )n

t nc t c t    I . We note here that, by re-arrangement of term (1 )ns 

in expression of ( )Q s    we could have written     1
0( ) ( ) * ( )n

n tq t c t v t I , this formula is also valid, 

that we have mentioned in Eq. (44). Using Eq. (36) i.e. 1
1( ) n BBK V n

nq t t 
 in Eq. (44), we get

     (1 1)1 1 1
0 1 (1 1 1 )( ) (1 )n BBK V nn n n

t n BBn n nD q t t K V n     
         that is a constant function for 0t  . This we 

have got by formula of fractional derivative i.e. ( 1)
0 ( 1 )xD x x   

 
  

   [6], [20]. Thus, we write 

   1
0 ( ) (1 ) ( )n

t n BBD q t K V n u t    where ( )u t a unit-step function at 0t  . We write the following for

( )nc t as described in Eq. (44).  

        

      
 

11 1
0 0

1

( ) ( ) * ( ) ; ( ) (1 ) ( )

(1 ) ( ) * ( )

(1 ) ( )

n n
n t t n BB

n BB BB

n

c t D q t v t D q t K V n u t

K V n u t V u t

K n t

 



   

  

  

                      (45) 

We used identity i.e. 1*f f   , the inverse relation in Eq. (45).  

We consider the following relation Eq. (44) for time varying capacity function ( )c t from ( )nc t  

 ( 1) ( 1) (1 )
0 0 0( ) ( ) ; 0, 0 1;n n n

t n t tc t D c t t n D       I                        (46) 

 i.e. time varying capacity function defined as fractional integral of the order 1 n for the fractional 

capacity function i.e. ( )nc t i.e. in units of 1Farad / sec n , which is constant in frequency domain as 

 ( ) (1 )n nC K n    i.e. a fractional capacitor. Using  ( ) (1 ) ( )n nc t K n t   as obtained above Eq. 

(42), we write following 

 
   

      

 

1
0

1
0

1 1
0 0

1 1

( ) ( )

(1 ) ( )

1
(1 ) ( ) ; ( )

( )

(1 )
(1 )

n
n

n
t n

n
n t x

n
n

n n

c t D c t

K n t

K n t x x

t
K n K t

n

 



 






 

 




    

   


 
      

I

I I          (47) 

In Eq. (47), we have used formula for fractional integration of delta-function [6], [20], as mentioned i.e.

  11
0 ( )( )x x x 

 
I . The expression ( ) n

nc t K t we had obtained earlier too Eq. (35).  
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We note that the fractional integration operation  1
0 ( )n

t nc tI in Eq. (46), Eq. (47) is converting units in
1Farad / sec n for ( )nc t   into units of Farad for ( )c t . This is because the fractional integration 1

0
n

t
I  is 

integration with respect to fractional differential element 1(d ) nt  i.e.     1 (1 )
0 0

( ) ( ) d
tn n

t n nc t c t t  I . 

Therefore, the capacity function ( ) n
nc t K t that we get for fractional capacitor is in units of Farad . This 

show for a fractional capacitor by the use of time varying capacity function we can convert the fractional 
capacity constant that is in units of fractional units of Farads per second to the power a fractional number, 

to units of Farads, by formula  1
0( ) ( )n

t nc t c t I . 

7.3: General charge and current expression for fractional capacitor following universal 
dielectric relaxation law 

We obtain a general expression of charge ( )q t  for Curie-von Schweidler relaxing current in a capacitor, 

that is having capacity function as ( ) n
nc t K t  Eq. (47) when stressed with a time varying voltage ( )v t

applied at 0t    is by convolution process as    ( ) * ( )n
nq t K t v t elaborated below  

      ( ) ( ) * ( ) ( ) ( ) d

( ) 0

t

n
n

q t c t v t c t x v x x

c x K x x





  

 


                                      (48)

 

 The convolution integral from Eq. (48), with 0x   is following 

0

( )
( ) d

( )

t

n n

v x
q t K x

t x


                                                               (49) 

As we did for geometrical capacity in previous section, we differentiate Eq. (49) of ( )q t to get ( )i t and 
write following 

(1)

0

d ( )
( ) ( )

d
d ( )

d
d ( )

t

n n

q t
i t q t

t
v x

K x
t t x

 




                                                     (50) 

We apply formula of integration by parts i.e.  

