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ABSTRACT  6 
The primary aim for this paper is to examine the pattern of rainfall in the western region of Ghana. 
Data was obtained from the Ghana Meteorological Agency. The sample include January to 
September pattern of the amount of rainfall, for the years 2006 to 2016. That is nominal daily rainfall 
recorded (1485) aggregated into monthly rainfall value (99 data point). The analysis includes fitting an 
auto regression moving average model (ARMA) model for the data. The series was found to be non-
stationary which resulted from the presence of a unit root in it. The series became stationary after 
eliminating the unit root by finding the first difference in the amount of rainfall. The time series 
component found in the model were trend and random variation. ARMA (1, 1) which has all 
parameters significant was fitted for the data and found to be the most suitable model for the 
conditional mean. A Ljung Box test statistic of 47.207 with a normalized BIC of 6.420 and a Root 
Mean Square error of 24.16 supported by a probability value of 0.001 show that the fitted model is 

appropriate for the data. An 2R = 0.532 indicates that about 53% of the variations seen in the pattern 
of rainfall recorded for the period is being explained by the fitted model. The 18-month forecast for the 
mean actual rainfall and mean returns could show that the fitted model is appropriate for the data and 
an increasing trend of rainfall for the forecasted period. 
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1. INTRODUCTION 11 
Rainfall variability has serious implications for livelihood and food production in developing regions 12 
such as West Africa. In this region irrigation is restricted and inter-annual and multi-decadal variability 13 
leads to declining rainfall total. The situation is exacerbated by the fact that more than half of the adult 14 
population in the sub-region is directly engaged in essentially rain-fed agriculture. Ghana, like the 15 
other parts of the sub-continent, has undergone a period of declining annual rainfall total since the 16 
early 1970s and she is only recently showing signs of recovery since 2000 [1]. Increases in annual 17 
rainfall totals in many parts of Ghana after the year 2000 are evident in the spilling of the Akosombo 18 
dam on the Volta River in November 2010. This was the first time in 20 years that the dam had to be 19 
spilled due to increases in rainfall [2]. About 42 % of Ghana’s 238,540	  is suitable for crop 20 
cultivation but only about 27 % of this is under cultivation as estimated by the Food and Agricultural 21 
Organization (FAO) in 2005. In a pilot study in Wenchi, located on the northern fringe of mid-Ghana, 22 
[2] identified, in addition to an overall drying, greater reductions in the mean rainfall totals and the 23 
mean number of rainy days during the minor rainy season and a slight increase of rains in the short 24 
dry spell. This reduction in rainfall and potential diminution of the minor rainy season, if present 25 
throughout humid mid-Ghana, is likely to prevent cultivation of crops and crop varieties that have 26 
longer growing seasons, as well as the adoption of a single crop per year, instead of the current two 27 
crops, under rain-fed agriculture. Such an occurrence will negatively impact on food security. 28 
Government agencies and international organizations are currently encouraging the application of 29 
seasonal forecast information and weather index insurance as some of the adaptation measures [3, 30 
4].  31 



 

 

