
1 
 

On Estimating Variance Components of Two-Way 

Nested Random Model with Missing Information 

Amany Mousa Mohammed1; Ahmed Amin El-Sheikh1; Alaa Sayed Shehata2* 
1Professor of Applied Statistics and Econometrics, Institute of Statistical Studies and Research, Cairo 

University 
2Ph.D student of Applied Statistics and Econometrics, Institute of Statistical Studies and Research, Cairo 

University 

*Alaa_sayed_sh@yahoo.com 

 

ABSTRACT:  

In this paper, the estimators of variance components are derived of two-way nested random model when 

the problem of missing information exists using combination between Modified Minimum Variance 

Quadratic Unbiased Estimation (MMIVQUE) and Modified Minimum Variance Quadratic Unbiased 

Estimation (MMIVQUE (0)) methods that is called MMIV(MIV(0)) method. 
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INTRODUCTION 

The problem of estimation of variance components in random and mixed linear models has received 
much attention in the statistics literature. There are several approaches to this problem, such as the 
analysis of variance (ANOVA) estimator. It has been common practice estimate the variance components 
by ANOVA for balanced data. The ANOVA estimates are obtained by equating observed and expected 
mean squares in the analysis and solving the resulting equation for the estimators. These estimators are 
unbiased and can be expressed as quadratic functions of the observations. The main desirable feature of 
these estimators is their simple computation. Under normality and balanced data, they have minimum 
variance among all unbiased estimators. However they can yield negative estimates and even under 
normality assumptions their distributions are intractable. For unbalanced data, the choice of appropriate 
quadratic forms poses a difficult problem. The estimates obtained may be not unbiased. (Li, 1995) 
 
Rao (1970) suggested a method of estimation “MINQUE” that does not require the normality assumption 
for the estimation of variances. Rao (1971) proposed a method of estimation that called MIVQUE, 
Minimum Variance Quadratic Unbiased Estimation. Swallow and Monahan (1984) made a comparison 
between ANOVA, MLE, REML, and MINQUE methods through running one way model 
Subramani (2012) suggested a modification on the computational aspects of MIVQUE of variance 
components in mixed linear models. He introduced two modified MIVQUE (MIVQUE I and MIVQUE II). 
He estimated variance components in unbalanced one-way random model by Modified MIVQUE and 
compared between MIVQUE I, MIVQUE II, MIVQUE based on different optimality criteria.  
 
Most standard statistical methods have been designed to analyze data sets with no missing values. 
Consequently, the researcher has two options (a) to delete those cases which have missing data, or (b) 
to fill-in the missing values with estimated values. Thus, a data set is created containing no missing 
values (empty cells). Typically, the data set is presented in a rectangular table where rows indicate cases, 
observations, or subjects, and columns indicate variables measured on each unit. 
In regression analysis, independent variables may have missing values in practice. It is also likely that 
information (which group or subgroup an observation belongs to) in the analysis of variance is missing. 
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The information in variance component model has the same importance as the independent variables in 
regression analyses. Without the information, the variance components in the model cannot be separated 
from one another (i.e. it may make some variance components inestimable). (Song and Shulman, 1997) 
 
The meaning of incomplete (missing) information is different from the meaning of missing values. Missing 
values related to the losing of the observation while missing information related to the losing of location of 
the observation. This means that the value of the observation is known which could happen because it 
may be not recorded or lost for any other reasons. Missing information has three types completely 
missing information, partially missing information and not at all on any observation.  
1. Completely missing information 
    No observation in the main group has subgroup information. 
2. Partially missing information  
    Some of the observations in the main group have missing subgroup information. 
3. Not at all on any observation in the main group is missing. (Saleh and El-sheikh, 2002) 
 
                                                                               
Song and Shulman (1997) estimated the variance components for the data with missing nesting 
information in the two-stage unbalanced nested random model. They combined sum of squares for the 
data with missing nesting information with the sum of squares for the data with complete nesting 
information linearly. Prespecified weights are used for the combination. Different estimates are obtained 
by using different weights. Variances and covariances of these estimators are derived and used to 
compare these estimators. Saleh and El Sheikh (2003) modified the analysis of variance method and the 
combined symmetric sums with the analysis of variance method for estimation of the variance 
components of three-stage unbalanced nested random models for the data with complete missing nesting 
information. By a simulation study, they compared the bias and the mean squares errors of the estimates 
of variance components of the five methods of estimation namely: ANOVA method (Henderson’s method 
1), Modified ANOVA method, Combined analysis of means with ANOVA method, Combined symmetric 
sums method with ANOVA method, Combined symmetric sums method with modified ANOVA method. 
The paper is organized as follows: The second section concerns with the Modified MIVQUE (I) method 
introduced by Subramani (2012). The third section illustrates the proposed estimators for data with 
completely missing information in case of two-way nested random model. The fourth section illustrates 
simulation study to compare ANOVA and MMIV(MIV(0)) methods.  
 
MINIMUM VARIANCE QUADRATIC UNBIASED ESTIMATION (MIVQUE I) 

Assume the model: 
                                      Y ൌ Xβ ൅ Zଵδଵ ൅ Zଶδଶ ൅ ⋯൅ Zୢδୢ                                                  (1) 

where Y is an N ൈ 1 vector of observations, N is the sample size    
X is a N ൈ s matrix with known constants, 
β is a s ൈ 1- vector of fixed (unknown) parameters, 
Z୧ is a N ൈ c୧ matrix with known constants,	i ൌ 1,… , d. (Zୢ ൌ I, cୢ ൌ N) 
δ୧ is a c୧ ൈ 1-vector of random variables. (δୢ ൌ e) 
Assume that δ୧ is random variable with zero mean value and dispersion matrix σ୧

ଶIୡ౟. Further,	δ୧ and δ୨ are 
uncorrelated.  
Model (1) can be expressed in a compact form as: 

                                  Y ൌ Xβ ൅ Zδ																																																																																													ሺ2ሻ 
where Z ൌ ሺZଵ ∶ 	 Zଶ ∶ ⋯ ∶ Zୢሻ and δ ൌ ሺδଵ ∶ 	 δଶ ∶ ⋯ ∶ δୢሻ.  
EሺYሻ ൌ Xβ  and DሺYሻ ൌ V ൌ ∑ σ୧

