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ABSTRACT:

In this paper, the estimators of variance components are derived of two-way nested random model when
the problem of missing information exists using combination between Modified Minimum Variance
Quadratic Unbiased Estimation (MMIVQUE) and Modified Minimum Variance Quadratic Unbiased
Estimation (MMIVQUE (0)) methods that is called MMIV(MIV(0)) method.
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INTRODUCTION

The problem of estimation of variance components in random and mixed linear models has received
much attention in the statistics literature. There are several approaches to this problem, such as the
analysis of variance (ANOVA) estimator. It has been common practice estimate the variance components
by ANOVA for balanced data. The ANOVA estimates are obtained by equating observed and expected
mean squares in the analysis and solving the resulting equation for the estimators. These estimators are
unbiased and can be expressed as quadratic functions of the observations. The main desirable feature of
these estimators is their simple computation. Under normality and balanced data, they have minimum
variance among all unbiased estimators. However they can yield negative estimates and even under
normality assumptions their distributions are intractable. For unbalanced data, the choice of appropriate
guadratic forms poses a difficult problem. The estimates obtained may be not unbiased. (Li, 1995)

Rao (1970) suggested a method of estimation “MINQUE" that does not require the normality assumption
for the estimation of variances. Rao (1971) proposed a method of estimation that called MIVQUE,
Minimum Variance Quadratic Unbiased Estimation. Swallow and Monahan (1984) made a comparison
between ANOVA, MLE, REML, and MINQUE methods through running one way model

Subramani (2012) suggested a modification on the computational aspects of MIVQUE of variance
components in mixed linear models. He introduced two modified MIVQUE (MIVQUE | and MIVQUE II).
He estimated variance components in unbalanced one-way random model by Modified MIVQUE and
compared between MIVQUE I, MIVQUE Il, MIVQUE based on different optimality criteria.

Most standard statistical methods have been designed to analyze data sets with no missing values.
Consequently, the researcher has two options (a) to delete those cases which have missing data, or (b)
to fill-in the missing values with estimated values. Thus, a data set is created containing no missing
values (empty cells). Typically, the data set is presented in a rectangular table where rows indicate cases,
observations, or subjects, and columns indicate variables measured on each unit.

In regression analysis, independent variables may have missing values in practice. It is also likely that
information (which group or subgroup an observation belongs to) in the analysis of variance is missing.



The information in variance component model has the same importance as the independent variables in
regression analyses. Without the information, the variance components in the model cannot be separated
from one another (i.e. it may make some variance components inestimable). (Song and Shulman, 1997)

The meaning of incomplete (missing) information is different from the meaning of missing values. Missing
values related to the losing of the observation while missing information related to the losing of location of
the observation. This means that the value of the observation is known which could happen because it
may be not recorded or lost for any other reasons. Missing information has three types completely
missing information, partially missing information and not at all on any observation.
1. Completely missing information

No observation in the main group has subgroup information.
2. Partially missing information

Some of the observations in the main group have missing subgroup information.
3. Not at all on any observation in the main group is missing. (Saleh and El-sheikh, 2002)

Song and Shulman (1997) estimated the variance components for the data with missing nesting
information in the two-stage unbalanced nested random model. They combined sum of squares for the
data with missing nesting information with the sum of squares for the data with complete nesting
information linearly. Prespecified weights are used for the combination. Different estimates are obtained
by using different weights. Variances and covariances of these estimators are derived and used to
compare these estimators. Saleh and El Sheikh (2003) modified the analysis of variance method and the
combined symmetric sums with the analysis of variance method for estimation of the variance
components of three-stage unbalanced nested random models for the data with complete missing nesting
information. By a simulation study, they compared the bias and the mean squares errors of the estimates
of variance components of the five methods of estimation namely: ANOVA method (Henderson’s method
1), Modified ANOVA method, Combined analysis of means with ANOVA method, Combined symmetric
sums method with ANOVA method, Combined symmetric sums method with modified ANOVA method.
The paper is organized as follows: The second section concerns with the Modified MIVQUE (l) method
introduced by Subramani (2012). The third section illustrates the proposed estimators for data with
completely missing information in case of two-way nested random model. The fourth section illustrates
simulation study to compare ANOVA and MMIV(MIV(0)) methods.

