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Abstract5
In this paper, we estimate a shape parameter of the Weibull-Frechet distribution by6
considering the Bayesian approach under two non-informative priors using three different7
loss functions. We derive the corresponding posterior distributions for the shape parameter of8
the Weibull-Frechet distribution assuming that the other three parameters are known. The9
Bayes estimators and associated posterior risks have also been derived using the three10
different loss functions. The performance of the Bayes estimators are evaluated and11
compared using a comprehensive simulation study to find out the combination of a loss12
function and a prior having the minimum Bayes risk and hence producing the best results. In13
conclusion, this study reveals that in order to estimate the parameter in question, we should14
use quadratic loss function under either of the two non-informative priors used in this study.15

16
Keywords: Weibull-Frechet, Bayesian, MLE, prior, Uniform, Jeffrey, Loss functions.17

1. Introduction18

The Fréchet distribution is mostly used in extreme value theory and it has applications19
ranging from accelerated life testing through to earthquakes, floods, horse racing, rainfall,20
queues in supermarkets, wind speeds and sea waves. To get details on the Fréchet distribution21
and its applications, readers can study [25]. Moreover, applications of this distribution in22
various fields are given in [22], where it has been proven that the frechet distribution is used23
for modeling the statistical behavior of materials properties for a variety of engineering24
applications. [32] discussed the sociological models based on Fréchet random variables. [37]25
applied the Fréchet model for analyzing the wind speed data. [30] studied the Fréchet26
progressive type-II censored data with binomial removals.27
A random variable X is said to follow a Fréchet distribution with parameters  and if its28
probability density function (pdf) is given by29

 1( ) xf x x e
    (1.1)30

and the corresponding cumulative distribution function (cdf) is given as31

 ( ) xF x e
 (1.2)32

For 0, 0, 0x     where  and  are the scale and shape parameters of the Fréchet33

respectively.34

Many authors have developed generalizations of the Fréchet distribution. For instance, [32]35
pioneered the exponentiated Fréchet, [31] and [17] studied the beta Fréchet, [27] proposed36
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the transmuted Fréchet, [26] introduced the Marshall-Olkin Fréchet, [35] defined the gamma37
extended Fréchet, [18] studied the transmuted exponentiated Fréchet, [29] introduced the38
Kumaraswamy-Fréchet, [1] investigated the transmuted Marshall-Olkin Fréchet distributions,39
[2] studied the transmuted complementary Weibull geometric distribution and [3] studied the40
Weibull- Fréchet distribution. Of interest to us in this paper is the Weibull-Fréchet41
distribution (WFrD) proposed by [3]. This is because the parameters, properties and42
applications of this four parameter distribution have been studied and compared with some43
other distributions and the result showed that it is more fitted compared to kumaraswamy44
Frechet (KFr), exponentiated Frechet (EFr), beta Frechet (BFr), gamma extended Frechet45
(GEFr), transmitted marshallOlkin Frechet (TMOFr) and Frechet (Fr) distributions ([3]).46
The probability density function (pdf) and cumulative distribution function (cdf) of the47
Weibull-Fréchet distribution are given by (for x > 0)48

     
1

1 1( ) 1x e xf x x xe e e







 

 



 

  

 
   
 

 
 

 
(1.3)49

and50
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   (1.4)51

52
respectively, where 0  is a scale parameter and , , 0    are the shape parameters of the53

