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Abstract

It is interesting to calculate the variance of the variance estimator of the Bernoulli distribution.
Therefore, we compare the Bootstrap and Delta Method variances of the variance estimator of the
Bernoulli distribution in this paper. Firstly, we provide the correct Bootstrap, Delta Method, and
true variances of the variance estimator of the Bernoulli distribution for three parameter values
in Table 2.1. Secondly, we obtain the estimates of the variance of the variance estimator of the
Bernoulli distribution by the Delta Method (analytically), the true method (analytically), and
the Bootstrap Method (algorithmically). Thirdly, we compare the Bootstrap and Delta Methods

*Corresponding author: E-mail: robertzhangyying@qq.com, robertzhang@cqu.edu.cn;

Original Research Article



in terms of the variance estimates, the errors, and the absolute errors in three figures for 101
parameter values in [0, 1], with the purpose to explain the differences between the Bootstrap
and Delta Methods. Finally, we give three examples of the Bernoulli trials to illustrate the three
methods.
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1 Introduction

The Bootstrap Method, a resampling technique used to obtain estimates of summary statistics,
is widely applied, e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. And the Delta Method is a result
concerning the approximate probability distribution for a function of an asymptotically normal
statistical estimator from knowledge of the limiting variance of that estimator [13, 14].

Moreover, Casella and Berger [13] is a worldwidely used textbook for the courses of Statistical
Inference or Advanced Mathematical Statistics for first-year graduate students majoring in statistics
or in a field where a statistics concentration is required. In Example 10.1.21 of Casella and Berger
[13], they compared the Bootstrap and Delta Method variances of p̂ (1− p̂), which is the variance
estimator of the Bernoulli distribution. However, the variances of the Bootstrap method and the
true method are wrongly calculated.

In this paper, we compare the Bootstrap and Delta Method variances of the variance estimator
of the Bernoulli distribution. Firstly, we provide the correct Bootstrap, Delta Method, and true
variances of the variance estimator of the Bernoulli distribution for three parameter values in Table
2.1. Secondly, we obtain the estimates of the variance of the variance estimator of the Bernoulli
distribution by the Delta Method (analytically), the true method (analytically), and the Bootstrap
Method (algorithmically). Thirdly, we compare the Bootstrap and Delta Methods in terms of the
variance estimates, the errors, and the absolute errors in three figures for 101 parameter values
in [0, 1], with the purpose to explain the differences between the Bootstrap and Delta Methods.
Finally, we give three examples of the Bernoulli trials to illustrate the three methods.

The rest of the paper is organized as follows. In Section 2, we provide the right variances in Table
2.1. We also provide the estimates of the variance of p̂ (1− p̂) by the Delta Method (analytically),
the true method (analytically), and the Bootstrap Method (algorithmically). Moreover, we compare
the Bootstrap and Delta Methods in terms of the variance estimates, the errors, and the absolute
errors in three figures for 101 parameter values in [0, 1]. Section 3 provides three examples of the
Bernoulli trials. Section 4 concludes.

2 Main Results

The correct Bootstrap and Delta Method variances of p̂ (1− p̂) are given in Table 2.1, where sample
size n = 24, and bootstrap sample size B = 1000. In particular, the variance of the Delta Method
corresponds to p = 2/3 should be rounded to 0.00103, since the variance is calculated as 0.001028807.
From Table 2.1 we see that, the estimate of the variance of p̂ (1− p̂) by the Bootstrap Method is
better than the first-order Delta Method at p ̸= 1/2, but is worse than the second-order Delta
Method at p = 1/2.

Furthermore, the original values from Table 10.1.1 in Casella and Berger [13] are provided in Table
2.2 so that potential readers do not need to be referred to the book.
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Table 2.1. Bootstrap and Delta Method variances of p̂ (1− p̂). The second-order Delta
Method is used when p = 1/2. The Delta Method variance is calculated numerically

assuming that p̂ = p

p = 1/4 p = 1/2 p = 2/3

Bootstrap 0.00190 0.00025 0.00108

Delta Method 0.00195 0.00022 0.00103

True 0.00191 0.00021 0.00111

Table 2.2. Table 10.1.1 in Casella and Berger [13]) Bootstrap and Delta Method
variances of p̂ (1− p̂). The second-order Delta Method is used when p = 1/2. The

Delta Method variance is calculated numerically assuming that p̂ = p

p = 1/4 p = 1/2 p = 2/3

Bootstrap 0.00508 0.00555 0.00561

Delta Method 0.00195 0.00022 0.00102

True 0.00484 0.00531 0.00519

The potential reasons why the estimates in Table 10.1.1 of Casella and Berger [13] are not right are
summarized as follows. Firstly and the most importantly, the exact expression for Varp (p̂ (1− p̂))
may be wrongly calculated by Casella and Berger. Secondly, the Bootstrap procedure is wrongly
programmed by Casella and Berger.