MINIMUM VARIANCE QUADRATIC UNBIASED ESTIMATION (MIVQUE 1)

Assume the model:

Y=XB+Z181+2282+‘”+Zd6d (l)
where Y is an N x 1 vector of observations, N is the sample size
Xis a N x s matrix with known constants,
B is a s x 1- vector of fixed (unknown) parameters,
Z; is a N X ¢; matrix with known constants,i =1, ...,d. (Zg =1,cq = N)
§; is a ¢; X 1-vector of random variables. (64 = €)
Assume that §; is random variable with zero mean value and dispersion matrix oizlci. Further, §; and §; are
uncorrelated.
Model (1) can be expressed in a compact form as:

Y=XB+7Z§ (2)

whereZ=(Z,;: Z,: - :Zg)and 8§ = (6; : 8, : -+ : 8y).
E(Y) = XB and D(Y) =V = 3, 6?V; where V; = Z;Z{.
D(Y) is called the dispersion matrix and the parameters o2, ..., o4 are the unknown variance components
whose values should be estimated. (Subramani, 2012)
Subramani (2012) developed the estimation of variance components based on Rao (1971) approach.
Instead of dealing with one linear combination, he decided to estimate a set of linear combinations of
variance  components Zf‘:l PijCi through a set of quadratic functions  Y'A;Y
[A; is a symmetric matrix and p;; = Tr(A;V))].



He claimed that estimating variance components under normality obtained by solving the following

equations:

Tr(Alvl) :“ Tr(A]_Vd) 0‘% TI‘(A1W)

3)

Tr(AqVy)  Tr(AqValy.q o3 e TrAaW
He introduced different formulas of A; to obtain MIVQUE(l). The formulas of A; (i = 1,2,...,d) have the
following form:
A; = V71(I—Py,) where Py, = U;(UfV~1U;)"UfV~. U; has a variety of choices,
. U;=XU,=[X Zi],U;=[X Z3],..., Ug=[X Zg_4]
i. U =XU,=[X Z]Us=[X Z; Z] ..,

Ud = [X Zl Zz Zd—l] (4)
“l. Ul = X, U2 = [X X Zl], U3 = [X X Zl Zz], sy
Ud = [X X Z1 Zd—l]

where (Uf'V~1U;)~ is the generalized inverse of Uf'V~1U;

For the case (ii), he derived the estimators, their variances and covariance matrix in the unbalanced one-
way random model. The resulting method are referred to as MIVQUE I.

The proposed estimators of variance components are derived by replacing A; in eq. (3) by A; for case (iii)
in eq. (4).

So the steps of MIVQUE method: 1- Selecting a symmetric matrix A;, 2- Solving the equation (3), 3-obtain
the estimators of MIVQUE method.

ESTIMATION OF VARIANCE COMPONENTS FOR DATA WITH COMPLETELY MISSING
INFORMATION

In this section, the variance components will be estimated for data with completely missing information by
combination between modified MIVQUE | and modified MIVQUE 1(0).
Consider the two- way nested random model

Yijk =n+vi+ Bji) + exqj (5)

i=12,..,Sj=12,..,D,k=12,..,1n;5
where Yj is the k'™ observation at the j™level of factor B within the i*" level of factor y.
n is the general mean.
Yi » Bijand ey are mutually independent random variables with zero means and variances o3, , oﬁand o2
respectively. The variance components to be estimated are o% , 0[23 and o2.
So the model (5) can be written in matrix form as:
Y =Xn + Ty +T,B + Tze (6)

where Yis an N x 1 vector of observations X = 1y,;,N = Ziszlzlp:il n;;

B ]
1501 1 0 0 0 0
0 302 s O 0 0
T, = 0 0 “ 0 0
0 0 0o - 0
— 0 0 0 0 s o T



[ 1"11><1 0 0 0 0 T
0 0 0 0
T, = 0 0 nipy X1 0 0
0 0 0 0
| 0 0 0 0 1nSDSX1 _]
1T3 = IN!
with E(Y) = Xnand D(Y) =V = V0% + V,05 + V304
’ Vl = TiTit'
Ji 0 0 +s
0 0 .. JsI ™!
Kn, 0 0
R R BT
0 0 K“SDS