ଶV୧
ୢ
୧ୀଵ  where V୧ ൌ Z୧Z୧

୲. 
DሺYሻ is called the dispersion matrix and the parameters σଵଶ, … , σୢ

ଶ are the unknown variance components 
whose values should be estimated. (Subramani, 2012) 
Subramani (2012) developed the estimation of variance components based on Rao (1971) approach. 
Instead of dealing with one linear combination, he decided to estimate a set of linear combinations of 
variance components ∑ ρ୧୨σ୧

ୢ
୨ୀଵ   through a set of quadratic functions Y୲A୧Y	 

ሾA୧	is	a	symmetric	matrix		and	ρ୧୨ ൌ TrሺA୧V୨ሻ].  
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He claimed that estimating variance components under normality obtained by solving the following 
equations: 

                        ൥
TrሺAଵVଵሻ

⋮
TrሺAୢVଵሻ

…
⋱
⋯

TrሺAଵVୢሻ
⋮

TrሺAୢVୢሻ
൩

ୢൈୢ

቎
σଵଶ

⋮
σୢ
ଶ
቏

ୢൈଵ

ൌ ൥
TrሺAଵWሻ

⋮
TrሺAୢWሻ

൩

ୢൈଵ

																																			ሺ3ሻ       

He introduced different formulas of A୧ to obtain MIVQUE(I). The formulas of A୧	ሺi ൌ 1,2, … , dሻ 	have the 
following form: 
A୧ ൌ Vିଵ൫I െ P୙౟൯ where P୙౟ ൌ U୧ሺU୧

୲VିଵU୧ሻିU୧
୲Vିଵ. U୧ has a variety of choices, 

i. Uଵ ൌ X, Uଶ ൌ ሾX Zଵሿ, Uଷ ൌ ሾX Zଶሿ, … , Uୢ ൌ ሾX Zୢିଵሿ 
ii. Uଵ ൌ X, Uଶ ൌ ሾX Zଵሿ, Uଷ ൌ ሾX Zଵ Zଶሿ, …,  

 Uୢ ൌ ሾX Zଵ Zଶ … Zୢିଵሿ 
iii. Uଵ ൌ X, Uଶ ൌ ሾX X Zଵሿ, Uଷ ൌ ሾX X Zଵ Zଶሿ, …, 

 Uୢ ൌ ሾX X Zଵ … Zୢିଵሿ	 

(4)

where	ሺU୧
୲VିଵU୧ሻି is the generalized inverse of U୧

୲VିଵU୧ 
For the case (ii), he derived the estimators, their variances and covariance matrix in the unbalanced one-
way random model. The resulting method are referred to as MIVQUE I. 
The proposed estimators of variance components are derived by replacing A୧ in eq. (3) by A୧ for case (iii) 
in eq. (4).  
So the steps of MIVQUE method: 1- Selecting a symmetric matrix A୧, 2- Solving the equation (3), 3-obtain 
the estimators of MIVQUE method. 
 

ESTIMATION OF VARIANCE COMPONENTS FOR DATA WITH COMPLETELY MISSING 

INFORMATION  

In this section, the variance components will be estimated for data with completely missing information by 
combination between modified MIVQUE I and modified MIVQUE I(0).  
Consider the two- way nested random model 

Y୧୨୩ ൌ η ൅ γ୧ ൅ β୨ሺ୧ሻ ൅ e୩ሺ୧୨ሻ                                                             (5) 
i ൌ 1,2, … , S, j ൌ 1,2, … , D୧, k ൌ 1,2, … , n୧୨ 

where Y୧୨୩ is the k୲୦ observation at the j୲୦level of factor β within the i୲୦ level of factor γ. 
	η is the general mean. 
γ୧ , β୧୨and e୧୨୩ are mutually independent random variables with zero means and variances σஓଶ , σஒ

ଶand σୣଶ 
respectively. The variance components to be estimated are σஓଶ , σஒ

ଶ	and σୣଶ.  
So the model (5) can be written in matrix form as: 

                                 Y	 ൌ 	Xη	 ൅	Tଵγ	 ൅ Tଶβ ൅	Tଷe                                                ሺ6ሻ 
where Y is an N	 ൈ 	1 vector of observations X ൌ 	1୒∗ଵ, N ൌ ∑ ∑ n୧୨

ୈ౟
୨ୀଵ

ୗ
୧ୀଵ  

 
 

  1∑ ௡భೕ
ವభ
ೕసభ ൈଵ 0 0 0 0  

 
 
 
 
 
 
 
 
 

 0 1∑ ௡మೕ
ವమ
ೕసభ ൈଵ

 0 0 0 

ଵܶ ൌ 0 0 ⋱ 0 0 

 0 0 0 ⋱ 0 

 0 0 0 0 1
∑ ௡ೄೕ
ವೄ
ೕసభ ൈଵ
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  1݊11ൈଵ 0 0 0 0  

 0 ⋱ 0 0 0 

ଶܶ ൌ 0 0 1௡భವభൈଵ 0 0 

 0 0 0 ⋱ 0 

 0 0 0 0 1௡ೄವೄൈଵ

 
, Tଷ ൌ I୒, 

 
with EሺY	ሻ ൌ 	Xη and DሺY	ሻ ൌ V ൌ 	Vଵσஓଶ ൅ Vଶσஒ

ଶ ൅ Vଷσୣଶ 
, V୧ ൌ T୧T୧

୲. 

Vଵ ൌ TଵTଵ
୲ ൌ ൦

Jଵ 0 … 0
0 Jଶ … 0
⋮
0

⋮
0

… ⋮
… Jୗ

൪ ൌ෍J୧

ାୗ

୧ୀଵ

																																											 

																																																																					Vଶ ൌ TଶTଶ
୲ ൌ

ۏ
ێ
ێ
ۍ
K୬భభ 0 … 0
0 K୬భమ … 0
⋮
0

⋮
0

⋱ ⋮
… K୬౏ీ౩ے

ۑ
ۑ
ې
ൌ K 

where 	J୧	denote	 ∑ n୧୨
ୈ౟
୨ୀଵ ൈ ∑ n୧୨

ୈ౟
୨ୀଵ 	matrix	consisting	of	1′s. 