Fréchet distribution respectively according to [3].54
There are two main philosophical approaches to statistics. The first is called the classical55
approach which was founded by Professor R.A. Fisher in a series of fundamental papers56
round about 1930. In classical approach, the parameters are considered to be fixed while in57
the non classical or Bayesian concept, the parameters are viewed as unknown random58
variables. However, in many real life situations represented by life time models, the59
parameters cannot be treated as constant throughout the life testing period ([23]; [28]; [36])60
and hence the need for Bayesian estimation for life time models.61
Recently Bayesian estimation approach has received great attention by most researchers62
among them are [11] who studied Bayesian estimation for the extreme value distribution63
using progressive censored data and asymmetric loss. [10] considered Bayesian Survival64
Estimator for Weibull distribution with censored data. [19] discussed the Bayesian analysis of65
the scale parameter of inverse Gaussian distribution using different  priors and loss function.66
[14] obtained the shape parameter of Generalized Power Distribution (GPD) via Bayesian67
approach under the non-informative (uniform) and informative (gamma) priors using the68
squared error loss function. [15] estimated the scale parameter of Nakagami distribution69
using Bayesian approach. The Bayesian estimate of the scale parameter of Nakagami70
distribution under uniform prior, inverse exponential and levy prior distributions using71
squared error, quadratic and precautionary loss functions were also obtained by [16] and72
again [24] made a Comparison between Maximum Likelihood and Bayesian Estimation73
Methods for a Shape Parameter of the Weibull-Exponential Distribution under uniform and74
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Jeffrey’s priors and found that Bayesian method under uniform prior is better using quadratic75
loss function.76

77
The main objective of this paper is to introduce a statistical comparison between the Bayesian78
and Maximum likelihood estimation procedures for estimating the shape parameter of WFrD.79
The layout of the paper is as follow. In Section 2, we take a look at the materials and methods80
used which include the priors and the different loss functions. In Section 3, we obtained81
Maximum likelihood estimates of the shape parameter in question. Also, we estimate the82
shape parameter of the WFrD under uniform and Jeffrey’s priors in section 4 and section 583
respectively using three different loss functions. The posterior risks of the estimators obtained84
under the two priors using the three different functions were derived in section 6. Finally, a85
comparison between Bayes and Maximum likelihood estimates have been made using86
simulation study in Section 7 with Some concluding remarks given in Section 8.87

88
2. Materials and Methods89
3.90

2.1 Priors and Loss Functions91
92

The Bayesian inference requires appropriate choice of prior(s) for the parameter(s). From the93
Bayesian viewpoint, there is no clear cut way from which one can conclude that one prior is94
better than the other. Nevertheless, very often priors are chosen according to one’s subjective95
knowledge and beliefs. However, if one has adequate information about the parameter(s), it is96
better to choose informative prior(s); otherwise, it is preferable to use non-informative97
prior(s). In this paper we consider two non-informative priors: the uniform and Jeffreys’98
prior.99
To obtain the posterior distribution of the shape parameter once the data has been observed,100
we apply bayes’ Theorem which is stated in the following form:101

     

   
0

|
|

|

L X p
p X

L X p d

 


  



(2.1)102

where  p  and  |L X are the prior distribution and the Likelihood function103

respectively.104
The uniform prior as a non-informative prior relating to the shape parameter  is defined as:105

  1;0p      (2.2)106

The posterior distribution of the shape parameter  for a given data under uniform prior is107
obtained from equation (2.1) using integration by substitution method as108
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Also, the Jeffrey’s prior as a non-informative prior relating to the shape parameter  of the111
WFrD distribution is defined as:112

  1 ;0p  

    (2.4)113

The posterior distribution of the shape parameter  for a given data under Jeffrey prior is114
obtained from equation (2.1) using integration by substitution method as115
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(2.5)116

In statistics and decision theory, a loss function is a function that maps an event into a real117
number intuitively representing some cost associated with the event. Typically it is used for118
parameter estimation and that event in question is some function of the difference between119

estimated and true values for an instance of data. A Loss function,  , SELFL   is that which120

describes the losses incurred by making an estimate ̂ of the true value of the parameter is α.121
A number of symmetric and asymmetric loss functions have been shown to be functional in122
so many studies including; [13], [33], [12], [34], [9], [7], [4], [5], [6], [8], [21] and [20] and123
so forth.124
With the above priors and prior distributions, we will use three loss functions to estimate the125
shape parameter of the WFrD and these loss functions are defined as follows:126

(a) Squared Error Loss Function (SELF)127
The squared error loss function relating to the scale parameter  is defined according to [16]128
as129