However, to develop a model for predicting changing rainfall patterns or to utilize available forecasted 32 
information, it is important to understand both the spatio-temporal nature of the declining and shifting 33 
rainfall pattern in the agriculturally important regions in mid-Ghana. According to FAO in 2008, rainfall 34 
variability is an inherent part of the African climate and it is deeply entrenched in West Africa. Thus, 35 
there is inadequate rain for irrigation in many African countries and as such countries whose 36 
economies rely highly on agriculture are greatly vulnerable to economic instability. According to the 37 
International Scientific Research (ISR) Journal [2], “in the event of large deviations from the normal 38 
rainfall, people are highly affected as floods and droughts are most often the by-products. 39 
Government’s scarce resources are directed to humanitarian missions to help people affected by 40 
floods and other disasters that come with these extreme weather conditions”.  41 
 42 
During the last 10 to 15 years, there have been worldwide perceptions that droughts and floods have 43 
intensified [5]. In Ghana, it has been observed that the annual rainfall total has generally declined 44 
while the total number of extreme events such as droughts has been on the increase [2, 6]. Similar 45 
studies conducted by [7] for West Africa, [8] for east Africa, [9] for south Africa, [10, 11] for various 46 
parts of Africa show that some regions on the continent, especially west Africa have suffered drastic 47 
changes such as prolonged drought and prolonged flood.  48 
 49 
In Ghana, the situation is no different, the Ministry of Finance, in 2007 indicated that the problem of 50 
rainfall variability is paramount and continues to have serious consequence on the Ghanaian 51 
agriculture, accounting for about 35% of the country’s Gross Domestic Product (GDP).  Farmers 52 
depend on shared knowledge and experience with the weather as well as observations of natural 53 
phenomena to forecast forthcoming cropping season and weather condition [12]. However, in recent 54 
times, the frequency of change in climate has increased considerably and local experience and 55 
knowledge are no longer sufficient to guide agricultural planning and decision making [13]. Hence the 56 
initiation of models as a guide to understanding these drastic changes and future circumstances could 57 
therefore be predicted based on the knowledge acquired from these models.  58 
 59 
Climate change in Ghana has become a threat to livelihoods. Drought and over flooding in some parts 60 
of Ghana have developed into yearly worry to people and government.  In the south particularly, the 61 
coastal areas, aquatic life is of great importance because of the fishing activity that goes on there, and 62 
farmers in these parts also dwell mainly on the rains for farming since there are no major irrigational 63 
facility.  As such, changes in rainfall affect the level of water bodies as well as crop farming. This 64 
problem influences the economic activities in these areas and the country at large. As a result, the 65 
Government of Ghana contracts researchers and engineers to come out with ways to solve these 66 
problems every now and then [4]. One of the ways used is time series analysis, thus, studying the 67 
past and current pattern of rainfall in a systematic approach would help to fit a suitable model for 68 
future predictions.  69 
 70 
The major purpose of this study is to identify rainfall pattern in the Western Region of Ghana, West 71 
Africa by considering the years 2006 to 2016 and fitting an appropriate time series model for 72 
forecasting future rainfall pattern (values) in the Western Region. Findings of this paper will be 73 
significant since it will enable farmers to plan their farming activities ahead of time and provide 74 
empirical evidence to stakeholders on rainfall trends to help them formulate policies that can benefit 75 
the region concerned and the nation at large. 76 
 77 
 78 
2. DATA AND METHODS  79 
 80 
This article considered a model based on information and real data obtained from the Ghana 81 
Meteorological Station, Sekondi. The sample include January to September pattern of the amount of 82 
rainfall, for the years 2006 to 2016, that is nominal daily rainfall recorded (1485) aggregated into 83 
monthly rainfall value (99 data point). 84 
 85 
2.1. Time Series Analysis 86 
 87 
In time series analysis, the past and present behavior of variables are observed and examining them 88 
often suggest the method of analysis as well as statistics that will be of use in summarizing any 89 
information in the data, so that values predicted from the data may fit the present situation as well as 90 
the future. Time series data are often obtained through monitoring industrial processes or tracking 91 



 

 

