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BAYESIAN ANALYSIS OF A SHAPE PARAMETER OF THE
WEIBULL-FRECHET DISTRIBUTION

Abstract

In this paper, we estimate a shape parameter of the Weibull-Frechet distribution by
considering the Bayesian approach under two non-informative priors using three different
loss functions. We derive the corresponding posterior distributions for the shape parameter of
the Weibull-Frechet distribution assuming that the other three parameters are known. The
Bayes estimators and associated posterior risks have also been derived using the three
different loss functions. The performance of the Bayes estimators are evaluated and
compared using a comprehensive simulation study and a real life application to find out the
combination of a loss function and a prior having the minimum Bayes risk and hence
producing the best results. In conclusion, this study reveals that in order to estimate the
parameter in question, we should use quadratic loss function under either of the two non-
informative priors used in this study.

Keywords: Weibull-Frechet, Bayesian, MLE, prior, Uniform, Jeffrey, Loss functions.
1. Introduction

The Fréchet distribution is mostly used in extreme value theory and it has applications
ranging from accelerated life testing through to earthquakes, floods, horse racing, rainfall,
queues in supermarkets, wind speeds and sea waves. To get details on the Fréchet distribution
and its applications, readers can study [25]. Moreover, applications of this distribution in
various fields are given in [22], where it has been proven that the frechet distribution is used
for modeling the statistical behavior of materials properties for a variety of engineering
applications. [33] discussed the sociological models based on Fréchet random variables. [39]
applied the Fréchet model for analyzing the wind speed data. [31] studied the Fréchet
progressive type-II censored data with binomial removals.

A random variable X is said to follow a Fréchet distribution with parameters € and A if its
probability density function (pdf) is given by

F) =04 o1 (1.1)

and the corresponding cumulative distribution function (cdf) is given as

ﬁ)‘

Fx)=p " (1.2)

Forx>0,0>0,4>0 where 6 and Aare the scale and shape parameters of the Fréchet
respectively.
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Many authors have developed generalizations of the Fréchet distribution. For instance, [33]
pioneered the exponentiated Fréchet, [32] and [17] studied the beta Fréchet, [28] proposed
the transmuted Fréchet, [26] introduced the Marshall-Olkin Fréchet, [37] defined the gamma
extended Fréchet, [18] studied the transmuted exponentiated Fréchet, [30] introduced the
Kumaraswamy-Fréchet, [1] investigated the transmuted Marshall-Olkin Fréchet distributions,
[2] studied the transmuted complementary Weibull geometric distribution and [3] studied the
Weibull-Fréchet distribution. Of interest to us in this paper is the Weibull-Fréchet distribution
(WFrD) proposed by [3]. This is because the parameters, properties and applications of this
four parameter distribution have been studied and compared with some other distributions
and the result showed that it is more fitted compared to kumaraswamy Frechet (KFr),
exponentiated Frechet (EFr), beta Frechet (BFr), gamma extended Frechet (GEFr),
transmitted marshallOlkin Frechet (TMOFr) and Frechet (Fr) distributions ([3]).
The probability density function (pdf) and cumulative distribution function (cdf) of the
Weibull-Fréchet distribution are given by (for x > 0)

A —a -(8) -(¢ A

fx)=aplo’x"* "o | 1—p (x)

and

(1.4)

respectively, where @ >0 is a scale parameter and «, 8,4 >0 are the shape parameters of the

Fréchet distribution respectively according to [3].

There are two main philosophical approaches to statistics. The first is called the classical
approach which was founded by Professor R.A. Fisher in a series of fundamental papers
round about 1930. In classical approach, the parameters are considered to be fixed while in
the non classical or Bayesian concept, the parameters are viewed as unknown random
variables. However, in many real life situations represented by life time models, the
parameters cannot be treated as constant throughout the life testing period ([23]; [29]; [38])
and hence the need for Bayesian estimation for life time models.

Recently Bayesian estimation approach has received great attention by most researchers
among them are [11] who studied Bayesian estimation for the extreme value distribution
using progressive censored data and asymmetric loss. [10] considered Bayesian Survival
Estimator for Weibull distribution with censored data. [19] discussed the Bayesian analysis of
the scale parameter of inverse Gaussian distribution using different priors and loss function.
[14] obtained the shape parameter of Generalized Power Distribution (GPD) via Bayesian
approach under the non-informative (uniform) and informative (gamma) priors using the
squared error loss function. [15] estimated the scale parameter of Nakagami distribution
using Bayesian approach. The Bayesian estimate of the scale parameter of Nakagami
distribution under uniform prior, inverse exponential and levy prior distributions using
squared error, quadratic and precautionary loss functions were also obtained by [16] and
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again [24] made a Comparison between Maximum Likelihood and Bayesian Estimation
Methods for a Shape Parameter of the Weibull-Exponential Distribution under uniform and
Jeffrey’s priors and found that Bayesian method under uniform prior is better using quadratic
loss function.