   2, SELF SELFL      (2.6)130

where SELF is the estimator of the parameter  under SELF.131

(b) Quadratic Loss Function (QLF)132
The quadratic loss function is defined from [15] as133

 
2

, QLF
QLFL

 
 


 

  
 

(2.7)134

where QLF is the estimator of the parameter  under QLF.135

(c) Precautionary Loss Function (PLF)136
The precautionary loss function (PLF) according to [16] is an asymmetric loss function and is137
defined as138

   2
, PLF

PLFL
 

 



 (2.8)139

where PLF is the estimator of the parameter  under PLF.140

141
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4. Maximum Likelihood Estimation142

Here we present the estimation of the shape parameter of the Weibull-Fréchet distribution143

(WFrD) using the method of maximum likelihood estimation. Let nXXX ,.......,, 21 be a144

random sample from the WFrD with unknown parameter vector  , , , T     . The total145

log-likelihood function for  is obtained from f(x) as follows:146

       
1

1

1
1 2

1 1 1
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147

(3.1)148

The likelihood function for the shape parameter, , is given by;149

     
1 2

1
, ,....., / exp 1xi
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 (3.2)150

151

Let the log-likelihood function,  log |l L X , therefore152
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154

Differentiating partially with respect to , the shape parameter and solving for ̂ gives;155
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 (3.4)

157

Hence, equation (3.4) is the estimator for the shape parameter of the Weibull-Frechet

158

distribution obtained by the method of maximum Likelihood estimation.

159

5. Bayesian Estimation of the shape parameter of the WFrD under Uniform prior160
by using the three Different Loss Functions161

Here, we estimate the shape parameter of the WFrD under three loss functions using the162
posterior distribution obtained from the uniform prior in equation (2.3).163

164
4.1 Estimation Using Squared Error Loss Function (SELF)165
The derivation of Bayes estimator using SELF under uniform prior is as given below:166

   |SELF E E X   167

   
0

| |E X p X d   


  (4.1)168
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Substituting for  |p X in equation (4.1); we have:169
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 (4.2)170

Now, using integration by substitution method in equation (4.2) and simplification, we171
obtained the Bayes estimator using SELF under uniform prior as:172
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(4.3)174

4.2   Estimation Using Quadratic Loss Function (QLF)175
The derivation of Bayes estimator using QLF under uniform prior is given below:176
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   (4.4)178

Substituting for  |p X in equation (4.4); we have:179
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 (4.5)180

Using integration by substitution method in equation (4.5) and simplifying, we obtained the181
Bayes estimator using QLF under uniform prior as:182
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(4.6)184

4.3   Estimation Using Precautionary Loss Function (PLF)185
Similarly, the derivation of Bayes estimator under PLF using uniform prior is given below:186

       
1 1
2 22 2 2| |PLF E E X E X     187

   2 2

0

| |E X p X d   


  (4.7)188
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Substituting for  |p X in equation (4.7); we have:189
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 (4.8)190

Again using integration by substitution method in equation (4.8) and simplifying, we191
obtained the Bayes estimator using PLF under uniform prior as:192
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(4.9)194

It is very clear that the relationship: PLF > SELF > MLE > QLF holds for all parameter values195

and QLF under the uniform prior is obviously the minimum.196

6. Bayesian Estimation of the shape parameter of the WFrD under Jeffrey’s prior197
by using the three Different Loss Functions198

This section presents the estimation of the shape parameter of the WFrD using three loss199
functions and the posterior distribution obtained from Jeffrey’s prior in equation (2.5).200
5.1   Estimation Using Squared Error Loss Function (SELF)201
The derivation of Bayes estimator under SELF using Jeffrey’s prior is as given below:202

   |SELF E E X   203

   
0

| |E X p X d   


  (5.1)204

Substituting for  |p X in equation (5.1); we have:205
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 (5.2)206