       (1)
1 2 1 2 1 20 0 00
( ) ( ) d ( ) ( )d ( ) ( ) d d

x tt t t

x
f x f x x f x f x x f x f x x x




                         (51) 

 to evaluate ( )

( )0
dn

t v x

t x
x

  that appears in Eq. (50) as detailed in the following steps 
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t (1)

0 0
0

1 1
(1)

0
0

(1)
1 1

0

( )d d d
( ) ( ) d

( ) ( ) ( )

( ) ( 1)( )
( ) ( ) d

1 1

(0) ( )
( ) d

1 1

x t
t

n n n
x

x t
n nt

x

tn n

v x x x x
v x v x x

t x t x t - x

t x t x
v x v x x

n n

v v x
t t x x

n n






 



 

   
        

     
         

  
 

   





                             (52) 

Now we differentiate Eq. (52) and write the following steps 

 

 

(1)t 1 1

0 0

11 (1)

0

(1)
1 1

0

(1)

0

d ( )d d (0) ( )
( ) d

d ( ) d 1 1

d ( 1)( )d ( )
(0) d

d 1 1 d

(0) ( )
( 1)(1 )( ) d

1

(0) ( )
d

( )

tn n
n

nn
t

t n
n

t

n n

v x x v v x
t t x x

t t x t n n

t xt v x
v x

t n n t

v v x
n t x x

t n

v v x
x

t t x

 



 

 
      

  
    

    


 


 







                          (53) 

This gives ( )i t as following relation 

0

(1)

0

d ( )
( ) d

d ( )

(0) ( )d
; ; 0 1

( ) (1 )

t

n n

t
n

n n nn n

v x
i t K x

t t x

Cv v x x
K K K n

t t x n




    
  




                   (54) 

The expression Eq. (54) obtained with the formula    ( ) ( ) * ( )q t c t v t , with ( ) n
nc t K t  is consistent 

with obtained expression in [21]. 

For  ( ) ( )BBv t V u t i.e. a constant step voltage applied at time 0t  to a time varying capacity function 

given as ( ) n
nc t K t we have for 0t  , (1) ( ) 0v t   with (0) BBv V  , the evaluation of ( )i t  demonstrated 

below 

 

(1)
(1)

0

0

(0) ( )d
( ) (0) ; ( ) 0, 0

( )

0 d

( )

t

n n BBn n

t
BB BB

n n nn n n

v v x x
i t K K v V v x x

t t x

xV V
K K K

t t x t

    


  





                    (55) 

We get ( ) n
n BBi t K V t   , for 0t   i.e. we recover the Curie-von Schweidler law in Eq. (55). For a 

constant capacitor case with capacity function as 1( ) ( )c t C t , we have the relation that we derived 

earlier Eq. (18), Eq. (19); i.e.    (1)
1 1( ) (0) ( ) ( )i t C v t C v t  . The Figure-1 gives summary of our 

discussion about a constant capacity and a time varying capacity function. 
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( )v t ( )v t

( )c t ( )c t

( )q t
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0( ) ( )B Bi t C V t
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( ) , 0
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n
n

n n

c t K t t

K C n





 

  

1
1( ) , 0B B nV K n

nq t t t
 

( ) ( )B Bv t V u t( ) ( )B Bv t V u t

0( ) , 0B Bq t C V t 

( ) , 0n
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Capacity, charge, current for constant capacitor  vis‐a‐vis
time varying capacitor to a step voltage excitation

Constant capacity Time varying capacity

 

Figure-1: Summary of discussion about constant capacity vis-à-vis time varying capacity 

 

8. Appearance of fractional derivative in Fractional Capacitor 
We have formed a time varying capacity function with a dielectric whose relaxation to a step voltage at 