D; D; . _—
where J; denote ijll n;j X 21‘:11 n;; matrix consisting of 1's.
K, denote n;; X n;; matrix consisting of 1's.
ij

Assume that the total number of the main group will be: S =S" + S".
S’ be the numbers of the main groups for the data with complete nesting information and S” be the
numbers of the main groups for the data with completely missing subgroup nesting information. Assume
that all D;s and njjs in Model (4.1) are known.
Variables and coefficients without prime-notation or with single or double prime notations will be defined
as follows:
If there is a notation without prime then we do not specify the range for i if the variable or coefficient is
summed over i.
The same notation with a single prime (double primes) is then defined as the same quantity summed over
i from, 1to S’ (from, S’' + 1, ..., S, respectively).
Steps of estimation:

1. Estimation of variance components for S’ groups. (data with complete information)

2. Estimation of variance components for S" groups. (data with missing information)

3. Pre-specified weights will be used to combine data with complete information and missing

information.

According to steps of MMIVQUE method, the estimators of variance components are derived when the
matrix A; for case (iii) in eq.(4).
For model (6), the matrix A; is defined as:
Ai=VY(I-Py), =123
where Py, = U;(U;V~1U) UV,
U, =XU,=[X X Tl],f]3U =X X T T,



o2
- =—I—ZB —Z G
1+622

=t =t i=1 (6% + nyo%) n”oﬁ)

where
0-(23 K 0
Gg(cé + nilcé) f1>Mi
B = 0 0 " 0
1 .
of
0 0 7 5 o Bpyp. xny
02(o2 + niDicé) iD; D,
and
1
C: = : —_— .
! 1 (o2 + nilcé) (o2 + niDicé)

(cé + niDiGE)

By using MMIVQUE method, the variance components o3 , oéand o2 will be replaced with the prior values

a4 , o, and «, respectively. So the dispersion matrix will take the following form:
V* = O(1V1 + a2V2 + a0V3
So the inverse V=1 will be replaced with:

AS 1)=—1—ZB —Z % C
1+(X12Di nl] l

i=1 =1 (g + ni]-az)

Step (1): data with missing information by MMIVQUE I:
For model (6), the matrix Aj,i = 1,2,3 for data with complete information is:

*( 1) h! [V*( 1)X Xltv*( 1)

(C) © (©)
¥ 1
= V(c() D _ - o =G
i i=1 hi <1 + oy Z]=110(0+—n”0(2>
-+Sr +S/
' *(-1) _ _ 04
= Vo Z i Z L Dy _ Dy G
where
! K 0 0
Ny (0 + nypap) UM
F, = 0 0 0
! K
0 0 niDi ((XO + niDiaz) niDixniDi
h' = —1
=S5
i1 by

The resulting equations are:
Tr(AYV))  Tr(AV;) Tr(Ayv)][ov]  [Qi
Tr(ARVD) Tr(ARV3) Tr(ayvs)||o3| = |
Tr(A5Vi) Tr(A3Vy) Tr(AsVa)[[e2] |Qs
where Q} = Tr(AW), W =Y'Y',i=1,2,3
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i=1 j= 0 0<j i=1 j=
Since
Tr(A}Vi)o} + Tr(A}V;)og + Tr(A1V3)oZ = Q) (7)
Tr(A3V;)of + Tr(A3V3)o2 = Q; (8)
Tr(A3V3)os = Q3 9)

By solving eq.(7), (8) and (9), the
can be given as follows:

estimators of variance components for data with complete information

—w_ %
0t = ————
€ Tr(A’ V3)
6’[23 Tr(A’ V3)5?2
Tr(szz)
o _ QG — Tr(AVIYE — Tr(AL V)T
Y Tr(ALV))



Step (2): data with missing information by MMIVQUE 1(0):

The estimators of variance components are derived by MMIVQUE 1(0) for data with completely missing
information i.e it is assumed that the initial values a; = o, = 0 and a, = 1.