Using integration by substitution method in equation (5.3) and simplifying, we obtained the207
Bayes estimator using SELF under Jeffrey prior as:208
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211
5.2   Estimation Using Quadratic Loss Function (QLF)212
Also, the derivation of Bayes estimator under Jeffrey’s prior using QLF is given below:213
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Substituting for  |p X in equation (5.4); we have:216
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Using integration by substitution method in equation (5.5) and simplifying, we obtained the218
Bayes estimator using QLF under Jeffrey prior as:219
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5.3   Estimation Using Precautionary Loss Function (PLF)222
Similarly, the derivation of Bayes estimator under PLF using Jeffrey’s prior is given below:223

       
1 1
2 22 2 2| |PLF E E X E X     224
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Substituting for  |p X in equation (5.7); we have:226
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 (5.8)227

Using integration by substitution method in equation (5.8) and simplifying, we obtained the228
Bayes estimator using PLF under Jeffrey prior as:229
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(5.9)231

It is also clear that MLE is the same as SELF under Jeffrey’s prior and the relationship: PLF232

> SELF > MLE > QLF holds for all parameter values and QLF under the Jeffrey’s prior appears233

to be the minimum.234
7. Posterior Risks under the priors using the Different Loss Functions235

The posterior risks of the Bayes estimators under the three loss functions from both uniform236
and Jeffrey’s prior are obtained as follows:237

6.1   Posterior Risks under the Uniform Prior238
Using Squared Error Loss Function (SELF)239

Using the Squared error loss function (SELF), the posterior risk,  SELFp  is defined from240

[16] as:241

      22 | |SELFP E X E X    (6.1)242

And it is obtained as243
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Using Quadratic Loss Function (QLF)245

Using the Quadratic loss function (QLF), the posterior risk,  QLFp  is defined from [16] as:246
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  (6.3)247

Therefore, the posterior risk under uniform prior using the Quadratic loss function is given248
as:249

  1
QLFP

n
  (6.4)250

Precautionary Loss Function (PLF)251

Using the Precautionary loss function (PLF), the posterior risk,  PLFp  is defined from [16]252

as:253

    2 |PLF PLFP E X    (6.5)254

And calculated to be:255
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6.2   Posterior Risks under Jeffrey’s Prior257
The posterior risks of the Bayes estimators under the three loss functions from the Jeffrey’s258
prior are as follows:259
Using Squared Error Loss Function (SELF)260

Using the Squared error loss function (SELF), the posterior risk,  SELFp  under Jeffrey’s261

prior is defined from [16] as:262

      22 | |SELFP E X E X    (6.7)263

Therefore, the posterior risk under Jeffrey’s prior using the squared error loss function is:264
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Using Quadratic Loss Function (QLF)266

Using the Quadratic loss function (QLF), the posterior risk,  QLFp  under Jeffrey’s prior is267

defined from [16] as:268
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Hence, it is obtained as:270
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Using Precautionary Loss Function (PLF)272

Using the Precautionary loss function (PLF), the posterior risk,  PLFp  is defined as:273

    2 |PLF PLFP E X    (6.11)274

Hence, obtained as:275
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277
278

Table 6.1: A Summary of the expressions for MLE, Bayes Estimators and Posterior Risks279
under uniform prior and Jeffrey’s Prior is as follows:280

PRIORS MLE SELF QLF PLF
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8. Simulation and Comparison282

We used a package in R software to generate random sample of size n = (25, 45, 85, 120)283
from WFrD by using 1.0  , 0.5  , 1.0  and 1.5  ; 1.0  , 2.5  , 0.5  and284

0.5  and 1.0  , 1.0  , 2.5  and 0.5  . The following tables present the results285

of our simulation study by listing the estimates of the shape parameter under the appropriate286
estimation methods such as the Maximum Likelihood Estimation (MLE), Squared Error Loss287
Function (SELF), Quadratic Loss Function (QLF) and Precautionary Loss Function (PLF)288
under both Uniform and Jeffrey prior.289

Table 7.1: Estimators/Estimates, their Biases and Mean Squared Errors based on the290
replications and sample sizes where 1.0  , 0.5  , 1.0  and 1.5  .291