0t   of constant magnitude follows a power law given by empirical expression of Curie-von Schweidler 
law. We have got current and charge expression for any arbitrary voltage function ( )v t  applied at 0t  in 
previous section Eq. (54) as following  

       

(1)

0

0

(0) ( )d
( )

( )

( ) ( ) * ( ) * ( )

( )
d

( )

t

n nn n

n
n

t

n n

v v x x
i t K K

t t x

q t c t v t K t v t

v x
K x

t x



 


 








                                         (56) 

The fractional derivative for 0 < < 1n  is defined as following two ways [6], [20] 

 0 0

(1)

0

1 d ( )
( ) d

(1 ) d ( )

1 (0) ( )
d ; 0

(1 ) ( )

tn
t n

t

n n

f x
D f t x

n t t x

f f x
x t

n t t x


  

 
      




                                     (57) 
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The first definition is of Riemann-Liouville type i.e.   ( )d1
0 (1 ) d ( )0

( ) d , 0 1n

t f xn
t n t t x

D f t x n  
    and in 

the second expression of Eq. (57) the second term i.e. 
(1) ( )1

(1 ) ( )0
dn

t f x
n t x

x   is Caputo fractional derivative i.e. 

  (1) ( )1
0 (1 ) ( )0

( ) d ; 0 1n

t f xC n
t n t x

D f t x n  
   . Therefore, we have     (0)

0 0 (1 )( ) ( ) fn C n n
t t nD f t D f t t   , i.e. 

relation between the two definitions of fractional derivative [6], [20]. 

Integrating the expression   ( )d1
0 (1 ) d ( )0

( ) dn

t f xn
t n t t x

D f t x  
  , once we write the following 

  

 

( )1
0 0 ( )0 0

(1)
( )

( )0 0

0

1 d
( ) d d

(1 ) d

1
d d

(1 )

1 ( )
d

(1 ) ( )

n

n

t t f xn
t t t x

t t f x

t x

t

n

D f t x x
n t

x x
n

f x
x

n t x





         


 


  

 

 



I

                                              (58) 

We have used in Eq. (58) the identity  1 (1) ( ) ( )t g t g tI  . Using the composition rule [6], [20] i.e. 

      1 1 1
0 0 0 0( ) ( ) ( )n n n

t t t tD f t f t D f t  I I  , we re-write Eq. (58) as following  

   

   

1 1
0 0 0

0 0 10

1 ( )
( ) ( ) d ; 0 1; 1

(1 ) ( )

1 ( )
( ) ( ) d

( ) ( )

tn n
t t n

t

t t

f x
D f t f t x n n

n t x

f x
D f t f t x

t x
 







 




     
  

 
 





I

I

          (59) 

Using the definitions of fractional derivative Eq. (57), we apply to current expression Eq. (54) also by 
manipulating with a constant i.e. (1 )n   we get following Eq. (60) expressions 

   

  

(1)

0

(1)

0

0

(0) ( )d
( ) 0 1

( )

1 (0) ( )d
(1 ) , (1 )

(1 ) ( )

( ) , 0 1

t

n nn n

t

n n nn n

n
n t

v v x x
i t K K n

t t x

v v x x
K n K n C

n t t x

C D v t n

   


  
             

  



             (60) 

Applying the expression for fractional integration Eq. (59) to the charge expression, we get following 
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       

   

  
  

0

0

(1 )
0

1
0

( ) ( ) * ( ) * ( ) ; 0

( )
d

( )

1 ( )
(1 ) d ; (1 )

(1 ) ( )

( )

( ) 0 0 1

n
n

t

n n

t

n n nn

n
n t

n
n t

q t c t v t K t v t t

v x
K x

t x

v x
K n x K n C

n t x

C v t

C D v t t n







  




 
         



   




I

           (61) 

We apply a constant step voltage ( ) BBv t V at 0t  to an uncharged fractional capacitor with capacity 

function (1 )( ) nC n
nc t t  , applying the above formula Eq. (61) we get 

  
    

     

1
0

1
0 0

1 1

1

( ) ( ) 0 0 1

(1)
C C

(1 )

(1)
, (1 )

1 (1 ) (1 ) (1 )

(1 )

n
n t

n
n t BB t

n nn
n BB BB n n

nn BB

q t C D v t t n

C D V D t

C
C V t V t K n C

n n n

K V
t

n

 





 

 



   


 

 


    
     




              (62)

                          

The same expression we showed earlier Eq. (36) and in Figure-1.  