The main objective of this paper is to introduce a statistical comparison between the Bayesian
and Maximum likelihood estimation procedures for estimating the shape parameter of WFrD.
The layout of the paper is as follow. In Section 2, we take a look at the materials and methods
used which include the priors and the different loss functions. In Section 3, we obtained
Maximum likelihood estimates of the shape parameter in question. Also, we estimate the
shape parameter of the WFrD under uniform and Jeffrey’s priors in section 4 and section 5
respectively using three different loss functions. The posterior risks of the estimators obtained
under the two priors using the three different functions were derived in section 6. Finally, a
comparison between Bayes and Maximum likelihood estimates have been made using
simulation study in Section 7 with Some concluding remarks given in Section 8.

2. Materials and Methods
2.1 Priors and Loss Functions

The Bayesian inference requires appropriate choice of prior(s) for the parameter(s). From the
Bayesian viewpoint, there is no clear cut way from which one can conclude that one prior is
better than the other. Nevertheless, very often priors are chosen according to one’s subjective
knowledge and beliefs. However, if one has adequate information about the parameter(s), it is
better to choose informative prior(s); otherwise, it is preferable to use non-informative
prior(s). In this paper we consider two non-informative priors: the uniform and Jeffreys’
prior.

To obtain the posterior distribution of the shape parameter once the data has been observed,
we apply bayes’ Theorem which is stated in the following form:

plalX)=— L(a1X)p(a) e

IL(O{I X)p(a)da

0

where p(a) and L(alX) are the prior distribution and the Likelihood function

respectively.
The uniform prior as a non-informative prior relating to the shape parameter « is defined as:
pla)<l;0<a<oo (2.2)

The posterior distribution of the shape parameter & for a given data under uniform prior is

obtained from equation (2.1) using integration by substitution method as
-B (n+1)

5o )] et

i=1

plalX)= 2.3)

F(n+1)
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Also, the Jeffrey’s prior as a non-informative prior relating to the shape parameter « of the
WEFrD distribution is defined as:

p(a)ocl;0<a<oo (2.4)
o

The posterior distribution of the shape parameter @ for a given data under Jeffrey prior is
obtained from equation (2.1) using integration by substitution method as

. [Z [e(f[)l i 1j_ﬁ J e‘“i{"[gjﬂ‘qﬁ

i=1

plalX)= (2.5)

['(n)
In statistics and decision theory, a loss function is a function that maps an event into a real
number intuitively representing some cost associated with the event. Typically it is used for
parameter estimation and that event in question is some function of the difference between

estimated and true values for an instance of data. A Loss function, L(¢&, &, ) is that which

describes the losses incurred by making an estimate & of the true value of the parameter is .
A number of symmetric and asymmetric loss functions have been shown to be functional in
so many studies including; [13], [34], [12], [35], [9], [7], [4], [5], [6], [8], [21] and [20] and
so forth.
With the above priors and prior distributions, we will use three loss functions to estimate the
shape parameter of the WFrD and these loss functions are defined as follows:

(a) Squared Error Loss Function (SELF)
The squared error loss function relating to the scale parameter ¢ is defined according to [16]
as

L(Ol, A ) = (a_ A )2 (2.6)

where @, is the estimator of the parameter & under SELF'.

(b) Quadratic Loss Function (QLF)
The quadratic loss function is defined from [15] as

L) - 25 e

where @, is the estimator of the parameter & under QLF.

(c) Precautionary Loss Function (PLF)
The precautionary loss function (PLF) according to [16] is an asymmetric loss function and is
defined as

(aPLF B 0!)2

L(aPLF’a)z o

(2.8)

where @, is the estimator of the parameter ¢/ under PLF.