corporate business metrics. Data used in time series can be continuous or discrete in nature, it is said 92 
to be continuous when the observations are made over time interval and it is described as discrete 93 
when observations are made at specific time periods. Usually these observations in time series are 94 
taken at regular intervals such as days, months, quarters and years. There are two mutually exclusive 95 
approaches usually applied in time series analysis, these are the time domain approach and the 96 
frequency domain approach. Conversely, the time domain approach which is adapted in this study is 97 
generally motivated by the assumption that correlation between times is explained best in terms of a 98 
dependence of the current value on the past values. This approach focuses on modeling some future 99 
value of a time series as a parametric function of the current and past values. A more current method 100 
in the time domain approach well-known to statisticians is the use of the additive model or the 101 
multiplicative models [14, 15]. 102 
 103 
Time series data exhibit at least one of the following features; Secular (Trend), Seasonal variations, 104 
Cyclical variations, and Irregular (Random) variations. Secular (Trend) are continuous long-term 105 
movement in a variable over an extended period that is, a general increase or decrease in a time 106 
series data over several consecutive periods. Trend can be linear or nonlinear. A linear trend tends to 107 
increase or decrease at a constant rate, however a nonlinear trend is likely to move steadily upwards, 108 
as others decline. Seasonal Variation is a wavelike pattern that is repeated throughout a time series 109 
with a recurrent period at most one year but, usually on weekly, monthly, quarterly, or annual basis. 110 
These are the short-term regular variations in data, generally caused by factors such as weather, 111 
holidays, festivals etc. 112 
 113 
Seasonal component is a pattern in time series which indicate change of monthly data that repeats 114 
itself within a year. A Cyclical Variation exhibits repetitious pattern with a recurrent period longer than 115 
one year. This occurs mostly in businesses which indicate variations in the general level of national 116 
economic measures such as unemployment, gross national product, stock market index etc. over a 117 
relatively long period of time, thus these points toward a cycle. Irregular (Random) Variation is often 118 
referred to as the “noise” in the data that are unpredictable in the times series data and cannot be 119 
associated with trend, seasonal, or cyclical component of time series. Events such as industrial strike 120 
actions, earth quakes, floods, outbreak of epidemics, wars etc., may lead to odd movements in a time 121 
series data [14, 15]. The types of patterns of fluctuations in a time series may be represented as; 122 

T = trend value of the series  123 
S = value of the seasonal variation 124 
C = value of the cyclical variation 125 
I = value of the irregular variation 126 

 127 
Thus let; 128 
     = observed values of the time series at time t   (1) 129 
 130 
Hence the additive and multiplicative models may be represented as 131 
 132 
    Y  = T + S + C + I and      (2) 133 
 134 
    Y  = T × S × C × I respectively.    (3) 135 
 136 
If the data however, do not contain one of the type of variation (e.g., cycle) the value for that missing 137 
component is zero. For instance, there is no cycle for a yearly series since cyclical variation cannot be 138 
observed over a one-year period, hence the additive model becomes; 139 
 140 

Y  = T + S + I.       (4) 141 
 142 
Likewise, in the multiplicative model if trend, seasonal variation, or cycle is missing, then the value is 143 
assumed to be 1. So, for series with a period of one year, where there is no cycle then; 144 
 145 

 Y  = T× S × I.       (5) 146 
 147 
2.2. Trend Analysis and Forecasting Techniques 148 
 149 
Time series analysis is aimed at projecting trend by fitting a trend line to a series of historical data 150 
points through which a model is fit for prediction of future values over a period. Several trend 151 



 

 

Equations can be developed based on exponential or quadratic models, however the simplest is a 152 
linear trend model (least square method- LSM) that is developed using Regression analysis. Equation 153 
for Linear Trend is given by 154 
 155 
             (6) 156 
Where; 157 

 = trend value in period t (predicted value)  158 
b0 = intercept of the trend line 159 
b1 = slope of the trend line 160 
t = time 161 
 162 

It should be noted that t is the independent (or predictor) variable and  is the dependent (response) 163 
variable. Computing the Slope (b1) and Intercept (b0) using the Least Square Method (LSM). The 164 
slope (b1) is given by; 165 

 166 

b
∑ ∑ ∑

∑ ∑
      (7) 167 

 168 
and the intercept (b0) is also given by; 169 
  170 

b
∑

b
∑

Y b t ̅    (8)  171 

Where; 172 
 173 
  = actual value in period t  174 
 	= number of periods in time series 175 
 176 
Quadratic trend model is a non-linear trend model also known as a second-degree polynomial model. 177 
It is the simplest curvilinear model with a general equation given by; 178 
 179 

² 
           (9) 180 
Where; 181 
 182 

b0 estimates the value of Tt when t=0 183 
b1 is the linear effect coefficient 184 
b2 is the curvilinear effect coefficient 185 

 186 
Time series data is deseasonalized when the seasonal effects in a time series data is to be removed 187 
before trend is fitted and usually seasonal index are computed for such purpose. Seasonal pattern is 188 
the short-term cycle occurs within or at most a year. The seasonal variation can be expressed in 189 
terms of deviations from the original data in the case of additive model or as percentage of the trend 190 
in the case of multiplicative model. Thus, the deseasonalized value for an additive model is given by; 191 
 192 