Sample
sizes

Measures MLE Uniform Prior Jeffrey’s Prior
SELF QLF PLF SELF QLF PLF

20 Estimate 4.1239 4.3301 3.9177 4.4320 4.1239 3.7115 4.2257
BIAS 5.3358 5.6030 5.0685 5.7351 5.3358 4.8012 5.4678
MSE 4.3303 4.775 3.9076 5.0023 4.3303 3.5066 4.5471
Risk 8928.4 0.05 20.3797 8503.2 0.0526 20.3680

45 Estimate 2.6611 2.7203 2.6020 2.7497 2.6611 2.5429 2.6905
BIAS 1.9517 1.9951 1.9083 2.0166 1.9517 1.8649 1.9732
MSE 5.2313 5.4665 5.0012 5.5853 5.2313 4.7765 5.3476
Risk 160867.3 0.0222 58.8185 157370.2 0.0227 58.8115

85 Estimate 4.2704 4.3206 4.2202 4.3457 4.2704 4.1699 4.2955
BIAS 5.2844 5.3465 5.2222 5.3775 5.2844 5.1599 5.3153
MSE 3.6619 3.7486 3.5763 3.7922 3.6619 3.4916 3.7050
Risk 217069.5 0.0118 50.0949 214545.4 0.0119 50.0932

120 Estimate 8.1260 8.1937 8.0583 8.2275 8.1260 7.9905 8.1598
BIAS 9.0401 9.1155 8.9648 9.1531 9.0401 8.8894 9.0777
MSE 1.0284 1.0456 1.0113 1.0543 1.0284 0.9944 1.0370
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Risk NaN NaN Inf NaN NaN Inf
292

From table 7.1, we can see that both MLE and SELF (under Jeffrey prior) have the same293
estimate just as found in the derivations as well as their bias and MSE irrespective of the294
variation in the samples indicating that the two methods have the same performance295
considering this shape parameter. The table clearly shows that using the QLF under both296
uniform and Jeffrey’s prior produces the best results and hence the best approach for297
estimating the shape parameter of the WFrD irrespective of the different sample sizes.298

Table 7.2: Estimates of the shape parameter, their Biases and Mean Squared Errors and the299
posterior risks based on the replications and sample sizes where 1.0  , 2.5  , 0.5 300

and 0.5  .301

Sample
sizes

Measures MLE Uniform Prior Jeffrey’s Prior
SELF QLF PLF SELF QLF PLF

20 Estimate 6.7477 7.0852 6.4103 7.2518 6.7477 6.0729 6.9143
BIAS 8.6732 9.1068 8.2395 9.3211 8.6732 7.8058 8.8873
MSE 5.1344 5.6607 4.6338 5.9302 5.1344 4.3588 5.3911
Risk 2390384 0.05 333.46 2276556 0.0526 333.27

45 Estimate 5.7931 5.9219 5.6644 5.9859 5.7931 5.5357 5.8571
BIAS 2.9610 3.0268 2.8952 3.0595 2.9610 2.8294 2.9937
MSE 4.7391 4.9520 4.5308 5.0597 4.7391 4.1272 4.8444
Risk 7623573589 0.0222 12804.4 7457843728 0.0227 12802.87

85 Estimate 1.6114 1.6303 1.5924 1.6398 1.6114 1.5735 1.6208
BIAS 2.3176 2.3449 2.2903 2.3585 2.3176 2.2631 2.3312
MSE 5.3708 5.4979 5.2451 5.5618 5.3708 5.1210 5.4339
Risk 30907082847 0.0118 18902.65 30547698162 0.0119 18902.01

120 Estimate 6.9325 6.9902 6.8747 7.0190 6.9325 6.8169 6.9613
BIAS 3.2719 3.2992 3.2447 3.3128 3.2719 3.2174 3.2855
MSE 1.0704 1.0884 1.0527 1.0973 1.0704 1.0351 1.0794
Risk NaN NaN Inf NaN NaN Inf