3. Maximum Likelihood Estimation
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Here we present the estimation of the shape parameter of the Weibull-Fréchet distribution
(WFrD) using the method of maximum likelihood estimation. Let X, X,,....... ,X be a

random sample from the WFrD with unknown parameter vector& =(a, S, 9,/1)T. The total

log-likelihood function for & is obtained from f{x) as follows:
-B-1

n A -B
L(X\ Xy X, 1, B,0,2) = (aBl6?) S 1 g 2 S l—e‘[z] exp{—ai(e(ﬁ) —1} }

i=1 i=l
3.1)

The likelihood function for the shape parameter, &, is given by;

n 2 -p
L(X,, Xy Xn/a)z(a)"exp{—az(e(f} _1J } (3.2)

i=1

Let the log-likelihood function, ! =log L(a | X ) therefore

>

n 1 -B
1=nloga—az(e(f’?) —1} (3.3)

i=l

Differentiating [ partially with respect to &, the shape parameter and solving for & gives;

n 2 -B
ol S (e(z) _q

n 2 -B
Z (2) -1
€ (3.4)
Hence, equation (3.4) is the estimator for the shape parameter of the Weibull-Frechet

distribution obtained by the method of maximum Likelihood estimation.
4. Bayesian Estimation of the shape parameter of the WFrD under Uniform prior
by using the three Different Loss Functions

Here, we estimate the shape parameter of the WFrD under three loss functions using the
posterior distribution obtained from the uniform prior in equation (2.3).

4.1 Estimation Using Squared Error Loss Function (SELF)
The derivation of Bayes estimator using SELF under uniform prior is as given below:

Asprr =E(a)=E(aI)_()
E(alX)=[ap(alX)da (4.1)
0
Substituting for p(al X ) in equation (4.1); we have:
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4.2)

Now, using integration by substitution method in equation (4.2) and simplification, we
obtained the Bayes estimator using SELF under uniform prior as:

I'(n+2
Uy =E(1 X )= f 9)4 -8
F(n+1)2(e("') —1)
Xsprr :E(alx):n—-’-l (4.3)

i=1
4.2 Estimation Using Quadratic Loss Function (QLF)
The derivation of Bayes estimator using QLF under uniform prior is given below:
E(a') E(a'lX)
a = =
“E(a?) E(a”1X)

E(a"l)_():Ta’lp(al)_()da 4.4)
0

Substituting for p(a|X) in equation (4.4); we have:

n+l

o) y
N i PP S

n+l

Using integration by substitution method in equation (4.5) and simplifying, we obtained the
Bayes estimator using QLF under uniform prior as:

W El) E@ix) )
¢ E(Ol_z) E(a‘zl)_() (i(e(Z)l_lj_ﬂJr(n_l)
aQLFZE(a“)ZE(a“I}_()z n—1 we)

4.3 Estimation Using Precautionary Loss Function (PLF)
Similarly, the derivation of Bayes estimator under PLF using uniform prior is given below:

e ={E(@)) ={E(@* 1)) = [E(0" 1X)
E(azl)_():Ta'zp(a'l)_()da 4.7)

Substituting for p(a|X) in equation (4.7); we have:
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e ma,,ﬂe_ai[e[zl }

Ele1X)= T(n+1) J

0

da 4.8)

Again using integration by substitution method in equation (4.8) and simplifying, we
obtained the Bayes estimator using PLF under uniform prior as:

F(n+3)

(2(6(5)1 —1}7 T(n+1)

= (4.9)

ap, ={E( 1)} =

i=1
It is very clear that the relationship: A, > A, > A4y, >4, holds for all parameter values
and A, under the uniform prior is obviously the minimum.

5. Bayesian Estimation of the shape parameter of the WFrD under Jeffrey’s prior
by using the three Different Loss Functions

This section presents the estimation of the shape parameter of the WFrD using three loss
functions and the posterior distribution obtained from Jeffrey’s prior in equation (2.5).

5.1 Estimation Using Squared Error Loss Function (SELF)

The derivation of Bayes estimator under SELF using Jeffrey’s prior is as given below:

Asprr :E(a):E(al)_()
E(a1X)=[ap(alX)da (5.1)
0
Substituting for p(&|X) in equation (5.1); we have:

P ﬁj" 1
E(alX)= [;(er(n)lj Ta"e‘“i[e@ 4

0

-8

da (5.2)

Using integration by substitution method in equation (5.3) and simplifying, we obtained the
Bayes estimator using SELF under Jeffrey prior as:

F(n+1)

A r =E(0{|)_()=

Oy =E(a) X)=—— (5.3)