For model (6), the matrix Ajy,i = 1,2,3 for data with completely missing information is:
A” — V*( 1) —h" [V*( l)XantV*( 1)

(m) (m) (m)
+S 1
n_ (-1 _
Ay =V5P - T
i=S’+1 h; (1 + o Z] 1%+—nl]a2>

+S

+S
*(-1) 551
=V Z Fi- Z D; njj G
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The resulting equations are:
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Dj

s s
Tr(A3Vs') = Z Znij_ Z D;
i=8'+1

i=S'+1 j=1
Since
Tr(A{V;)o; + Tr(A’l’Vz”)cf3 + Tr(A}Vi)o? = QY (20)
Tr(A7V;)of + Tr(A3V3)oZ = Q5 (11)
Tr(A4V4)o2 = Q4 (12)

Step (3): Combination the data with complete information and completely missing information:
Pre-specified weights will be used to combine (Q}&Q7 ) and (Q3&Q5%) as:
Tr(A5V3)6; = Q3 (13)
w2Q% + (1 —w,)QY = w,[Tr(A,V;)85 + Tr(ALV3)82] + (1 — w)[Tr(A3 ;)85 + Tr(A3V3)82](14)
w; Q) + (1 —wyQY
= w, [Tr(A}V})8% + Tr(A}V3)83 + Tr(A} V5)5Z]

+ (1 — w)[Tr(A7V{")8% + Tr(A7V;)8; + Tr(A}V5)82] (15)
By solving eq.(13), (14) and (15), the estimators of variance components are:
o %
Ce = At v
Tr(A5V3)
52 = wyQ5 + (1 = w,)QY — [w,Tr(A3V3) + (1 — w,) Tr(A7V3)]62
B [, Tr(AV3) + (1 — wy) Tr(AZ V3)]

, _ wiQi + (1 —wy)QY — P,6Z — PG}

O = Tw, Tr(A V) + (1 — w) Tr(A7V))]

where
Py
P,

[w; Tr(A1V;) + (1 — wy)Tr(A7V;))],
[w1Tr(A;Vs) + (1 — wy)Tr(AYVs)]

SIMULATION STUDY OF TWO —-WAY NESTED RANDOM MODEL

In this section, the variance components are estimated for unbalanced two-way nested random
model under normality assumption in case of data with completely missing information through a
simulation study by MMIV(MIV(0)) and ANOVA methods and to compare the estimates using mean
squared error, bias, and probability of getting negative estimates.

A numerical comparison for two-way nested random model requires a n-pattern, true values for
the variance components o7, cé and oZ, a priori values a,,a, and «, for the variance components %, o§
and o2 respectively, percentage of completely missing information and the weights.

As stated by Song and Shulman (1997), the weights can be simply set to a constant or derived by some
optimal procedures. They presented four procedures of weights:
1. Setw, =w, = 1. This gives the estimates using the data with complete nesting information only.
2. Setw; =w, = % This method gives equal weight to the sums of squares associated with both the
complete and the missing nesting information.
3. Select w;and w,, that minimize the variances of the combined sums of squares.
4. Select w;and w,, that minimize the variances of the derived estimates: V(6z) and V(52),
respectively.

In this section, the procedures (2, 3, and 4) are considered through a simulation study.
By simulation study, 5000 independent random sample are generated. It is assumed that the sample size
is 60 observations, number of main groups S =8, number of subgroups and sample size of each
subgroup as given in table (1), the true values og,og, oy as given in table (2). Percentage of missing

information levels 25%, 50%, 75% and different weights (w,, w,) are considered.