Deseasonalized	value time	series	observation seasonal	index Y I  
 193 
and that of multiplicative model is also given by; 194 
 195 

Deseasonalized	value	 	 	

	 	
	      (10) 196 

 197 
Thus, applying the LSM, Tt = b0 + b1t in this case, Y 	the deseasonalized time series value at time t is 198 
used in-place of the actual value of the time series (Yt). The resulting line equation is therefore used 199 
to make trend projections. Projection of trend into the future is usually known as forecasting, the time 200 
series data are plotted so that their trends over time are observed. If there is a long term upward or 201 
downward trend in the data the least square forecasting method can be considered especially when 202 
dealing with annual data. However, if there is no trend then either the moving average or the 203 
exponential smoothing forecasting techniques may be employed. Exponential smoothing is a 204 
forecasting tool also used predicts future time series data. In this type of forecast technique, the 205 
forecast is based on a weighted average of a historic time series data. The weighted average usually 206 



 

 

represented by alpha (α) [14, 15, 16]. Thus, the forecast value for a current time series is computed 207 
as;  208 
 209 

F 	αY 	 1 α F  
           (11) 210 
    211 
Where; 212 
 Ft + 1 is the new forecast for time t + 1 213 
 Yt is the previous period actual demand 214 
 Ft is the previous forecast for the time t 215 
 α is the smoothing constants (0 ≤ α ≤ 1)  216 
 217 
2.3. Measures of Forecast Error (Forecast Error = (Yt - Ft)) 218 
 219 
The forecast error is the deviation of the forecast values (Ft) from the actual values (Yt). There are 220 
four main errors measured in forecast data. These errors include Bias, Mean Absolute Deviation 221 
(MAD), Mean percentage deviation error (MAPE) and the mean square error (MSE) [14, 15, 16]. In 222 
time series analysis Bias, MAD, and MAPE are the usual errors employed to assess the amount of 223 
errors related to a forecast. Bias is similar to the arithmetic mean, that is, the sum of the forecast 224 
errors divide by the number of period, T and it is given by 225 
 226 

Bias
∑ 	 ∑

  (12) 227 

 228 
Mean Absolute Deviation (MAD) is the sum of the absolute forecast error divide by the number of 229 
period, T. Mathematically, 230 
 231 

MAD
∑ | 	 |

	    (13) 232 

 233 

              
∑ | |

      234 

Mean square deviation is more sensitive measure of usually large forecast error than Mean Absolute 235 
Deviation [14, 15, 16]. Mean Absolute Percentage Error (MAPE) [17] is the division of each 236 
percentages of the absolute forecast error by their actual values, then all summed and divide by the 237 
number of period, T. Hence. 238 
 239 

MAPE 100
∑

    (14) 240 

 241 
Mean Square Error (MSE) is similar to simple sample variance [14, 15, 17]. Standard Error is the 242 
standard deviation of the sampling distribution (the square root of the MSE) given as 243 
 244 

MSE
∑ 	

    (15) 245 

 246 

                                                                             	
∑

    247 

 248 
 249 
3. RESULTS AND DISCUSSION 250 
 251 
The analysis that follows is focused on the pattern of rainfall in the western region of Ghana. The 252 
analysis includes fitting an ARMA model for the observed rainfall data. This article considered a model 253 
based on information and real data obtained from the Ghana Meteorological Station, Sekondi. The 254 
sample include January to September pattern of the amount of rainfall, for the years 2006 to 2016, 255 
that is nominal daily rainfall recorded (1485) aggregated into monthly rainfall value (99 data point). 256 
Time Series Analysis and the statistical computing package R were used for the modeling. 257 
 258 
3.1. Rainfall Distribution  259 
 260 



 

 