          	K୬౟ౠ	denote	n୧୨ ൈ n୧୨	matrix	consisting	of	1′s. 
 
Assume that the total number of the main group will be: S ൌ Sᇱ ൅ S′′.  
Sᇱ be the numbers of the main groups for the data with complete nesting information and Sᇱᇱ be the 
numbers of the main groups for the data with completely missing subgroup nesting information. Assume 
that all D୧

ᇱs	and	n୧୨
ᇱ s	in Model (4.1) are known. 

Variables and coefficients without prime-notation or with single or double prime notations will be defined 
as follows: 
If there is a notation without prime then we do not specify the range for i if the variable or coefficient is 
summed over i. 
The same notation with a single prime (double primes) is then defined as the same quantity summed over 
i from, 1 to S′ (from, S′ ൅ 1,… , S, respectively). 
Steps of estimation: 

1. Estimation of variance components for S′ groups. (data with complete information) 
2. Estimation of variance components for S′′ groups. (data with missing information) 
3. Pre-specified weights will be used to combine data with complete information and missing 

information. 
 
According to steps of MMIVQUE method, the estimators of variance components are derived when the 
matrix	A୧ for case (iii) in eq.(4).  
For model (6), the matrix 	A୧ is defined as: 

	A୧ ൌ Vିଵ൫I െ P୙౟൯, i ൌ 1,2,3 
where P୙౟ ൌ U୧ሺU୧VିଵU୧ሻିU୧

୲Vିଵ, 
Uଵ ൌ X, Uଶ ൌ ሾX X Tଵሿ, U෩ଷ୙ ൌ ሾX X Tଵ Tଶሿ 
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Vିଵ ൌ
1
σୣଶ
I െ෍B୧

ାୗ

୧ୀଵ

െ෍
σஓଶ

1 ൅ σஓଶ ∑
n୧୨

൫σୣଶ ൅ n୧୨σஒ
ଶ൯

ୈ౟
୨ୀଵ

ାୗ

୧ୀଵ

C୧																																														 

where 

B୧ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ σஒ

ଶ

σୣଶ൫σୣଶ ൅ n୧ଵσஒ
ଶ൯
K୬౟భൈ୬౟భ 0 … 0

0 0 … 0

⋮
0

⋮
0

… ⋮

…
σஒ
ଶ

σୣଶ൫σୣଶ ൅ n୧ୈ౟σஒ
ଶ൯
K୬౟ీ౟ൈ୬౟ీ౟ے

ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

and 

C୧ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ

1

൫σୣଶ ൅ n୧ଵσஒ
ଶ൯

⋮
1

൫σୣଶ ൅ n୧ୈ౟σஒ
ଶ൯ے
ۑ
ۑ
ۑ
ۑ
ې

ቈ
1

൫σୣଶ ൅ n୧ଵσஒ
ଶ൯

…
1

൫σୣଶ ൅ n୧ୈ౟σஒ
ଶ൯
቉ 

 
By using MMIVQUE method, the variance components σஓଶ , σஒ

ଶand σୣଶ	will be replaced with the prior values 
αଵ , αଶ	and α଴	respectively. So the dispersion matrix will take the following form: 

V∗ ൌ αଵVଵ ൅ αଶVଶ ൅ α଴Vଷ	 
So the inverse Vିଵ will be replaced with: 

V∗ሺିଵሻ ൌ
1
α଴
I െ෍B୧

ାୗ

୧ୀଵ

െ෍
αଵ

1 ൅ αଵ ∑
n୧୨

൫α଴ ൅ n୧୨αଶ൯
ୈ౟
୨ୀଵ

ାୗ

୧ୀଵ

C୧																																		 

Step (1): data with missing information by MMIVQUE I: 
For model (6), the matrix A୧

ᇱ, i ൌ 1,2,3	for data with complete information is: 

Aଵᇱ ൌ Vሺୡሻ
∗ሺିଵሻ െ h′ ቂVሺୡሻ

∗ሺିଵሻX′Xᇱ୲Vሺୡሻ
∗ሺିଵሻቃ																																							 

Aଶ
ᇱ ൌ Vሺୡሻ

∗ሺିଵሻ െ

ۏ
ێ
ێ
ێ
ۍ
	෍

1

h୧ ൬1 ൅ αଵ ∑
n୧୨

α଴ ൅ n୧୨αଶ
ୈ౟
୨ୀଵ ൰

ଶ

ାୗᇱ

୧ୀଵ

C୧

ے
ۑ
ۑ
ۑ
ې
									 

Aଷ୙
ᇱ ൌ Vሺୡሻ

∗ሺିଵሻ െ ൦෍F୧

ାୗᇱ

୧ୀଵ

െ	෍
αଵ

൬1 ൅ αଵ ∑
n୧୨

α଴ ൅ n୧୨αଶ
ୈ౟
୨ୀଵ ൰

ାୗᇱ

୧ୀଵ

C୧൪	 

where  

F୧ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ

1
n୧ଵሺα଴ ൅ n୧ଵαଶሻ

K୬౟భൈ୬౟భ 0 … 0

0 0 … 0

⋮
0

⋮
0

… ⋮

…
1

n୧ୈ౟൫α଴ ൅ n୧ୈ౟αଶ൯
K୬౟ీ౟ൈ୬౟ీ౟ے

ۑ
ۑ
ۑ
ۑ
ې

 

h′ ൌ
1

∑ h୧ୗᇱ
୧ୀଵ

 

The resulting equations are: 

቎
TrሺAଵᇱ Vଵᇱሻ
TrሺAଶ

ᇱ Vଵᇱሻ
TrሺAଷ

ᇱ Vଵᇱሻ

TrሺAଵᇱ Vଶ
ᇱሻ TrሺAଵᇱ Vଷ

ᇱሻ
TrሺAଶ

ᇱ Vଶ
ᇱሻ TrሺAଶ

ᇱ Vଷ
ᇱሻ

TrሺAଷ
ᇱ Vଶ

ᇱሻ TrሺAଷ
ᇱ Vଷ

ᇱሻ
቏ ቎

σஓଶ

σஒ
ଶ

σୣଶ
቏ ൌ ቎

Qଵᇱ

Qଶ
ᇱ

Qଷ
ᇱ
቏																																																	 

where Q୧
ᇱ ൌ TrሺA୧

ᇱWሻ,W′ ൌ Y′Yᇱ୲, i ൌ 1,2,3 
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Qଵᇱ ൌ

ۏ
ێ
ێ
ۍ 1
α଴
෍෍෍Y୧୨୩

ଶ

୬

୩ୀଵ

ୈ౟

୨ୀଵ

ୗᇱ

୧ୀଵ

െ෍෍
αଶ
α଴a୧୨

Y୧୨.
ଶ

ୈ౟

୨ୀଵ

ୗ

୧ୀଵ

െ෍෍
αଵ
a୧୨
ଶb୧

Y୧୨.
ଶ

ୈ౟

୨ୀଵ

ୗᇱ

୧ୀଵ

െ෍෍෍
αଵ

a୧୨b୧a୧୪
Y୧୨.Y୧୪.