The estimate of the variance of p̂ (1− p̂) by the first-order Delta Method is (see Casella and Berger
[13] Example 10.1.15)

V̂ar
Delta1

p (p̂ (1− p̂)) =
p̂ (1− p̂) (1− 2p̂)2

n
= f1 (p̂) .

Since V̂ar
Delta1

p (p̂ (1− p̂))
∣∣∣
p̂=1/2

= 0, a clear underestimate of the variance of p̂ (1− p̂). Therefore,

when p̂ = 1/2, we need to use a second-order Delta Method. When p̂ = 1/2, the estimate of the
variance of p̂ (1− p̂) by the second-order Delta Method is

V̂ar
Delta2

p (p̂ (1− p̂)) =
2p̂2 (1− p̂)2

n2
=

1

8n2
. (2.1)

The derivation of (2.1) can be found in the appendix. Therefore, the estimate of the variance of
p̂ (1− p̂) by the Delta Method is formed by combining the first-order and the second-order Delta
Method, and is given by

V̂ar
Delta

p (p̂ (1− p̂)) =

{
p̂ (1− p̂) (1− 2p̂)2 /n, if 1

2
̸= p̂ ∈ [0, 1] ,

2p̂2 (1− p̂)2 /n2 = 1/
(
8n2
)
, if p̂ = 1

2
.

The true variance of p̂ (1− p̂) is

Varp (p̂ (1− p̂)) =
1

n4

[
2n (n− 1) (3− 2n) p4 + 4n (n− 1) (2n− 3) p3

+n (n− 1) (7− 5n) p2 + n (n− 1)2 p

]
= f (p) . (2.2)

The derivation of (2.2) can be found in the appendix. We note that the exact expression for
Varp (p̂ (1− p̂)) is required to be calculated in Exercise 10.10 in Casella and Berger [13]. However,
in their solution manual, there is no solution for this exercise.

The estimate of the variance of θ̂ = p̂ (1− p̂) by the Bootstrap Method is calculated as follows
[13, 4, 14].
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Step 1. Given p ∈ [0, 1], generate an n×B matrix

X∗ = (x∗
ki)n×B , x∗

ki ∼ Bernoulli (p) .

Step 2. Calculate

p̂∗i = x̄∗
i =

1

n

n∑
k=1

x∗
ki, i = 1, . . . , B.

Step 3. Calculate
θ̂∗i = p̂∗i (1− p̂∗i ) , i = 1, . . . , B.

Step 4. Calculate the bootstrap approximator

Var∗B

(
θ̂
)
=

1

B − 1

B∑
i=1

(
θ̂∗i − θ̂∗

)2
,

where

θ̂∗ =
1

B

B∑
i=1

θ̂∗i .

In Figs. 2.1-2.3, there are 101 p values [0, 0.01, 0.02, . . . , 0.99, 1]; sample size is n = 24; and bootstrap
sample size increases to B = 10000.

Three p values of the three methods are compared in Table 2.1. However, what are the variance
comparisons at other p values in [0, 1]? Let us see Fig. 2.1. In Fig. 2.1, the red full line is the
variance estimated by the Bootstrap Method, the blue dashed line is the variance estimated by the
Delta Method, and the black dotted line is the true variance. We see that the variance estimated by
the Bootstrap Method approximates the true variance very well. Moreover, the second-order Delta
Method at p = 1

2
has a good variance estimate, while the first-order Delta Method at p = 1

2
has a

very bad variance estimate. Furthermore, the true variance curve has two peaks and one valley, and
the true variances are equal to 0 at the two end points. We also see that the three curves exhibit
symmetries about p = 1

2
. It is easy to check that the first-order Delta Method curve is symmetric

about p = 1
2
by checking

f1

(
1

2
+ ε

)
= f1

(
1

2
− ε

)
.

We can also check that the true variances curve is symmetric about p = 1
2
by checking

f

(
1

2
+ ε

)
= f

(
1

2
− ε

)
.