The time plot of a given series gives a fair idea of the stationarity of the series which is considered as 261 
a form of statistical stability. A series with trend or seasonal pattern are considered as non-stationary. 262 
That is the mean of the given series change with time. The time plot of the series in Figure 1 shows 263 
that the series exhibit a random fluctuation showing a periodic or seasonal variation with maximum 264 
value of 408.30 in June. 2011 and minimum value of 1.20 in January. 2009. We also observe that the 265 
mean of the amount of rainfall changes over time, which suggest the series is non-stationary. The 266 
histogram with normal curve and normal Q-Q plot indicates that the empirical distribution of the series 267 
is not normally distributed and skewed to the right. By performing the unit root test on the series, we 268 
found that the Augmented Dickey- Fuller (ADF) root test statistic (-1.9453) is higher than the critical 269 
value (-2.86431), at a 5% significance level indicating that we fail to reject the null hypothesis that 270 
there is a unit root in the series which is supported by a p-value of 0.234 271 
 272 

 273 
 274 
Figure 1: Time plot, Distribution and Normal Q-Q plot for Monthly Rainfall Series 275 
 276 
For us to eliminate the unit root, we found the first difference in the rainfall pattern and conducted the 277 
test again. The results of the test show an ADF test statistic for the first difference (-8.2038), with a p-278 
value of 0.01and critical value (-2.86431) which make us reject the null hypothesis of unit root in the 279 
series. Hence, we conclude that the rate return series is stationary. 280 
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 281 
 282 
Figure 2.: First Differenced of Monthly Rainfall Series 283 
 284 
Figure 2 shows the first difference of amount of rainfall and its distribution. The series appear to be 285 
stationary around the mean (top), the histogram look symmetric with heavy tail to the right and the 286 
normal Q-Q plot indicates a normal series with few outliers. 287 
 288 
3.2. Determining Order of Dependency of 1st Differenced Series 289 
 290 
The autocorrelation and partial autocorrelation functions (ACF/PACF) for the first differenced in the 291 
amount of rainfall are illustrated in figure 3.  292 
 293 
From figure 3, we could observe that both the Autocorrelation and Partial autocorrelation functions 294 
showed dependency in the differenced rainfall series. As a result, a correlation structure in conditional 295 
mean is required.  296 
 297 
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 298 
 299 
Figure 3: ACF and PACF of 1st differenced monthly rainfall pattern 300 
 301 
It can also be observed that the ACF show a significant number of lags of an MA at lag1 and PACF 302 
also show a significant number of lags of an AR at lag 1. This indicates that the model for the 303 
conditional mean is ARMA (1, 1). This is confirmed by the selection of model using the Alkaike 304 
Information Criterion shown in Table 1 305 
 306 
Table 1: Model Selection by Alkaike Information Criterion 307 
 308 

ARMA (p, q) AIC

ARMA (1, 0) 364.91
ARMA (0, 1) 362.21

ARMA (1, 1) 339.33

ARMA (1, 2) 343.17

ARMA (2, 1) 342.97

ARMA (0, 2) 342.51

ARMA (2, 0) 365.42

ARMA (2, 2) 382.16

                       309 
Using the Alkaike Information Criterion, we choose the model with the smallest value of AIC. From 310 
Table 1, the suitable model for the conditional mean is ARMA (1, 1) with an AIC value of 339.33.  The 311 
parameter estimates are shown in Table 2 312 
 313 
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Table 2: ARMA (1, 1) Model’s Parameter Estimates and Standard Errors 319 
 320 

Variable Coefficient
Standard 

Error
T-Statistics Probability

Constant -0.004271 0.006400 -0.667 0.505
AR (1)  0.415772 0.096789  4.296  1.74e-05
MA (1) -0.996001 0.032122 -0.667   2e-16

 321 
2 = 1.757, conditional sum of squares = 170.2, AIC = 339.33 322 

 323 
3.3. Conditional Mean Model the Differenced Rainfall Series 324 

The ARMA ( , )p q model states that the current value of some series tr  depends linearly on its own 325 

previous values and a combination of current and previous values of a white noise error term t . In 326 
the general form, the model can be written in the form: 327 
 328 