ୈ౟

୪ୀଵ
୨ஷ୪

ୈ౟

୨ୀଵ

ୗᇱ

୧ୀଵ
ے
ۑ
ۑ
ې

െ hᇱ

ۏ
ێ
ێ
ۍ 1
α଴
෍෍෍Y୧୨୩

୬

୩ୀଵ

ୈ౟

୨ୀଵ

ୗᇲ

୧ୀଵ

െ෍෍
n୧୨αଶ
α଴a୧୨

Y୧୨.

ୈ౟

୨ୀଵ

ୗᇲ

୧ୀଵ

െ෍෍෍
αଵn୧୨
b୧

ቆ
1
a୧୨
ଶ Y୧୨. ൅

1
a୧୨a୧୪

Y୧୪.ቇ

ୈ౟

୪ୀଵ
୨ஷ୪

ୈ౟

୨ୀଵ

ୗᇲ

୧ୀଵ
ے
ۑ
ۑ
ې
ଶ

		 

Qଶ
ᇱ ൌ

ۏ
ێ
ێ
ۍ 1
α଴
෍෍෍Y୧୨୩

ଶ

୬

୩ୀଵ

ୈ౟

୨ୀଵ

ୗᇱ

୧ୀଵ

െ෍෍
αଶ
α଴a୧୨

Y୧୨.
ଶ

ୈ౟

୨ୀଵ

ୗᇱ

୧ୀଵ

െ෍෍
αଵ
a୧୨
ଶb୧

Y୧୨.
ଶ

ୈ౟

୨ୀଵ

ୗᇱ

୧ୀଵ

െ෍෍෍
αଵ

a୧୨b୧a୧୪
Y୧୨.Y୧୪.

ୈ౟

୪ୀଵ
୨ஷ୪

ୈ౟

୨ୀଵ

ୗᇱ

୧ୀଵ
ے
ۑ
ۑ
ې

െ

ۏ
ێ
ێ
ۍ
෍෍

1
h୧a୧୨

ଶb୧
ଶ Y୧୨.

ଶ

ୈ౟

୨ୀଵ

ୗᇱ

୧ୀଵ

൅෍෍෍
1

h୧a୧୨b୧
ଶa୧୪

Y୧୨.Y୧୪.

ୈ౟

୪ୀଵ
୨ஷ୪

ୈ౟

୨ୀଵ

ୗᇱ

୧ୀଵ
ے
ۑ
ۑ
ې
	 

				Qଷ
ᇱ ൌ

1
α଴
቎෍෍෍Y୧୨୩

ଶ

୬

୩ୀଵ

ୈ౟

୨ୀଵ

ୗᇱ

୧ୀଵ

െ෍෍
1
n୧୨
Y୧୨.
ଶ

ୈ౟

୨ୀଵ

ୗᇱ

୧ୀଵ

቏	 

and 

TrሺAଵᇱ Vଵᇱሻ ൌ෍෍
n୧୨
a୧୨b୧

ୈ౟

୨ୀଵ

ୗᇱ

୧ୀଵ

െ h′෍ሺh୧ሻଶ
ୗᇱ

୧ୀଵ

	 

Tr൫Aଵᇱ V෩ଶ
ᇱ൯ ൌ ቎෍෍

n୧୨ൣa୧୨b୧ െ n୧୨αଵ൧

a୧୨
ଶb୧

ୈ౟

୨ୀଵ

ୗᇱ

୧ୀଵ

቏ െ h′෍෍෍n୧୨

ୈ౟

୪ୀଵ
୨ஷ୪

ୈ౟

୧ୀଵ

ቈ
n୧୨൫b୧a୧୨ െ n୧୨αଵ൯

a୧୨
ଷb୧

ଶ െ
n୧୪
ଶαଵ

a୧୨b୧
ଶa୧୪

ଶ቉

ୗᇱ

୧ୀଵ

 

TrሺAଵᇱ Vଷ
ᇱሻ ൌ෍෍n୧୨

ୈ౟

୨ୀଵ

ୗᇱ

୧ୀଵ

ቈ
1
α଴
െ

αଶ
α଴a୧୨

െ
αଵ
b୧a୧୨

ଶ቉ െ h′෍෍෍n୧୨

ୈ౟

୪ୀଵ
୨ஷ୪

ୈ౟

୧ୀଵ

ቈ
൫b୧a୧୨ െ n୧୨αଵ൯

a୧୨
ଷb୧

ଶ െ
n୧୪αଵ
a୧୨b୧

ଶa୧୪
ଶ቉

ୗᇱ

୧ୀଵ

 

TrሺAଶ
ᇱ Vଶ

ᇱሻ ൌ ቎෍෍
n୧୨ൣa୧୨b୧ െ n୧୨αଵ൧

a୧୨
ଶb୧

ୈ౟

୨ୀଵ

ୗᇱ

୧ୀଵ

቏ െ෍෍
n୧୨
ଶ

a୧୨
ଶb୧

ଶh୧

ୈ౟

୨ୀଵ

ୗᇱ

୧ୀଵ

							 

TrሺAଶ
ᇱ Vଷ

ᇱሻ ൌ෍෍n୧୨

ୈ౟

୨ୀଵ

ୗᇱ

୧ୀଵ

ቈ
1
α଴
െ

αଶ
α଴a୧୨

െ
αଵ
b୧a୧୨

ଶ቉ െ෍෍
n୧୨

a୧୨
ଶb୧

ଶh୧

ୈ౟

୨ୀଵ

ୗᇲ

୧ୀଵ

					 