We wrote also in the steps of Eq. (44) the expression     1
0( ) ( ) * ( )n

n tq t c t v t I . For fractional 

capacitor, we noted that ( ) ( )n nc t C t  this we have     1
0( ) ( ) * ( )n

n tq t C t v t  I . Expanding this 

convolution integral we get     1
0( ) ( ) ( ) d

t n
n xq t C x t v x x 


  I . Now using property of delta 

function i.e. ( ) ( )d ( )x a f x x = f a  , we get   1
0( ) ( )n

n tq t C v t I . With ( ) BBv t V  applied at

0t   we will get  
11

(1 ) (1 )
( ) n

n BBn n
q t C V t 

   same as in Eq. (62). 

9. Integrated Capacity defined from Capacity function of a capacitor and 
explanation vis-à-vis a pitcher holding water 

9.1: Defining integrated capacity from the time varying capacity function for ideal and 
fractional capacitor  

We take example of a pitcher, which holds water, of volume V. Let the pitcher be made of metal walls so 
that there are no pores. It is fully filled with water from empty state, hence once full it has no capacity 
left. This is like ideal capacitor, where the volume of water V remains fixed as constant after filling, with 
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no left over capacity. Thus, an ideal capacitor described by capacity function 1( ) ( )c t C t , after it is 

charged at 0t  with a constant voltage holds the constant charge 1( ) BBq t C V at times 0t  and at time, 

0t  this capacitor has zero capacity function, i.e. ( ) 0c t   that is like no more capacity left to fill, like 

pitcher. Thus, we have maximum charge holding capacity in this case as max 1lim ( ) BBt
q q t C V   . 

Therefore we can say the capacity function ( )c t at 0t  indicates the left over capacity to fill from 

maximum charge say max lim ( )
t

q q t .  

Now let the walls of the pitcher be made of clay with an infinitely porous material. As the pitcher gets the 
water volume V the pitcher walls too starts seepage of water into its pores. Thus, extra water keeps 
entering pores of the porous pitcher walls. This water filling process in the porous walls we call fractional 
capacity. Now due to infinite nature of these pores, we have a situation, that infinite amount of water 
keeps seeping into the walls. This is analogous to charging porous walls with water as charging a 
fractional capacitor where we derived max lim ( )

t
q q t    . Yet as we go on with charging process, 

the remaining capacity of holding the charge from maximum value (in this case infinity) keeps on 
decreasing but will never be going to zero, and thus we got the capacity function for a fractional capacitor 

as, ( ) n
nc t K t  where lim ( ) 0

t
c t   . The charge of a fractional capacitor as in the case of filling the 

porous walls gets the form that we derived as in Eq. (36), Eq. (62), 1
(1 )( ) n BBK V n

nq t t 
   for 0t  increasing 

with time. This phenomena leads to electrostatic break down of capacitors [12], [35], even if the constant 

voltage BBV is lower than dielectric breakdown limit. Thus a fractional capacitor with ( ) n
nc t K t  will 

break down when the electrostatic forces are high enough due to large accumulation of charge at large 
times, even if BBV is lower than dielectric breakdown limit. While the ideal geometric capacitor with 

1( ) ( )c t C t will have 1lim ( ) BBt
q t C V  and will never breakdown when BBV is less than dielectric 

breakdown limit. 

We define integral capacity as following from the capacity function ( )c t  

int 0
( ) ( )d ; 0

t
c t c x x t                                                                          (63) 

The above Eq. (63) in integration of the capacity function w.r.t. time from time of application of voltage 
excitation (in our case is 0t  ). Thus for a classical capacitor with capacity function defined as 

1( ) ( )c t C t  we get integrated capacity as 

  int 1 10
( ) ( ) d , 0

t
c t C x x C t                                                        (64) 

We observe int 1lim ( )
t

c t C  a constant value. This integrated capacity is what is discussed in classical 

theory that we derived from capacity function. 