0
1 1

p q

t i t i j t j t
i j

y y     
 

    
 329 

 330 

( ) 0;tE  
    

2 2( )tE  
 ,    

( ) 0,t sE   
     

t s
 331 

 332 
Our model for the conditional mean of the differenced rainfall series is ARMA (1, 1) given by333 

 1 10.004271 0.415772 0.996001t t t ty y       
(see Figure 4). 334 

 335 

 336 
 337 
Figure 4: Model Diagnosis of ARMA (1, 1) 338 
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 339 
 340 
Figure 5: Time plot and ACF of Standardized Residuals 341 
 342 
The time plot of the standardized residuals shows no obvious patterns (does not follow any specific 343 
component). The ACF of the standardized residuals and squared standardized residuals show no 344 
apparent departure from the model assumptions as shown in Figure 5 345 
 346 
From Figure 6 below the histogram appears to be symmetric and generalized normal q-q plot of the 347 
standardized residuals show no departure from model assumptions (i.e. the assumed conditional 348 
mean distribution captured the high kurtosis and the heavy tails of the residuals).  349 
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 350 
 351 
Figure 6: Histogram and Normal Q-Q Plot of Standardized Residuals 352 
 353 
This suggests the residuals are independent generalized error distribution hence the model seem to 354 
be adequate for the data. Consequently, the ARMA (1, 1) is adequate for describing the conditional 355 
mean of the differenced rainfall series at 5% significance level. 356 
 357 
Table 3: Summary Statistics of Standardized Residuals 358 
 359 

Statistic Value Statistics Value 

Mean 
Median 
Minimum 
Maximum 
LC L mean 
UVL mean 
Nobs 

 0.001041 
-0.303789 
-1.530580 
 3.093621 
-0.199420 
  0.201502 
99.000000

SE mean 
Variance 
Std. dev. 
Kurtosis 
Skew 
Sum 
NAS

0.101015 
1.010203 
1.005089 
0.586320 
1.089648 
0.103062 
0.000000 

 360 
The descriptive statistics of standardized residuals in Table 3 shows a standard deviation (1.005) with 361 
a general mean (0.001). The empirical distribution of residuals indicates normal kurtosis (0.586) and 362 
skewness (1.090). This indicates non-normality of standardized residuals and positively skewed with a 363 
lighter tail to the right. 364 
 365 
3.4. Model Validation 366 
 367 
A model validation test conducted produces a Ljung Box test statistic of 47.207 with a normalized BIC 368 
of 6.420 and a Root Mean Square Error of 24.16 supported by a probability value of 0.001. Hence, we 369 
fail to reject the null hypothesis that the model is appropriate and suitable for predicting future rainfall 370 
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figures. An 
2R = 0.532 indicates that about 53% of the variations seen in the pattern of rainfall 371 

recorded for the period is being explained by the fitted model i.e. ARMA (1, 1).   372 
 373 
The fitted model was again used to predict mean actual rainfall for the next two years. That is data up 374 
to 2015 was used to predict the mean actual rainfall for 2016 and from 2016 for 2017 mean rainfall 375 
respectively. It can be observed from the table 4 that the mean rainfall forecasted are very close to 376 
the mean rainfall for the forecasted period suggesting that the fitted model is appropriated for the 377 
data. 378 
 379 
Table 4: Mean Forecast of Actual Rainfall for 2016/2017 380 
 381 

Year 
(2016) 