We can exploit the Mathematica software to do this job. And the Mathematica codes can be
found in the supplemental file “TestSymmetric.nb”. We see that the Bootstrap Method curve is
numerically symmetric about p = 1

2
.

The error comparison of the two methods is shown in Fig. 2.2, and the error curve is calculated
by the difference of the estimated curve and the true curve. Thus the error will be positive if the
estimated variance is higher than the true variance, and negative otherwise. From Fig. 2.2 we see
that the Bootstrap Method has small errors on the whole interval [0, 1], while the Delta Method has
a sine shaped error (in fact the curve is a polynomial of p of order 4) with an exception at p = 1

2
,

as expected. The error curves of the two methods are symmetric about p = 1
2
.
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Fig. 2.1. Variance estimate comparisons of the three methods
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Fig. 2.2. Error comparisons of the Bootstrap and Delta Method

Fig. 2.3 shows the absolute error comparison of the two methods. By absolute error, we mean
the absolute value of the error. We see that in most cases, the Bootstrap Method outperforms the
Delta Method. The magnitude of the absolute errors of the Bootstrap Method is smaller than that
of the Delta Method. The absolute error curves of the two methods are symmetric about p = 1

2
.

The variances of the two methods agree with the true variances at the two endpoints 0 and 1.
The variances of the Delta Method agree with the true variances at two intermediate values, and
thus it behaves better than the Bootstrap Method near the two values. While the variance of the
Bootstrap Method seems to agree with the true variance at p = 1

2
, and thus it is better than the
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Delta Method at the point. This phenomenon seems to contradict with that phenomenon which is
seen in Table 2.1. However, there is no contradiction because in Table 2.1, B = 1000, while in Fig.
2.3, B = 10000.
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Fig. 2.3. Absolute error comparisons of the Bootstrap and Delta Method

3 Examples

In this section, we provide three examples of the Bernoulli trials. Then we calculate the estimates
of the variance of the variance estimator of the Bernoulli distribution by means of the Bootstrap
Method, the Delta Method, and the true method. In the three examples, the bootstrap sample size
is B = 10000. Note that the sample size n in the three examples are different.

Example 3.1. A coin is flipped 100 times, and there are 52 heads up. Therefore, the proportion
of heads up is

p̂ =
52

100
= 0.52.

The estimates of the variance of the variance estimator of the Bernoulli distribution by the three
methods are respectively given by

Var∗B (p̂ (1− p̂))|p=p̂ = 1.6183e-05,

V̂ar
Delta

p (p̂ (1− p̂)) = 3.9936e-06,

Varp (p̂ (1− p̂))|p=p̂ = 1.6250e-05.

Example 3.2. There is a batch of vegetable seeds, and each seed sprouts with probability p. We
sample 500 seeds at random. After seed soaking treatment with seed coating agent, there are 445
seeds sprouted. Therefore, the sprouting rate is

p̂ =
445

500
= 0.89.

6



The estimates of the variance of the variance estimator of the Bernoulli distribution by the three
methods are respectively given by

Var∗B (p̂ (1− p̂))|p=p̂ = 0.0001172489,

V̂ar
Delta

p (p̂ (1− p̂)) = 0.0001191247,

Varp (p̂ (1− p̂))|p=p̂ = 0.0001187252.

Example 3.3. 400 newborns in the local area are observed in one hospital. There is only one
newborn with chromosomal abnormality. Therefore, the rate of chromosomal abnormality in the
local area is

p̂ =
1

400
= 0.0025.

The estimates of the variance of the variance estimator of the Bernoulli distribution by the three
methods are respectively given by

Var∗B (p̂ (1− p̂))|p=p̂ = 6.078563e-06,

V̂ar
Delta

p (p̂ (1− p̂)) = 6.172187e-06,

Varp (p̂ (1− p̂))|p=p̂ = 6.141442e-06.