TrሺAଷ
ᇱ Vଷ

ᇱሻ ൌ෍෍n୧୨

ୈ౟

୨ୀଵ

ୗᇲ

୧ୀଵ

ቈ
1
α଴
െ

αଶ
α଴a୧୨

െ
αଵ
b୧a୧୨

ଶ቉ െ ቎෍෍
ൣa୧୨b୧ െ n୧୨αଵ൧

a୧୨
ଶb୧

ୈ౟

୨ୀଵ

ୗᇲ

୧ୀଵ

቏ 

Since  
TrሺAଵᇱ Vଵᇱሻσஓଶ ൅ TrሺAଵᇱ Vଶ

ᇱሻσஒ
ଶ ൅ TrሺAଵᇱ Vଷ

ᇱሻσୣଶ ൌ Qଵᇱ                                        (7) 
TrሺAଶ

ᇱ Vଶ
ᇱሻσஒ

ଶ ൅ TrሺAଶ
ᇱ Vଷ

ᇱሻσୣଶ ൌ Qଶ
ᇱ                                        (8) 

TrሺAଷ
ᇱ Vଷ

ᇱሻσୣଶ ൌ Qଷ
ᇱ                                      (9) 

By solving eq.(7), (8) and (9), the estimators of variance components for data with complete information 
can be given as follows: 

σ෥ୣଶ ൌ
Qଷ
ᇱ

TrሺAଷ
ᇱ Vଷ

ᇱሻ
																																																																		 

σ෥ஒ
ଶ ൌ

Qଶ
ᇱ െ TrሺAଶ

ᇱ Vଷ
ᇱሻσ෥ୣଶ

TrሺAଶ
ᇱ Vଶ

ᇱሻ
																																																				 

σ෥ஓଶ ൌ
Qଵᇱ െ TrሺAଵᇱ Vଷ

ᇱሻσ෥ୣଶ െ TrሺAଵᇱ Vଶ
ᇱሻσ෥ஒ

ଶ

TrሺAଵ
ᇱ Vଵ

ᇱሻ
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Step (2): data with missing information by MMIVQUE I(0): 
The estimators of variance components are derived by MMIVQUE I(0) for data with completely missing 
information i.e it is assumed that the initial values αଵ ൌ αଶ ൌ 0 and α଴ ൌ 1. 
For model (6), the matrix A୧୙

ᇱᇱ , i ൌ 1,2,3	for data with completely missing information is: 

Aଵᇱᇱ ൌ Vሺ୫ሻ
∗ሺିଵሻ െ h′′ ቂVሺ୫ሻ

∗ሺିଵሻX′′Xᇱᇱ୲Vሺ୫ሻ
∗ሺିଵሻቃ																																												 

Aଶ
ᇱᇱ ൌ Vሺ୫ሻ

∗ሺିଵሻ െ

ۏ
ێ
ێ
ێ
ۍ
	 ෍

1

h୧ ൬1 ൅ αଵ ∑
n୧୨

α଴ ൅ n୧୨αଶ
ୈ౟
୨ୀଵ ൰

ଶ

ାୗ

୧ୀୗᇲାଵ

C୧

ے
ۑ
ۑ
ۑ
ې
															 

Aଷ
ᇱᇱ ൌ Vሺ୫ሻ

∗ሺିଵሻ െ ൦ ෍ F୧

ାୗ

୧ୀୗᇲାଵ

െ ෍
αଵ

൬1 ൅ αଵ ∑
n୧୨

α଴ ൅ n୧୨αଶ
ୈ౟
୨ୀଵ ൰

ାୗ

୧ୀୗᇲାଵ

C୧൪	 

where  

Vሺ୫ሻ
∗ሺିଵሻ ൌ

1
α଴
I୒ᇲᇲ െ ෍ B୧

ାୗ

୧ୀୗᇲାଵ

െ ෍
αଵ

1 ൅ αଵ ∑
n୧୨

൫α଴ ൅ n୧୨αଶ൯
ୈ౟
୨ୀଵ

ାୗ

୧ୀୗᇲାଵ

C୧																								 

hᇱᇱ ൌ
1

∑ ∑ n୧୨
ୈ౟
୨ୀଵ

ୗ
୧ୀୗᇲାଵ

 

The resulting equations are: 

቎
TrሺAଵᇱᇱVଵᇱᇱሻ
TrሺAଶ

ᇱᇱVଵᇱᇱሻ
TrሺAଷ

ᇱᇱVଵᇱᇱሻ

TrሺAଵᇱᇱVଶ
ᇱᇱሻ TrሺAଵᇱᇱVଷ

ᇱᇱሻ
TrሺAଶ

ᇱᇱVଶ
ᇱᇱሻ TrሺAଶ

ᇱᇱVଷ
ᇱᇱሻ

TrሺAଷ
ᇱᇱVଶ

ᇱᇱሻ TrሺAଷ
ᇱᇱVଷ

ᇱᇱሻ
቏ ቎

σஓଶ

σஒ
ଶ

σୣଶ
቏ ൌ ቎

Qଵᇱᇱ

Qଶ
ᇱᇱ

Qଷ
ᇱᇱ
቏																			 

where 

Qଵᇱᇱ ൌ ቎ ෍ ෍෍Y୧୨୩
ଶ

୬౟ౠ

୩ୀଵ

ୈ౟

୨ୀଵ

ୗ

୧ୀୗᇲାଵ

቏ െ hᇱᇱ ቎ ෍ ෍෍Y୧୨୩

୬౟ౠ

୩ୀଵ

ୈ౟

୨ୀଵ

ୗ

୧ୀୗᇲାଵ

቏

ଶ

				 