5.2 Estimation Using Quadratic Loss Function (QLF)

7
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Also, the derivation of Bayes estimator under Jeffrey’s prior using QLF is given below:
E(a") E(a'lX)
a = =
“E(a?) E(a’1X)

a'lX =T (a1 X)d (5.4)
0

Substituting for p(a|X) in equation (5.4); we have:

E(alu_()—[;[e(g) _lj J ja [ llyda (5.5)

Using integration by substitution method in equation (5.5) and simplifying, we obtained the
Bayes estimator using QLF under Jeffrey prior as:

) :E(a—l):E(a“I}_()z C(n-1)
oLF E(a—z) E(a‘zl?_() (i(e(i)l_q_jl“(n—ﬁ
_E(a) _E(@'1X) -2

X
a. = = = - (5.6)
QLF E(O(_z ) E(O(_z | X ) n (i‘)a B
2le -1
i=1
5.3 Estimation Using Precautionary Loss Function (PLF)
Similarly, the derivation of Bayes estimator under PLF using Jeffrey’s prior is given below:

am={E(a2>}%={E(a2|x>}%= B 1%)
E(a’1X) p(al X)da (5.7)

in equation (5.7); we have:

2]

Using integration by substitution method in equation (5.8) and simplifying, we obtained the
Bayes estimator using PLF under Jeffrey prior as:

Il
~ oO-.g

Substituting for p (a I X

n

j o ‘“Zl[ d Jﬁda (5.8)

E(a’1X)= (

PR L S A . (5.9)
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It is also clear that 4,,, is the same as A, under Jeffrey’s prior and the relationship: 4,

> A1 > Ay > Agyr holds for all parameter values and A, under the Jeffrey’s prior appears
to be the minimum.

6. Posterior Risks under the priors using the Different Loss Functions

The posterior risks of the Bayes estimators under the three loss functions from both uniform
and Jeffrey’s prior are obtained as follows:

6.1 Posterior Risks under the Uniform Prior
Using Squared Error Loss Function (SELF)

Using the Squared error loss function (SELF), the posterior risk, p(A,,)is defined from
[16] as:
2
P(@g,)=E(a’ 1 X )-{E(al X)} (6.1)

And it is obtained as

(n+2)(n+1)=((n+1))°

(Z( O 1)_7

Using Quadratic Loss Function (QLF)
Using the Quadratic loss function (QLF), the posterior risk, p (/IQLF ) is defined from [16] as:

{g(a 1))

E(a?1X)

(6.2)

P(aSELF ) =

P(ay,)=1- (6.3)

Therefore, the posterior risk under uniform prior using the Quadratic loss function is given
as:

P(ay, ) :% (6.4)
Precautionary Loss Function (PLF)
Using the Precautionary loss function (PLF), the posterior risk, p(/iPLF)is defined from [16]
as:
P(atp,)=2{ep, —E(I X)} (6.5)
And calculated to be:

P(aPLF):Z (6.6)

6.2 Posterior Risks under Jeffrey’s Prior
The posterior risks of the Bayes estimators under the three loss functions from the Jeffrey’s
prior are as follows:
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Using Squared Error Loss Function (SELF)
Using the Squared error loss function (SELF), the posterior risk, p(/iSELF)under Jeffrey’s
prior is defined from [16] as:
2
P(“SELF):E(O[ZU_()_{E(al)_()} (6.7)
Therefore, the posterior risk under Jeffrey’s prior using the squared error loss function is:
n
P(aSELF ) = ] 5\ (6.8)
{Z( i ‘1) J
i=1
Using Quadratic Loss Function (QLF)
Using the Quadratic loss function (QLF), the posterior risk, p(ﬂQLF ) under Jeffrey’s prior is
defined from [16] as:
2
()1 L 1)
Pla,,|=1-—F——F—"F"— (6.9)
e E(a?1X)
Hence, it is obtained as:
1
P(aty, )= — (6.10)
Using Precautionary Loss Function (PLF)
Using the Precautionary loss function (PLF), the posterior risk, p(&,, )is defined as:
P(ap,)=2{ay, —E(alX)} (6.11)
Hence, obtained as:
n(n+1) o n
P(@py)=2 { l} = (6.12)
Z[e” _ 1)
i=1
Table 6.1: A Summary of the expressions for MLE, Bayes Estimators and Posterior Risks
under uniform prior and Jeffrey’s Prior is as follows:
PRIORS | MLE | SELF | OLF | PLF
Estimators
UNIFORM n n+1 n—1 05
n (5)1 B 4 (5)1 -8 n (ﬁ)l -4 I:(I’l+2)(l’l+l):|ﬁ
-1 -1 -1 a of )
S| T |5 g
i=1
JEFFREY’S n n n—2 B
+1
SO Ve (e )] 1)) 7
-1 s -1 al -1 =z 2’
S| BT | 3
i=1