Table (1): The Number of Subgroups for Unbalanced Two-Way Nested Random Model

D, D, D, D, Ds D¢ D, Dg
ng; =3 ny; =3 nz; =3 Ny =5 ng; =3 Ng; =2 ny;; =3 ng; =3
n;, =5 Ny, =2 nz, =4 Ny, =4 Ng, = 2 Ng, = 4 Ny, =2 ng, =2

Ny3 =2 Nz =2 Ngz = 2 ngz = 4

Table (2): Variance Components Configurations Used in The Simulation of Two-Way Nested Random

Model
oy cé o2
0.1 0.1 1
1 0.1 1
2 0.1 1
0.1 1 1
1 1 1
2 1 1
0.1 2 1
1 2 1
2 2 1




Table (3): Comparison of ANOVA and MMIV(MIV(0)) estimates for unbalanced two-way nested random
model-25% data with completely missing information based on compound MSE, compound absolute Bias
and prob. of getting Negative estimates

ANOVA MMIV(MIV(0))
% | o | Wi | e | compouna | RERCT | S odve | Compound | SRS | Negaive
MSE Bias estimates MSE Bias estimates
01| 1 05 | 05 1.03 1.17 0.86 2.15 1.4 0.53
0.48 0.96 111 0.8 1.23 1.23 0.67
0.89 0.9 1.05 0.82 1.3 1.14 0.72
2 05 | 05 4 2.24 0.85 2.97 1.76 0.54
0.48 3.6 2.1 0.8 4.09 2.3 0.69
0.89 3.55 2.04 0.82 3.7 1.98 0.72
1]01| 05| 05 0.74 0.91 0.86 4.5 2.35 0.52
0.02 | 0.27 0.82 0.97 0.81 0.91 0.98 0.84
0.1 | 0.57 0.8 0.97 0.82 1.16 1.19 0.6
2 05 | 05 4.4 2.69 0.85 3.84 2.32 0.57
0.27 4.34 2.64 0.81 5.54 2.97 0.87
0.57 4.1 2.55 0.81 4.2 2.55 0.66
2 |01] 05| 05 3.11 1.82 0.86 6.82 3.06 0.54
0 0.24 3.26 1.9 0.8 3.17 1.8 0.87
0.01| 05 3.45 1.98 0.8 3.43 1.97 0.67
1 05 | 05 3.84 2.55 0.86 5.42 2.78 0.57
0.24 3.88 2.48 0.8 4.32 2.61 0.88
0.5 3.96 2.54 0.8 3.96 2.49 0.68

According to simulation study for unbalanced two-way nested random model, a number of conclusions

are drawn from the results for all tables of this model which are summarized in the following points:

25% data with completely missing information:

In case of unbalanced two-way nested random model, it does not matter computing the estimates

of 62 for MMIV(MIV(0)) and ANOVA methods because they are the same.

It is reasonable to note that the compound MSE of ANOVA method is lower than MMIV(MIV(0))
method.
The compound absolute bias of ANOVA method is lower than MMIV(MIV(0)) method.
According to the probability of getting negative estimates, MMIV(MIV(0)) method is better than
ANOVA method.

10




Table (4): Comparison of ANOVA and MMIV(MIV(0)) estimates for unbalanced two-way nested random
model-50% data with completely missing information based on compound MSE, compound absolute Bias
and prob. of getting Negative estimates

ANOVA MMIV(MIV(0))

of | of | w W3 Compound C;)Q; gﬁﬁgd Nepg;(;?i;/e Compound C:Q; 2?&201 Prob. Negative
MSE Bias estimates MSE Bias estimates
01| 1 | 05| 05 111 1.23 0.86 1.06 1.13 0.61
0.5 | 0.72 1.03 1.17 0.85 0.82 0.9 0.54
0.56 | 0.92 1 1.14 0.85 0.7 0.88 0.57
2 | 05| 05 4.2 2.34 0.87 4.1 2.29 0.68
0.52 | 0.72 4.1 2.27 0.85 3.46 2.09 0.57
0.57 | 0.92 3.92 2.19 0.84 25 1.65 0.59
1 (01| 05| 05 0.7 0.87 0.87 0.95 1.09 0.62
0.41 | 0.48 0.7 0.86 0.86 0.8 0.99 0.65
0.46 | 0.58 0.71 0.88 0.86 0.88 1.05 0.6
2 | 05| 05 4.5 2.72 0.86 4.46 2.67 0.72
0.49 | 0.48 4.52 2.73 0.86 4,57 2.7 0.73
0.54 | 0.58 4.47 2.71 0.86 4.24 2.6 0.69
2 /01| 05| 05 2.93 1.74 0.87 3.03 1.86 0.68
0.4 |0.43 2.9 1.71 0.88 2.9 1.75 0.75
045 | 05 291 1.73 0.86 2.94 1.8 0.7
1|05 ]| 05 3.66 2.48 0.86 3.56 2.35 0.72
0.44 | 0.43 3.59 2.44 0.88 3.7 2.4 0.78
049 | 05 3.61 2.45 0.87 3.59 2.35 0.72