Qଶ
ᇱᇱ ൌ ቎ ෍ ෍෍Y୧୨୩

ଶ

୬౟ౠ

୩ୀଵ

ୈ౟

୨ୀଵ

ୗ

୧ୀୗᇲାଵ

቏ െ ൥ ෍
1
n୧.
Y୧..
ଶ

ୗ

୧ୀୗᇲାଵ

൩																						 

Qଷ
ᇱᇱ ൌ ቎෍෍෍Y୧୨୩

ଶ

୬౟ౠ

୩ୀଵ

ୈ౟

୨ୀଵ

ୗᇱᇱ

୧ୀଵ

െ෍෍
1
n୧୨
Y୧୨.
ଶ

ୈ

୨ୀଵ

ୗᇱᇱ

୧ୀଵ

቏																										 

and 

TrሺAଵᇱᇱVଵᇱᇱሻ ൌ ෍ ෍n୧୨

ୈ౟

୨ୀଵ

ୗ

୧ୀୗᇲାଵ

െ hᇱᇱ ෍ ቌ෍n୧୨

ୈ౟

୨ୀଵ

ቍ

ଶ
ୗ

୧ୀୗᇲାଵ

	 

TrሺAଵᇱᇱVଶ
ᇱᇱሻ ൌ ቎ ෍ ෍n୧୨

ୈ౟

୨ୀଵ

ୗ

୧ୀୗᇲାଵ

቏ െ hᇱᇱ ෍ ෍n୧୨
ଶ

ୈ౟

୧ୀଵ

ୗ

୧ୀୗᇲାଵ

				 

TrሺAଵᇱᇱVଷ
ᇱᇱሻ ൌ ෍ ෍n୧୨

ୈ౟

୨ୀଵ

ୗ

୧ୀୗᇲାଵ

െ hᇱᇱ ෍ ෍n୧୨

ୈ౟

୧ୀଵ

ୗ

୧ୀୗᇲାଵ

								 

TrሺAଶ
ᇱᇱVଶ

ᇱᇱሻ ൌ ቎ ෍ ෍n୧୨

ୈ౟

୨ୀଵ

ୗ

୧ୀୗᇲାଵ

቏ െ ෍ ෍
n୧୨
ଶ

∑ n୧୨
ୈ౟
୨ୀଵ

ୈ౟

୨ୀଵ

ୗ

୧ୀୗᇲାଵ

 

TrሺAଶ
ᇱᇱVଷ

ᇱᇱሻ ൌ ෍ ෍n୧୨

ୈ౟

୨ୀଵ

ୗ

୧ୀୗᇲାଵ

െ ෍ ෍
n୧୨

∑ n୧୨
ୈ౟
୨ୀଵ

ୈ౟

୨ୀଵ

ୗ

୧ୀୗᇲାଵ
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TrሺAଷ
ᇱᇱVଷ

ᇱᇱሻ ൌ ෍ ෍n୧୨

ୈ౟

୨ୀଵ

ୗ

୧ୀୗᇲାଵ

െ ൥ ෍ D୧

ୗ

୧ୀୗᇲାଵ

൩																							 

Since  
TrሺAଵᇱᇱVଵᇱᇱሻσஓଶ ൅ TrሺAଵᇱᇱVଶ

ᇱᇱሻσஒ
ଶ ൅ TrሺAଵᇱᇱVଷ

ᇱᇱሻσୣଶ ൌ Qଵᇱᇱ                                            (10) 
TrሺAଶ

ᇱᇱVଶ
ᇱᇱሻσஒ

ଶ ൅ TrሺAଶ
ᇱᇱVଷ

ᇱᇱሻσୣଶ ൌ Qଶ
ᇱᇱ                                            (11) 

TrሺAଷ
ᇱᇱVଷ

ᇱᇱሻσୣଶ ൌ Qଷ
ᇱᇱ                                            (12) 

 
Step (3): Combination the data with complete information and completely missing information: 
Pre-specified weights will be used to combine (Qଵᇱ &Qଵᇱᇱ ) and (Qଶ

ᇱ &Qଶ
ᇱᇱ) as: 

TrሺAଷ
ᇱ Vଷ

ᇱሻσෝୣଶ ൌ Qଷ
ᇱ 																																																	ሺ13ሻ 

wଶQଶ
ᇱ ൅ ሺ1 െ wଶሻQଶ

ᇱᇱ ൌ wଶൣTrሺAଶ
ᇱ Vଶ

ᇱሻσෝஒ
ଶ ൅ TrሺAଶ

ᇱ Vଷ
ᇱሻσෝୣଶ൧ ൅ ሺ1 െ wଶሻൣTrሺAଶ

ᇱᇱVଶ
ᇱᇱሻσෝஒ

ଶ ൅ TrሺAଶ
ᇱᇱVଷ

ᇱᇱሻσෝୣଶ൧ሺ14ሻ 
wଵQଵᇱ ൅ ሺ1 െ wଵሻQଵᇱᇱ

ൌ wଵൣTrሺAଵᇱ Vଵᇱሻσෝஓଶ ൅ TrሺAଵᇱ Vଶ
ᇱሻσෝஒ

ଶ ൅ TrሺAଵᇱ Vଷ
ᇱሻσෝୣଶ൧

൅ ሺ1 െ wଵሻൣTrሺAଵᇱᇱVଵᇱᇱሻσෝஓଶ ൅ TrሺAଵᇱᇱVଶ
ᇱᇱሻσෝஒ

ଶ ൅ TrሺAଵᇱᇱVଷ
ᇱᇱሻσෝୣଶ൧																																																														ሺ15ሻ 

By solving eq.(13), (14) and (15), the estimators of variance components are: 