10
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Posterior Risks

UNIFORM (n+2)(n+1)=((n+1)) | L )
o Y| p L2l (o)
Z[e*f —1j L o )‘”
JEFFREY’S n 1
2 n—1 1

7. Comparison of Estimation Methods

7.1 Comparison Based on Simulated Dataset

We used a package in R software to generate random sample of size n = (20, 45, 85, 120)
from WFrD by using ¢ =1.0, f=0.5, 6=1.0 and 1=1.5; a=1.0, f=2.5, 6=0.5 and
A=05 and ¢=1.0, f=1.0, §=2.5 and 1=0.5. The following tables present the results
of our simulation study by listing the estimates of the shape parameter under the appropriate
estimation methods such as the Maximum Likelihood Estimation (MLE), Squared Error Loss
Function (SELF), Quadratic Loss Function (QLF) and Precautionary Loss Function (PLF)
under both Uniform and Jeffrey prior.

Table 7.1: Estimates of the shape parameter, their Biases, Mean Squared Errors and posterior
risks based on the replications and sample sizes where & =1.0, f=0.5, §=1.0 andA=1.5

Sample Measures

sizes

20 Estimate
BIAS
MSE
Risk

45 Estimate
BIAS
MSE
Risk

85 Estimate

BIAS

MSE

Risk

Estimate

BIAS

MSE

Risk

120

MLE

4.1239
5.3358
4.3303

2.6611
1.9517
5.2313

42704
5.2844
3.6619

8.1260
9.0401
1.0284

Uniform Prior Jeffrey’s Prior

SELF QLF PLF SELF QLF PLF
4.3301 3.9177 4.4320 4.1239 3.7115 4.2257
5.6030 5.0685 5.7351 5.3358 4.8012 5.4678
4.775 3.9076 5.0023 4.3303 3.5066 4.5471
8928.4 0.05 20.3797  8503.2 0.0526 20.3680
2.7203 2.6020 2.7497 2.6611 2.5429 2.6905
1.9951 1.9083 2.0166 1.9517 1.8649 1.9732
5.4665 5.0012 5.5853 5.2313 4.7765 5.3476
160867.3  0.0222 58.8185 157370.2  0.0227 58.8115
4.3206 4.2202 4.3457 4.2704 4.1699 4.2955
5.3465 5.2222 5.3775 5.2844 5.1599 5.3153
3.7486 3.5763 3.7922 3.6619 3.4916 3.7050
217069.5 0.0118 50.0949 2145454  0.0119 50.0932
8.1937 8.0583 8.2275 8.1260 7.9905 8.1598
9.1155 8.9648 9.1531 9.0401 8.8894 9.0777
1.0456 1.0113 1.0543 1.0284 0.9944 1.0370
NaN NaN Inf NaN NaN Inf
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From table 7.1, we can see that both MLE and SELF (under Jeffrey prior) have the same
estimate just as found in the derivations as well as their bias and MSE irrespective of the
variation in the samples indicating that the two methods have the same performance
considering this shape parameter. The table clearly shows that using the QLF under both
uniform and Jeffrey’s prior produces the best results and hence the best approach for
estimating the shape parameter of the WFrD irrespective of the different sample sizes.

Table 7.2: Estimates of the shape parameter, their Biases and Mean Squared Errors and the
posterior risks based on the replications and sample sizes wherea =1.0, =25, 8=0.5

and 1=0.5.