Now for the case of fractional capacitor where the capacity function as ( ) n
nc t K t , the integrated 

capacity is  
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1
int 0

( ) d ; 0
(1 )

t n nn
n

K
c t K x x t t

n
   

                                             (65) 

This is same as Eq. (37) used in [12], [35]. We note in Eq. (65) intlim ( )
t

c t   .  

9.2: Difference in usage of integrated capacity and the time varying capacity function for 
obtaining loss-tangent value 

Thus, the term ‘integrated capacity’ int ( )c t  of capacitor is analogous to ‘total’ water holding capacity of 

pitcher. The total water holding capacity of pitcher with metal walls is constant is equivalent to classical 
capacitor case Eq. (64), while the total water holding capacity of walls of porous pitcher is infinity is 
equivalent to Eq. (65) the fractional capacitor case. We mention here the expressions for 

 int int i
( ) ( )

s
C c t





 L cannot be used to determine the loss tangent, while from capacity function with 

 
i

( ) ( )
s

C c t





 L is used to determine loss tangent value. 

10. Experimental results showing fractional capacitor 

The Curie-von Schweidler empirical law of power law relaxation, i.e. ( ) ni t t states that 0 1n   .This 
is validated via experiments on dielectric relaxations. A 100V step input applied to a completely 
discharged capacitor of 0.47 F having metalized paper dielectric, and the current decay is recorded with 

time. The graphs of log-log plot i.e.  log ( )i t  vs. log( )t show a straight line of average slope 0.86  

[12]-[17]. This experiment indicates a Curie-von Schweidler law, with ( ) ni t t  , having 0.86n  . The 

exponent n is in the range of 0.85 1n  in several dielectric relaxation experiments [12]-[17]. The 
experiments with super-capacitors [7], [8], show range as 0.5 1n  . A very low value of exponent n   is 
found in relaxation of Laponite studies averagely 0.09n   [18]. In this Laponite study [18] though the 
exponent nwas obtained on ‘self-discharge’ curves with various charging time history-showing memory 
effect, the expression obtained for self-discharge decay of voltage assumes fractional capacity-that in turn 
assumes Curie-von Schweidler law as current relaxation function.  In [23]-[26] electrical circuits analysis 
is done where the circuit components are of fractional order. 

11. Summary  

In the tabular form (Table-1), we present the various concepts (formulas) that we discussed with this new 
approach of charge store in classical capacitor and fractional capacitor. 

S. 
No. 

Parameter Classical Geometrical  
(Constant) Capacity ( 1n  ) 

Fractional Capacity  0 1n   

1 Relaxing 
current to  
constant 
step 
voltage

BBV  

1

1

( ) ( )

Farad
BBi t C V t

C




 (1 )

1

( ) , 0

(1 ) , Farad / sec

n BBC Vn n
n BB n

n
n n n

i t K V t t t

K n C C

 
 



  

   
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applied to 
an un-
charge 
capacitor 
at 0t   

2 Relaxing 
Current in 
frequency 
domain 

1

1

( )

( )
BB

BB

I s C V

I C V



 
 

    1

1 1

(1 ) (1 )
2 2

1

( ) (1 )

( ) cos i sin

(1 ) , Farad / sec

n BB
n

n n
n BB n BB

C V n n

n
n n n

I s K V n s C V s

I

K n C C

 


 

 

 



   

 

   

 

3 Capacity 
function in 
time 
domain 
and   
frequency 
domain 
with loss 
tangent 

1

1

1

( ) ( ) Farad

( ) Farad

( ) i(0)

Loss - tangent tan 0

c t C t

C s C

C C








 



 

 
 

   

 

    1

1

1

1 1
0 0

(1 )