σෝୣଶ ൌ
Qଷ
ᇱ

TrሺAଷ
ᇱ Vଷ

ᇱሻ
																																																																																																																							 

σෝஒ
ଶ ൌ

wଶQଶ
ᇱ ൅ ሺ1 െ wଶሻQଶ

ᇱᇱ െ ሾwଶTrሺAଶ
ᇱ Vଷ

ᇱሻ ൅ ሺ1 െ wଶሻTrሺAଶ
ᇱᇱVଷ

ᇱᇱሻሿσෝୣଶ

ሾwଶTrሺAଶ
ᇱ Vଶ

ᇱሻ ൅ ሺ1 െ wଶሻTrሺAଶ
ᇱᇱVଶ

ᇱᇱሻሿ
																				 

σሶ ஓଶ ൌ
wଵQଵᇱ ൅ ሺ1 െ wଵሻQଵᇱᇱ െ Pଶσෝୣଶ െ Pଵσෝஒ

ଶ

ሾwଵTrሺAଵ
ᇱ Vଵ

ᇱሻ ൅ ሺ1 െ wଵሻTrሺAଵ
ᇱᇱVଵ

ᇱᇱሻሿ
		 

where 
Pଵ ൌ ሾwଵTrሺAଵᇱ Vଶ

ᇱሻ ൅ ሺ1 െ wଵሻTrሺAଵᇱᇱVଶ
ᇱᇱሻሿ, 

Pଶ ൌ 	 ሾwଵTrሺAଵᇱ Vଷ
ᇱሻ ൅ ሺ1 െ wଵሻTrሺAଵᇱᇱVଷ

ᇱᇱሻሿ 
 
 
SIMULATION STUDY OF TWO –WAY NESTED RANDOM MODEL 

In this section, the variance components are estimated for unbalanced two-way nested random 
model under normality assumption in case of data with completely missing information through a 
simulation study by MMIV(MIV(0)) and ANOVA methods and to compare the estimates using mean 
squared error, bias, and probability of getting negative estimates.  

A numerical comparison for two-way nested random model requires a n-pattern, true values for 
the variance components σஓଶ, σஒ

ଶ and σୣଶ, a priori values αଵ, αଶ and α଴ for the variance components σஓଶ, σஒ
ଶ 

and σୣଶ respectively, percentage of completely missing information and the weights.  
As stated by Song and Shulman (1997), the weights can be simply set to a constant or derived by some 
optimal procedures. They presented four procedures of weights: 

1. Set wଵ ൌ wଶ ൌ 1. This gives the estimates using the data with complete nesting information only. 
2. Set wଵ ൌ wଶ ൌ

ଵ

ଶ
. This method gives equal weight to the sums of squares associated with both the 

complete and the missing nesting information. 
3. Select wଵand wଶ, that minimize the variances of the combined sums of squares. 
4. Select wଵand wଶ, that minimize the variances of the derived estimates: Vሺσෝஒ

ଶሻ and Vሺσෝ஑ଶሻ, 
respectively. 
 

In this section, the procedures (2, 3, and 4) are considered through a simulation study. 
By simulation study, 5000 independent random sample are generated. It is assumed that the sample size 
is 60 observations, number of main groups S ൌ 8, number of subgroups and sample size of each 
subgroup as given in table (1), the true values σୣଶ, σஒ

ଶ, σஓଶ as given in table (2). Percentage of missing 
information levels 25%, 50%, 75% and different weights ሺwଵ,wଶሻ are considered.  
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Table (1): The Number of Subgroups for Unbalanced Two-Way Nested Random Model 
 

Dଵ Dଶ Dଷ Dସ Dହ D଺ D଻ D଼ 

nଵଵ ൌ 3 nଶଵ ൌ 3 nଷଵ ൌ 3 nସଵ ൌ 5 nହଵ ൌ 3 n଺ଵ ൌ 2 n଻ଵ ൌ 3 n଼ଵ ൌ 3 

nଵଶ ൌ 5 nଶଶ ൌ 2 nଷଶ ൌ 4 nସଶ ൌ 4 nହଶ ൌ 2 n଺ଶ ൌ 4 n଻ଶ ൌ 2 n଼ଶ ൌ 2 

 nଶଷ ൌ 2  nସଷ ൌ 2  n଺ଷ ൌ 2  n଼ଷ ൌ 4 

 
 
 

Table (2): Variance Components Configurations Used in The Simulation of Two-Way Nested Random 
Model 

σஓଶ σஒ
ଶ σୣଶ 

0.1 0.1 1 
1 0.1 1 
2 0.1 1 
0.1 1 1 
1 1 1 
2 1 1 
0.1 2 1 
1 2 1 
2 2 1 
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Table (3): Comparison of ANOVA and MMIV(MIV(0)) estimates for unbalanced two-way nested random 

model-25% data with completely missing information based on compound MSE, compound absolute Bias 
and prob. of getting Negative estimates 

σஒ
ଶ σஓଶ wଵ wଶ 

ANOVA MMIV(MIV(0)) 

Compound 
MSE 

Compound 
absolute 

Bias 

Prob. 
Negative 
estimates 

Compound 
MSE 

Compound 
absolute 

Bias 

Prob. 
Negative 
estimates 

0.1 1 0.5 0.5 1.03 1.17 0.86 2.15 1.4 0.53 

  0 0.48 0.96 1.11 0.8 1.23 1.23 0.67 

  0 0.89 0.9 1.05 0.82 1.3 1.14 0.72 

 2 0.5 0.5 4 2.24 0.85 2.97 1.76 0.54 

  0 0.48 3.6 2.1 0.8 4.09 2.3 0.69 

  0 0.89 3.55 2.04 0.82 3.7 1.98 0.72 

1 0.1 0.5 0.5 0.74 0.91 0.86 4.5 2.35 0.52 

  0.02 0.27 0.82 0.97 0.81 0.91 0.98 0.84 

  0.1 0.57 0.8 0.97 0.82 1.16 1.19 0.6 

 2 0.5 0.5 4.4 2.69 0.85 3.84 2.32 0.57 

  0 0.27 4.34 2.64 0.81 5.54 2.97 0.87 

  0 0.57 4.1 2.55 0.81 4.2 2.55 0.66 

2 0.1 0.5 0.5 3.11 1.82 0.86 6.82 3.06 0.54 

  0 0.24 3.26 1.9 0.8 3.17 1.8 0.87 

  0.01 0.5 3.45 1.98 0.8 3.43 1.97 0.67 

 1 0.5 0.5 3.84 2.55 0.86 5.42 2.78 0.57 

  0 0.24 3.88 2.48 0.8 4.32 2.61 0.88 

  0 0.5 3.96 2.54 0.8 3.96 2.49 0.68 

 
 
According to simulation study for unbalanced two-way nested random model, a number of conclusions 
are drawn from the results for all tables of this model which are summarized in the following points: 
25% data with completely missing information: 

 In case of unbalanced two-way nested random model, it does not matter computing the estimates 
of σୣଶ for MMIV(MIV(0)) and ANOVA methods because they are the same.  