Sample Measures MLE Uniform Prior Jeffrey’s Prior

sizes SELF OLF PLF SELF OLF PLF

20 Estimate 6.7477  7.0852 6.4103 7.2518 6.7477 6.0729 6.9143
BIAS 8.6732  9.1068 8.2395 9.3211 8.6732 7.8058 8.8873
MSE 5.1344  5.6607 4.6338 5.9302 5.1344 4.3588 5.3911
Risk 2390384 0.05 333.46 2276556 0.0526 333.27

45 Estimate 5.7931 5.9219 5.6644 5.9859 5.7931 5.5357 5.8571
BIAS 2.9610 3.0268 2.8952 3.0595 2.9610 2.8294 2.9937
MSE 4.7391 4.9520 4.5308 5.0597 4.7391 4.1272 4.8444
Risk 7623573589  0.0222 12804.4 7457843728  0.0227 12802.87

85 Estimate 1.6114 1.6303 1.5924 1.6398 1.6114 1.5735 1.6208
BIAS 2.3176  2.3449 2.2903 2.3585 2.3176 2.2631 2.3312
MSE 5.3708  5.4979 5.2451 5.5618 5.3708 5.1210 5.4339
Risk 30907082847 0.0118 18902.65 30547698162 0.0119 18902.01

120 Estimate 6.9325  6.9902 6.8747 7.0190 6.9325 6.8169 6.9613
BIAS 3.2719  3.2992 3.2447 3.3128 3.2719 3.2174 3.2855
MSE 1.0704 1.0884 1.0527 1.0973 1.0704 1.0351 1.0794
Risk NaN NaN Inf NaN NaN Inf

Table 7.2 also gives a similar pattern of the result found in table 7.1 with similar estimates,
biases and MSE for the MLE and SELF (under Jeffrey’s prior) with QLF (under Jeffrey’s
prior) having the best performance (under Jeffrey’s prior) as well as the QLF under uniform
prior. Again these performances are found to be consistent irrespective of the different
sample sizes and the parameter values used.

Table 7.3: Estimates of the shape parameter, their Biases and Mean Squared Errors and the
posterior risks based on the replications and sample sizes where @ =1.0, f=1.0, 6=2.5

and 1=0.5.

Sample  Measures MLE Uniform Prior Jeffrey’s Prior

sizes SELF OLF PLF SELF QOLF PLF

20 Estimate 1.1478 1.2052 1.0904 1.2336 1.1478 1.0330 1.1762
BIAS 1.1347 1.1914 1.0780 1.2195 1.1347 1.0212 1.1627
MSE 1.2767 1.4076 1.1522 1.4746 1.2767 1.0341 1.3406
Risk 6916977 0.05 567.24 6587597 0.0526 566.92

45 Estimate 2.1914  2.2400 2.1426 2.2643 2.1914 2.0940 2.2156
BIAS 1.7460 1.7848 1.7072 1.8041 1.7460 1.6684 1.7653

12
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328
329
330
331
332
333
334
335
336
337
338
339

MSE 29566  3.0895 2.8267 3.1566 2.9566 2.6996 3.0223

Risk 1.09083e+1  0.0222 484349 1.067117e  0.0227 484291.4
3 +13
85 Estimate  1.4828 1.5002 1.4653 1.5089 1.4828 1.4479 1.4915
BIAS 3.0022 3.0376 2.9669 3.0552 3.0022 2.9316 3.0198
MSE 9.0134 9.2267 8.8026 9.3340 9.0134 8.5942 9.1194
Risk 2616987636  0.0118 17393.8 25865575 0.0119 17393.22
6 478
120 Estimate 1.3414 1.3526 1.3302 1.3581 1.3414 1.3190 13470
BIAS 42384 4.2738 4.2031 42914 4.2384 4.1678 4.2560
MSE 1.7964 1.8265 1.7666 1.8416 1.7964 1.7371 1.8114
Risk NaN NaN Inf NaN NaN Inf

The above table (Table 7.3) also shows the uniform and Jeffrey’s priors with QLF resulting in
better estimates for the shape parameter however there are some variations in the pattern of
the measures or values for bias and MSE which are as a result of the increase in the value of
the one and only scale parameter, & =2.5,and hence we say that increasing the value of the
scale parameter, @ affects the nature of our performance measures (increasing MSE instead of
decreasing) though not the entire performance of the estimators and so looking at all the
results presented in the tables, we can conclude that Bayes estimates using Quadratic loss
function under Jeffrey’s and uniform priors are associated with minimum risks, biases and
MSEs and are better when compared to those obtained from MLE, PLF and SELF under
Jeffrey’s and uniform priors irrespective of the parameter values and the allocated sample
sizes of n=20, 45, 85 and 120.
7.2 Comparison Based on Real life data application