1 1

(1 ) (1 )
2 2

( ) (1 ) ( ) ( ) Farad / sec

( ) (1 ) Farad / sec

( ) ( ) ( ) ; Farad

( ) Farad

( ) (1 ) Farad

( ) cos i sin

Loss - tangen

n

n
n

n
n n n

n
n n n

n n
t n t n

Cn n
n n

n n
n n

C n n

c t K n t C t

C s C K n

c t D c t c t

c t K t t

C s K n s C s

C  


 

 





 

 
 

 

 

   

   

 

 

   

 

I

 (1 )
2

1

t tan tan

(1 ) , Farad / sec

n

n
n n nK n C C

 





   

4 Charge 
function to 
a constant 
step 
voltage

BBV  

applied at 
0t   

1

( ) ( )* ( )

; 0BB

q t c t v t

C V t


 

 
1 1

1 (1 ) (1 )

1

( ) ( )* ( )

; 0

(1 ) , Farad / sec

n BB n BBK V C Vn n
n n n

n
n n

q t c t v t

t t t

K n C

 
   





  

  

 

5 Current to 
an 
arbitrary 
voltage 
function 

( )v t
applied to 
uncharged 
capacitor 
at 0t   

1 1

d ( )
( ) (0) ( )

d

v t
i t C v t C

t
 

(1)

(1)

( )d

( )0

(0) ( )d
(1 ) (1 ) ( )0

1

( ) (0)

(1 ) Farad / sec

n

n n
n

t v x xn
n n t x

tC v C v x xn
n n t x

n
n n

i t K v t K

t

K n C





    



 

 

  


  

6 Current 
voltage 
relation 

 1
1 0

1

( ) ( )

Farad

ti t C D v t

C




 

 0

1

( ) ( )

(1 ) Farad / sec

n
n t

n
n n

i t C D v t

K n C 



  
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7 Charge 
voltage 
relation for 
arbitrary 
voltage

( )v t  

function 
applied at 

0t   

   
 1

1

1

( ) ( ) * ( )

( ) * ( )

( ); 0

Farad

q t c t v t

C t v t

C v t t

C







 


 

   
   

   1 1
0 0

1

( ) ( ) * ( )

* ( )

( ) ( ) , 0

(1 ) Farad / sec

n
n

n n
n t n t

n
n n

q t c t v t

K t v t

C D v t C v t t

K n C



 







  

  

I
 

Table-1: Summary of the discussions regarding formulas for classical capacitor and fractional 
capacitor 

12. Conclusion 

In this paper we discussed that charge stored in a capacitor, as a function of time is not the usual 
multiplication operation of capacity and voltage; instead, the charge is convolution integral of capacity 
function and voltage stressed across the capacitor. However, the charge as a function of frequency is 
multiplication operation of frequency domain functions of capacity and voltage. We say that capacity is 
not the usual ratio of charge to voltage in time domain, but it is given as convolution expression. We 
discussed in this paper that for a fractional capacitor, the charge goes to infinity for large times, when the 
fractional capacitor is placed on a constant voltage; whereas, for a classical capacitor the charge at large 
time is a constant value. This observation in our derivation is with convolution formula defining the 
charge stored in capacitor and is consistence with other fractional capacitor models. This new concept is 
in line with the observation of charge stored as step function, and relaxation current in form of impulse 
function for ideal geometrical capacitor of constant capacity, when stressed by a constant voltage and for 
fractional capacitor with power-law decay current that is given by universal dielectric relaxation law 
called as Curie von-Schweidler law. This universal dielectric relaxation law gives rise to fractional 
derivative relating voltage stress and relaxation current that is formulation of ‘fractional capacitor’. A 
‘fractional capacitor’ we discussed is with this new concept of redefining the charge store definition i.e. 
via this convolution integral approach, and we have obtained the loss tangent value, from the described 
capacity function. We also showed for a fractional capacitor by the use of time varying capacity function 
we can convert the fractional capacity constant that is in fractional units of Farads per second to the power 
a fractional number, to units of Farads. Practically this new formulation has use while getting the charge 
stored in a capacitor as a function of time with varying voltage stress across it, and to convert the 

fractional capacity units (in terms of 1Farad / sec n   to usual units of capacity i.e. Farad ) especially for 
super-capacitor usage.  
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