4 Conclusions

We compare the Bootstrap and Delta Method variances of p̂ (1− p̂), which is the variance estimator
of the Bernoulli distribution. First, we provide the right Bootstrap, Delta Method, and true
variances of p̂ (1− p̂) in Table 2.1. The parameter values of Table 2.1 and Table 10.1.1 in Casella
and Berger [13] are the same. Then, we provide the estimates of the variance of p̂ (1− p̂) by the
Delta Method, the true method, and the Bootstrap Method. The derivations of the estimates
of the variance of p̂ (1− p̂) by the second-order Delta Method and the true method are given in
the appendix. Moreover, we compare the Bootstrap and Delta Methods in terms of the variance
estimates, the errors, and the absolute errors in three figures for 101 parameter values in [0, 1]. It
is worth noting that, the three variance estimate curves exhibit symmetries about p = 1

2
, and in

most cases, the Bootstrap Method outperforms the Delta Method. Finally, three examples of the
Bernoulli trials are given to illustrate the three methods.
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APPENDIX

The derivations of (2.1) and (2.2) are given in the appendix.
The derivation of (2.1). We have, by the Central Limit Theorem,

X̄ − EX̄√
Var

(
X̄
) d−→ N (0, 1) , as n → ∞,

where X̄ is the sample mean of X1, X2, . . . , Xn, which are iid from Bernoulli (p). The Maximum
Likelihood Estimator (MLE) of p is p̂ = X̄. And

Ep̂ = EX̄ = EX = p,

Var (p̂) = Var
(
X̄
)
=

Var (X)

n
=

p (1− p)

n
.

Therefore,
p̂− p√
p(1−p)

n

d−→ N (0, 1) , as n → ∞.

Rearranging, we obtain

√
n (p̂− p)

d−→
√

p (1− p)N (0, 1) = N (0, p (1− p)) , as n → ∞.

Let g (p) = p (1− p). Then by the second-order Delta Method (Theorem 5.5.26 in [13]), we have

n [g (p̂)− g (p)]
d−→ g

′′
(p)

2
σ2χ2

1, as n → ∞,

where σ2 = p (1− p) and χ2
1 is the chi-square random variable with 1 degree of freedom. Therefore,

for large n,

Varp (g (p̂)) ≈ Varp

(
g
′′
(p)

2n
σ2χ2

1

)
= Varp

(
−2

2n
p (1− p)χ2

1

)
=

2p2 (1− p)2

n2
.

Replacing p by its MLE p̂ in the above equation, we obtain the estimate of the variance of p̂ (1− p̂)
by the second-order Delta Method, namely,

V̂ar
Delta2

p (p̂ (1− p̂)) =
2p̂2 (1− p̂)2

n2
.

Therefore, (2.1) is established. �
The derivation of (2.2). We have

p̂ = X̄ =
1

n

n∑
i=1

Xi =
1

n
Y,

where X1, X2, . . . , Xn are iid from Bernoulli (p) and

Y =

n∑
i=1

Xi ∼ Binomial (n, p) .

Therefore,

Varp (p̂ (1− p̂)) = Varp
(
X̄
(
1− X̄

))
= Varp

(
Y

n

(
1− Y

n

))
= Varp

(
Y (n− Y )

n2

)
=

1

n4
Varp (Y (n− Y )) .
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Now
Varp (Y (n− Y )) = E

[
Y 2 (n− Y )2

]
− {E [Y (n− Y )]}2 .

To calculate Varp (Y (n− Y )), we need to know the first four moments of Y which can be calculated
by the derivative of the moment generating function evaluated at t = 0. The first four moments of
Y are given by:

EY = np,

EY 2 = np+ n (n− 1) p2,

EY 3 = np+ 3n (n− 1) p2 + n (n− 1) (n− 2) p3,

EY 4 = np+ 7n (n− 1) p2 + 6n (n− 1) (n− 2) p3 + n (n− 1) (n− 2) (n− 3) p4.

Now

E [Y (n− Y )] = E
[
nY − Y 2] = nEY − EY 2

= n× np− np− n (n− 1) p2 = n (n− 1) p (1− p) ,

and

E
[
Y 2 (n− Y )2

]
= E

[
Y 2 (Y 2 − 2nY + n2)] = E

[
Y 4 − 2nY 3 + n2Y 2]

= EY 4 − 2nEY 3 + n2EY 2.

Therefore, by calculating, we obtain

Varp (Y (n− Y )) = EY 4 − 2nEY 3 + n2EY 2 − [n (n− 1) p (1− p)]2

= 2n (n− 1) (3− 2n) p4 + 4n (n− 1) (2n− 3) p3

+ n (n− 1) (7− 5n) p2 + n (n− 1)2 p.

Dividing Varp (Y (n− Y )) by n4, we obtain (2.2). �
——————————————————————————————————————————————–
c⃝ 2018 Zhang et al.; This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.
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