In this section, a package in R software was used to generate random sample of size n = (20,
45, 85, 120) from a real life data which represents the remission times (in months) of 128
bladder cancer patients by using a¢=1.0, f=0.5, =10 and A=1.5; a=1.0, =25,
6=0.5 and 1=0.5 and ¢=1.0, f=1.0, 6=2.5 and A=0.5. The following tables present

the results of our study by presenting the estimates of the shape parameter under the
appropriate estimation methods considered in the previous section. This data has previously
been used by [27] and [36]. It is as follows: 0.080, 0.200, 0.400, 0.500, 0.510, 0.810, 0.900,
1.050, 1.190, 1.260, 1.350, 1.400, 1.460, 1.760, 2.020, 2.020, 2.070, 2.090, 2.230, 2.260,
2.460, 2.540, 2.620, 2.640, 2.690, 2.690, 2.750, 2.830, 2.870, 3.020, 3.250, 3.310, 3.360,
3.360, 3.480, 3.520, 3.570, 3.640, 3.700, 3.820, 3.880, 4.180, 4.230, 4.260, 4.330, 4.340,
4.400, 4.500, 4.510, 4.870, 4.980, 5.060, 5.090, 5.170, 5.320, 5.320, 5.340, 5.410, 5.410,
5.490, 5.620, 5.710, 5.850, 6.250, 6.540, 6.760, 6.930, 6.940, 6.970, 7.090, 7.260, 7.280,
7.320, 7.390, 7.590, 7.620, 7.630, 7.660, 7.870, 7.930, 8.260, 8.370, 8.530, 8.650, 8.660,
9.020, 9.220, 9.470, 9.740, 10.06, 10.34, 10.66, 10.75, 11.25, 11.64, 11.79, 11.98, 12.02,
12.03, 12.07, 12.63, 13.11, 13.29, 13.80, 14.24, 14.76, 14.77, 14.83, 15.96, 16.62, 17.12,
17.14, 17.36, 18.10, 19.13, 20.28, 21.73, 22.69, 23.63, 25.74, 25.82, 26.31, 32.15, 34.26,
36.66, 43.01, 46.12, 79.05.
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340
341

342

343
344

345

Table 7.4: Estimates of the shape parameter, their Biases, Mean Squared Errors and posterior
risks based on the real life data for & =1.0, f=0.5, 6=1.0 and4=1.5

Sampl Measure

e S

sizes

20 Estimate
BIAS
MSE
Risk

45 Estimate
BIAS
MSE
Risk

85 Estimate
BIAS
MSE
Risk

120 Estimate
BIAS
MSE
Risk

MLE

Uniform Prior

Jeffrey’s Prior

2.3580
2.3580
5.5601

5.3055
5.3055
2.8148

1.0022
1.0021
1.0043

1.4148
1.4148
2.0017

SELF

2.4759
2.4759
6.1300
2919086139
5.4234
5.4234
2.9413
6394188685
1.0139
1.0139
1.0281
11954352758
1.4266
1.4266
2.0352

NaN

QLF

2.2401
2.2401
5.0180
0.05

5.1876
5.1876
2.6911
0.0222
0.9904
0.9904
0.9808
0.0118
1.4030
1.4030
1.9684
NaN

PLF

2.5342
2.5342
6.4219
11652.89
5.4820
5.4820
3.0053
11726.61
1.0198
1.0198
1.0400
11755.92
1.4325
1.4325
2.0520
Inf

SELF QLF

2.3580 2.1222
2.3580 2.1222
5.5601 4.5037
2780082037 0.0526
5.3055 5.0697
5.3055 5.0697
2.8148 2.5702
6255184583 0.0227
1.0022 0.9786
1.0021 0.9786
1.0043 0.9576
11815348656 0.0119
1.4148 1.3912
1.4148 1.3912
2.0017 1.9355
NaN NaN

PLF

2.4162
2.4162
5.8381
11646.2
5.3641
5.3641
2.8774
11725.22
1.0080
1.0080
1.0161
11755.53
1.4207
1.4207
2.0183
Inf

Table 7.5: Estimates of the shape parameter, their Biases, Mean Squared Errors and posterior
risks based on the real life data for @ =1.0, f=2.5, §=0.5 and 4=0.5.