50% data with completely missing information:

In case of unbalanced two-way nested random model, it does not matter computing the estimates

of o2 for MMIV(MIV(0)) and ANOVA methods because they are the same.
When ¢2

Y

= 0.1, the compound MSE of ANOVA method is lower than MMIV(MIV(0)) method.
Also, The compound absolute bias of ANOVA method is lower than MMIV(MIV(0)) method.

ANOVA and MMIV(MIV(0)) methods approach at high level of true values of variance
components.
According to the probability of getting negative estimates, MMIV(MIV(0)) method is better than
ANOVA method.

11




Table (5): Comparison of ANOVA and MMIV(MIV(0)) estimates for unbalanced two-way nested random
model-75% data with completely missing information based on compound MSE, compound absolute Bias
and prob. of getting Negative estimates

ANOVA MMIV(MIV(0))
0?5 05 Wy W3 Compound Compoun_d Nepg;cz;g;/e Compound C;S; g?uutgd Nepg:gktji;/e
MSE absolute Bias estimates MSE Bias estimates
01| 1 05 | 05 1.55 1.47 0.89 1.77 1.53 0.85
0.98 | 0.9 1.11 1.21 0.79 18.44 3.31 0.55
0.9 | 0.96 1.13 1.21 0.83 1.54 1.21 0.56
2 05 | 05 2.16 2.69 0.89 5.66 2.81 0.88
0.99 | 0.9 4.01 2.26 0.79 48.13 5.12 0.61
0.95 | 0.96 4.09 2.27 0.82 6.67 2.36 0.56
1]01| 05| 05 0.7 0.85 0.9 0.78 0.89 0.86
0.96 | 0.79 0.72 0.89 0.79 9.55 2.71 0.59
0.84 | 0.69 0.67 0.85 0.82 1.16 1.16 0.67
2 05 | 05 5.36 2.98 0.9 5.98 3.13 0.9
0.99 | 0.79 4.38 2.66 0.79 64.24 6.02 0.67
0.97 | 0.69 4.65 2.75 0.78 18.1 3.88 0.71
2 /01| 05 | 05 2.52 1.54 0.89 2.59 1.57 0.87
0.98 | 0.77 2.83 1.73 0.78 32.48 4.82 0.64
0.92 | 0.58 2.68 1.64 0.81 2.47 2.42 0.69
1 05 | 05 3.56 241 0.9 3.83 2.48 0.89
0.99 | 0.77 3.48 2.36 0.79 68.12 6.34 0.68
0.97 | 0.58 3.54 2.36 0.79 21.45 4.19 0.69

75% data with completely missing information:

CONCLUSION

In case of unbalanced two-way nested random model, it does not matter computing the estimates

of 62 for MMIV(MIV(0)) and ANOVA methods because they are the same.

The compound MSE of ANOVA method is lower than MMIV(MIV(0)) method. Also, the compound
absolute bias of ANOVA methods are lower than MMIV(MIV(0)) method.
According to the probability of getting negative estimates, MMIV(MIV(0)) method is better than
ANOVA and methods.

The aim of this paper was to evaluate the performance of the proposed estimators relative to ANOVA's
estimator via simulation studies. Different criteria such as mean square error, bias and probability of
getting negative estimates are used to show the performance of the estimators under the study.
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From simulation study, we estimated the variance components by MMIV(MIV(0)) and ANOVA methods
under normality assumption and compared the estimators for unbalanced two-way nested random model.
In unbalanced two-way random nested model, It is better to estimate variance component by
MMIV(MIV(0)) method. ANOVA method has negative estimates which affects mean square error and

bias.
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