302

Table 7.2 also gives a similar pattern of the result found in table 7.1 with similar estimates,303
biases and MSE for the MLE and SELF (under Jeffrey’s prior) with QLF (under Jeffrey’s304
prior) having the best performance (under Jeffrey’s prior) as well as the QLF under uniform305
prior. Again these performances are found to be consistent irrespective of the different306
sample sizes and the parameter values used.307

Table 7.3: Estimates of the shape parameter, their Biases and Mean Squared Errors and the308
posterior risks based on the replications and sample sizes where 1.0  , 1.0  , 2.5  and309

0.5  .310

Sample
sizes

Measures MLE Uniform Prior Jeffrey’s Prior
SELF QLF PLF SELF QLF PLF

20 Estimate 1.1478 1.2052 1.0904 1.2336 1.1478 1.0330 1.1762
BIAS 1.1347 1.1914 1.0780 1.2195 1.1347 1.0212 1.1627
MSE 1.2767 1.4076 1.1522 1.4746 1.2767 1.0341 1.3406
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Risk 6916977 0.05 567.24 6587597 0.0526 566.92
45 Estimate 2.1914 2.2400 2.1426 2.2643 2.1914 2.0940 2.2156

BIAS 1.7460 1.7848 1.7072 1.8041 1.7460 1.6684 1.7653
MSE 2.9566 3.0895 2.8267 3.1566 2.9566 2.6996 3.0223
Risk 1.09083e+1

3
0.0222 484349 1.067117e

+13
0.0227 484291.4

85 Estimate 1.4828 1.5002 1.4653 1.5089 1.4828 1.4479 1.4915
BIAS 3.0022 3.0376 2.9669 3.0552 3.0022 2.9316 3.0198
MSE 9.0134 9.2267 8.8026 9.3340 9.0134 8.5942 9.1194
Risk 2616987636

6
0.0118 17393.8 25865575

478
0.0119 17393.22

120 Estimate 1.3414 1.3526 1.3302 1.3581 1.3414 1.3190 13470
BIAS 4.2384 4.2738 4.2031 4.2914 4.2384 4.1678 4.2560
MSE 1.7964 1.8265 1.7666 1.8416 1.7964 1.7371 1.8114
Risk NaN NaN Inf NaN NaN Inf

311
The above table (Table 7.3) also shows that uniform and Jeffrey’s priors with QLF resulting312
in better estimates for the shape parameter however there are some variations in the pattern of313
the measures or values for bias and MSE which are as a result of the increase in the value of314
the one and only scale parameter, 2.5  ,and hence we say that increasing the value of the315
scale parameter,  affects the nature of our performance measures (increasing MSE instead of316
decreasing) though not the entire performance of the estimators and so looking at all the317
results presented in the tables, we can conclude that Bayes estimates using Quadratic loss318
function under Jeffrey’s and uniform priors are associated with minimum risks, biases and319
MSEs and are better when compared to those obtained from MLE, PLF and SELF under320
Jeffrey’s and uniform priors irrespective of the parameter values and the allocated sample321
sizes of n=20, 45, 85 and 120.322

9. Summary and Conclusions323

In this paper, we obtain Bayesian estimators of the shape parameter of WFrD. The Posterior324
distributions of this parameter are derived by using Uniform and Jeffrey’s priors. Bayes325
estimators and their risks have been obtained by using three different loss functions under the326
two prior distributions. The three loss functions taken up are Squared Error Loss Function327
(SELF), Quadratic Loss Function (QLF) and Precautionary Loss Function (PLF). The328
performance of these estimators is assessed on the basis of their relative posterior risks,329
Biases and Mean Square Errors. The performance of the different estimators has been330
evaluated under a detailed simulation study. The study proposed that in order to estimate this331
shape parameter of the WFrD, the use of Quadratic loss function under Jeffrey’s prior and332
secondly uniform prior can be preferred to produce the best results irrespective of the values333
of the parameters and the different sample sizes.334
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