Sample Measures

sizes

20 Estimate
BIAS
MSE
Risk

45 Estimate
BIAS
MSE
Risk

85 Estimate
BIAS
MSE
Risk

120 Estimate
BIAS
MSE
Risk

MLE

1.3172
1.3172
1.7349

2.9636
2.9636
8.7831

5.5980
5.5980
3.1337

7.9030
7.9030
6.2458

Uniform Prior

Jeffrey’s Prior

SELF
1.3830
1.3830
1.9128
910849437
3.0295
3.0295
9.1778
1995194006
5.6638
5.6638
3.2079
3730145315
7.9689
7.9689
6.3503

NaN

QLF

1.2513
1.2513
1.5658
0.05

2.8978
2.8978
8.3971
0.0222
5.5321
5.5321
3.0604
0.0118
7.8372
7.8372
6.1421
NaN

PLF
1.4156
1.4156
2.0038
6509.287
3.0623
3.0622
9.3774
6550.469
5.6967
5.6967
3.2452
6566.843
8.0018
8.0018
6.4028
Inf

SELF QLF

1.3172 1.1855
1.3172 1.1854
1.7349 1.4053
867475655  0.0526
2.9636 2.8319
2.9636 2.8319
8.7831 8.0198
1951820223  0.0227
5.5980 5.4663
5.5980 5.4663
3.1337 2.9880
3686771532 0.0119
7.9030 7.7713
7.9030 7.7713
6.2458 6.0393
NaN NaN

PLF
1.3497
1.3497
1.8217
6505.55
2.9964
2.9964
8.9783
6549.69
5.6308
5.6308
3.1706
6566.62
7.9359
7.9359
6.2979
Inf

14



346
347

348
349
350
351

352

353
354
355
356
357
358
359
360
361
362
363
364
365

366

Table 7.6: Estimates of the shape parameter, their Biases, Mean Squared Errors and
posterior risks based on the real life data for ¢ =1.0, f=1.0, §=2.5 and 1=0.5.

Sample Measures MLE Uniform Prior Jeffrey’s Prior

sizes SELF QLF PLF SELF QLF PLF

20 Estimate 1.2216 1.2827 1.1605 1.3129 1.2216 1.0994 1.2518
BIAS 1.2216 1.2827 1.1605 1.3129 1.2216 1.0994 1.2518
MSE 1.4923 1.6452 1.3468 1.7236 1.4923 1.2087 1.5669
Risk 7.834444e+14  0.05 6036903 7.461375e+14 0.0526 6033437

45 Estimate 2.7486 2.8097 2.6875 2.8400 2.7486 2.6264 2.7789
BIAS 2.7486 2.8097 2.6875 2.8400 2.7486 2.6264 2.7789
MSE 7.5546 7.8941 7.2226 8.0657 7.5546 6.8980 7.7225
Risk 1.716116e+15 0.0222 6075096 1.678809%e+15 0.0227 6074374

85 Estimate 5.1917 5.2528 5.1307 5.2833 5.1917 5.0696 5.2222
BIAS 5.1917 5.2528 5.1307 5.2833 5.1917 5.0696 5.2222
MSE 2.6954 2.7592 2.6324 2.7913 2.6954 2.5701 2.7271
Risk 3.208391e+15 0.0118 6090282 3.171084e+15 0.0119 6090076

120 Estimate  7.3295 7.3906 7.2684 7.4211 7.3295 7.2074  7.3600
BIAS 7.3295 7.3906 7.2684 7.4211 7.3295 7.2074  7.3600
MSE 5.3722 5.4621 5.2830 5.5072 5.3722 5.1946 5.4170
Risk NaN NaN Inf NaN NaN Inf

Tables 7.4, 7.5 and 7.6 present results of our comparison based on real life data and it
confirms the results of the simulation study which reveal that the estimators obtained using
QLF under both uniform and Jeffrey’s priors are the best irrespective of the different
parameter values and the sample sizes.

8. Summary and Conclusions

In this paper, we obtain Bayesian estimators of the shape parameter of WFrD. The Posterior
distributions of this parameter are derived by using Uniform and Jeffrey’s priors. Bayes
estimators and their risks have been obtained by using three different loss functions under the
two prior distributions. The three loss functions taken up are Squared Error Loss Function
(SELF), Quadratic Loss Function (QLF) and Precautionary Loss Function (PLF). The
performance of these estimators is assessed on the basis of their relative posterior risks,
Biases and Mean Square Errors. The performance of the different estimators has been
evaluated under a detailed simulation study and real life application. The study proposed that
in order to estimate this shape parameter of the WFrD, the use of Quadratic loss function
under Jeffrey’s prior and secondly uniform prior can be preferred to produce the best results
irrespective of the values of the parameters and the different sample sizes. However, it should
be noted that as sample size increases (n>100: n=120) the results are not valid in case of
estimators as indicated by values (NAN and Inf) of the posterior risks.
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