 It is reasonable to note that the compound MSE of ANOVA method is lower than MMIV(MIV(0)) 
method. 

 The compound absolute bias of ANOVA method is lower than MMIV(MIV(0)) method. 
 According to the probability of getting negative estimates, MMIV(MIV(0)) method is better than 

ANOVA method. 
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Table (4): Comparison of ANOVA and MMIV(MIV(0)) estimates for unbalanced two-way nested random 

model-50% data with completely missing information based on compound MSE, compound absolute Bias 
and prob. of getting Negative estimates  

σஒ
ଶ σஓଶ wଵ wଶ 

ANOVA MMIV(MIV(0)) 

Compound 
MSE 

Compound 
absolute 

Bias 

Prob. 
Negative 
estimates 

Compound 
MSE 

Compound 
absolute 

Bias 

Prob. Negative 
estimates 

0.1 1 0.5 0.5 1.11 1.23 0.86 1.06 1.13 0.61 

  0.5 0.72 1.03 1.17 0.85 0.82 0.9 0.54 

  0.56 0.92 1 1.14 0.85 0.7 0.88 0.57 

 2 0.5 0.5 4.2 2.34 0.87 4.1 2.29 0.68 

  0.52 0.72 4.1 2.27 0.85 3.46 2.09 0.57 

  0.57 0.92 3.92 2.19 0.84 2.5 1.65 0.59 

1 0.1 0.5 0.5 0.7 0.87 0.87 0.95 1.09 0.62 

  0.41 0.48 0.7 0.86 0.86 0.8 0.99 0.65 

  0.46 0.58 0.71 0.88 0.86 0.88 1.05 0.6 

 2 0.5 0.5 4.5 2.72 0.86 4.46 2.67 0.72 

  0.49 0.48 4.52 2.73 0.86 4.57 2.7 0.73 

  0.54 0.58 4.47 2.71 0.86 4.24 2.6 0.69 

2 0.1 0.5 0.5 2.93 1.74 0.87 3.03 1.86 0.68 

  0.4 0.43 2.9 1.71 0.88 2.9 1.75 0.75 

  0.45 0.5 2.91 1.73 0.86 2.94 1.8 0.7 

 1 0.5 0.5 3.66 2.48 0.86 3.56 2.35 0.72 

  0.44 0.43 3.59 2.44 0.88 3.7 2.4 0.78 

  0.49 0.5 3.61 2.45 0.87 3.59 2.35 0.72 

 
 
 

50% data with completely missing information: 
 In case of unbalanced two-way nested random model, it does not matter computing the estimates 

of σୣଶ for MMIV(MIV(0)) and ANOVA methods because they are the same.  
 When σஓଶ ൌ 0.1, the compound MSE of ANOVA method is lower than MMIV(MIV(0)) method. 

Also, The compound absolute bias of ANOVA method is lower than MMIV(MIV(0)) method. 
 ANOVA and MMIV(MIV(0)) methods approach at high level of true values of variance 

components. 
 According to the probability of getting negative estimates, MMIV(MIV(0)) method is better than 

ANOVA method. 
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Table (5): Comparison of ANOVA and MMIV(MIV(0)) estimates for unbalanced two-way nested random 
model-75% data with completely missing information based on compound MSE, compound absolute Bias 

and prob. of getting Negative estimates  

σஒ
ଶ σஓଶ wଵ wଶ 

ANOVA MMIV(MIV(0)) 

Compound 
MSE 

Compound 
absolute Bias 

Prob. 
Negative 
estimates 

Compound 
MSE 

Compound 
absolute 

Bias 

Prob. 
Negative 
estimates 

0.1 1 0.5 0.5 1.55 1.47 0.89 1.77 1.53 0.85 

  0.98 0.9 1.11 1.21 0.79 18.44 3.31 0.55 

  0.9 0.96 1.13 1.21 0.83 1.54 1.21 0.56 

 2 0.5 0.5 2.16 2.69 0.89 5.66 2.81 0.88 

  0.99 0.9 4.01 2.26 0.79 48.13 5.12 0.61 

  0.95 0.96 4.09 2.27 0.82 6.67 2.36 0.56 

1 0.1 0.5 0.5 0.7 0.85 0.9 0.78 0.89 0.86 

  0.96 0.79 0.72 0.89 0.79 9.55 2.71 0.59 

  0.84 0.69 0.67 0.85 0.82 1.16 1.16 0.67 

 2 0.5 0.5 5.36 2.98 0.9 5.98 3.13 0.9 

  0.99 0.79 4.38 2.66 0.79 64.24 6.02 0.67 

  0.97 0.69 4.65 2.75 0.78 18.1 3.88 0.71 

2 0.1 0.5 0.5 2.52 1.54 0.89 2.59 1.57 0.87 

  0.98 0.77 2.83 1.73 0.78 32.48 4.82 0.64 

  0.92 0.58 2.68 1.64 0.81 2.47 2.42 0.69 

 1 0.5 0.5 3.56 2.41 0.9 3.83 2.48 0.89 

  0.99 0.77 3.48 2.36 0.79 68.12 6.34 0.68 

  0.97 0.58 3.54 2.36 0.79 21.45 4.19 0.69 

 
 
75% data with completely missing information: 

 In case of unbalanced two-way nested random model, it does not matter computing the estimates 
of σୣଶ for MMIV(MIV(0)) and ANOVA methods because they are the same.  

 The compound MSE of ANOVA method is lower than MMIV(MIV(0)) method. Also, the compound 
absolute bias of ANOVA methods are lower than MMIV(MIV(0)) method. 

 According to the probability of getting negative estimates, MMIV(MIV(0)) method is better than 
ANOVA and methods. 

 
CONCLUSION 

The aim of this paper was to evaluate the performance of the proposed estimators relative to ANOVA’s 
estimator via simulation studies. Different criteria such as mean square error, bias and probability of 
getting negative estimates are used to show the performance of the estimators under the study.  
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From simulation study, we estimated the variance components by MMIV(MIV(0)) and ANOVA methods 
under normality assumption and compared the estimators for unbalanced two-way nested random model. 
In unbalanced two-way random nested model, It is better to estimate variance component by 
MMIV(MIV(0)) method. ANOVA method has negative estimates which affects mean square error and 
bias. 
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