Actual Rainfall 
Forecasted 
Rainfall 

Year (2017) Actual Rainfall 
Forecasted 
Rainfall 

Jan. 86.2 1.89 Jan. - 92.21 
Feb. 19.9 18.9 Feb. - 33.90 
Mar. 69.8 70.1 Mar. - 76.09 
Apr. 131.4 129.4 Apr. - 67.23 
May. 156.7 158.3 May. - 401.20 
Jun. 283.6 290.6 Jun. - 312.76 
Jul. 205.4 200.4 Jul. - 138.43 
Aug. 10.0 9.8 Aug. - 98.98 
Sep. 130.7 128.9 Sep. - 101.90 
 382 
 383 
3.5. Prediction of Next 18 Observations Of Mean Rainfall Returns 384 
 385 
The fitted model was again employed to predict the mean 1st differenced rainfall for the next two 386 
years. That is data from January, 2006 to December, 2016 was used to forecast 2017/2018 mean 387 
rainfall values. The time plot for the forecasted mean returns is shown in figure 7. 388 
 389 
The up and down movement in black is the actual mean rainfall from January 2006 to December 2016 390 
and the green and blue curve shown is the lower and upper bound of the 95% confidence interval 391 
constructed for the forecasted period. Within the confidence bound is the horizontal broken line which 392 
show the predicted mean rainfall values for the forecasted period. We can observe that the predicted 393 
mean rainfall values for the forecasted period lies within the confidence interval, indicating that the 394 
model fitted is adequate suitable for the observed rainfall series (see Figure 5). 395 



 

 

 396 
 397 
Figure 7: Time Plot of 1st Difference Forecasted Rainfall 398 
 399 
Table 5: Forecast of 1st Difference in Rainfall for 2017/2018 with Confidence Interval 400 

Mean Forecast Mean Error 
Standard 
Deviation

Lower Interval Upper Interval 

7.804897600 101.0965 101.0965 -190.3406 205.9504 

5.447387320 122.6698 101.0976 - 234.9809      245.8757 
3.801975392 131.9076 101.0985 -254.7321       262.3360 
2.653568772 136.1814 101.0994 -264.2571       269.5642 
1.852044399 138.2161 101.1003 -269.0465       272.7506 
1.292624669 139.1970 101.1011 -271.5285       274.1138 
0.902180604 139.6729 101.1018 -272.8517       274.6561 
0.629672218 139.9046 101.1026 -273.5784       274.8377 
0.439476420 140.0179 101.1032 -273.9905       274.8695 
0.306730261 140.0734 101.1039 -274.2321       274.8456 
0.214080776 140.1009 101.1044 -274.3787       274.8068 
0.149416554 140.1147 101.1050 -274.4703       274.7691 
0.104284500 140.1218 101.1055 -274.5293       274.7379 
0.072784819 140.1256 101.1060 -274.5683       274.7138 
0.050799783 140.1277 101.1065 -274.5945       274.6961 
0.035455442 140.1291 101.1069 -274.6125       274.6834 
0.024745939 140.1300 101.1077 -274.6251       274.6746 
0.017271299 140.1308 101.1077 -274.6340       274.6686 

 401 
Table 5 shows the mean forecasted values of 1st differenced rainfall values for 2017 to 2018. The 402 
values obtained indicates that higher rainfall is expected for the period forecasted. 403 
 404 
4. CONCLUSION 405 
 406 
[The series was found to be non-stationary which resulted from the presence of a unit root in it. The 407 
series became stationary after eliminating the unit root by finding the first difference in the amount of 408 
rainfall, hence the probability law that governs the behavior of the process does not change over time. 409 
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The distribution of the 1st differenced series look symmetric with non-constant variance skewed to the 410 
right.  411 
 412 
Both the ACF and PACF showed dependency in the 1st differenced series at lag 1, ARMA (1, 1), 413 
which has all the parameters to be significant. Thus, the fitted data was found to be the most suitable 414 
model for the conditional mean. The model explains the stochastic mechanism of the observed series 415 
in ARMA (1, 1). The time series component found in the model were trend and random variation. 416 
  417 
A Ljung Box test statistic of 47.207 with a normalized BIC of 6.420 and a Root Mean Square Error of 418 
24.16 supported by a probability value of 0.001 show that the fitted model is appropriate for the data. 419 

An 2R = 0.532 indicates that about 53% of the variations seen in the pattern of rainfall recorded for 420 
the period is being explained by the fitted model. An 18-month forecast for the mean actual rainfall 421 
and mean 1st difference rainfall values made showed that the fitted model is appropriate for the data 422 
and an increasing trend of rainfall for forecasted period. 423 
 424 
 425 
CONSENT (WHERE EVER APPLICABLE) 426 
 427 
Not applicable 428 
 429 
 430 
ETHICAL APPROVAL (WHERE EVER APPLICABLE) 431 
 432 
Not applicable 433 
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