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ABSTRACT
We propose a new generator of univariate continuous distributions with two extra parameters called the
transmuted odd-Lindley generator which extends the odd Lindely-G family introduced by Gomes-Silva et al.[1].
Some mathematical properties of the new generator such as, the ordinary and incomplete moments, generating
function, stress strength model, Rényi entropy, probability weighted moments and order statistics are
investigated. Certain characterizations of the proposed family are estimated. We discuss the maximum
likelihood estimates and the observed information matrix for the model parameters. The potentiality of the new
family is illustrated by means of five applications to real data sets.

Keywords: Characterizations, Maximum Likelihood, Odd Lindley-G Family, Order Statistic, Stress
Strength Model, Transmuted-G Family.

1. INTRODUCTION
In recent years, statisticians have proposed new generated families of the univariate distributions. These new
generators are obtained by adding one or more extra shape parameters to the baseline distribution to obtain more
flexibility in fitting data in different areas such as medical sciences, economics, finance and environmental
sciences. Some of the well-known generated families are the following: Marshall-Olkin-G family by Marshall
and Olkin [2], exponentiated-G by Gupta et al. [3], beta-G by Eugene et al. [4], Kumaraswamy-G by Cordeiro
and de Castro [5], McDonald-G by Alexander et al. [6], logistic-G by Torabi and Montazari [7], Lomax-G by
Cordeiro et al. [8], Kumaraswamy Marshall-Olkin-G by Alizadeh et al. [9], odd-Burr generalized-G by Alizadeh
et al. [10], beta weibull-G by Yousof et al. [11], generalized odd generalized exponential family by Alizadeh et
al. [12], beta transmuted-H family by Afify et al. [13], Topp-Leone odd log-logistic family by Brito et al.[14]
and Type I general exponential class of distributions by Hamedani et al. [15],. among others.

Let ( ; )h x  and ( ; )H x  denote the probability density function (pdf) and cumulative distribution function (cdf)
of a baseline model with parameter vector  . Shaw and Buckley [16] introduced the transmuted-G (T-G) family
of distributions with cdf and pdf given by

 ( ; ) ( ; ) 1 ( ; ) , ,F x H x H x x R        (1)

and

 ( ; ) ( ; ) 1 2 ( ; ) , .f x h x H x x R        (2)

respectively, where, 1,  is a shape parameter and  is the vector of parameters for the baseline cdf ( ; ).H x 
The T-G density is a mixture of the baseline density and the exponentiated-G (Exp-G) density with power
parameter two. If 0,  then the T-G density reduces to the baseline density. Gomes-Silva et al. [1] defined the
odd Lindely-G (OL-G) family of distributions with cdf and pdf given by

( ; ) ( ; )( ; ) 1 exp , 0, ,
(1 ) ( ; ) ( ; )

G x G xH x x R
G x G x

    
  

 
     

  
(3)

and

2

3
( ; ) ( ; )( ; ) exp , ,

( ; )(1 ) ( ; )
g x G xh x x R

G xG x
   

 
 

   
  

(4)

respectively, where, ( ; )G x  and ( ; )g x  are given cdf and pdf depend on vector parameter .
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The goal of this study is to introduce a new class of continuous distributions called the transmuted Odd
Lindley-G (TOL-G) family in view of the T-G and OL-G families and study some of its statistical properties.
The cdf and pdf of the TOL-G family are given, respectively, by

( ) ( )
( ) ( )( ) ( )( ) 1 1 , ,

(1 ) ( ) (1 ) ( )

G x G x
G x G xG x G xF x e e x R

G x G x

  
 

                         
(5)

and
( )

( )2 ( )
( )

3
( ) ( )( ) 1 2 , .

(1 ) ( )(1 ) ( )

G x
G xG x
G xg x e G xf x e x R

G xG x


  




            

(6)

Henceforth, a random variable with density (6) is denoted by TOL- G( , , ).X    If 0, then TOL-G class
is reduced to the OL-G family of distributions. The hazard function ( )x for the TOL-G family is given by

( )
( )2 ( )
( )

3

( ) ( )
( ) ( )

( ) ( )1 2
(1 ) ( )(1 ) ( )

( ) , .
( ) ( )1 1 1

(1 ) ( ) (1 ) ( )

G x
G xG x
G x

G x G x
G x G x

g x e G x e
G xG x

x x R
G x G xe e

G x G x




 

  



 
 




 

           
                       

(7)

The rest of this paper is outlined as follows:. In Section 2, linear representation of TOL-G family is discussed. In
Section 3, some special sub-models corresponding to TOL-G family are presented. In Section 4, some
mathematical properties of the TOL-G family are investigated. In Section 5, certain characterizations of the new
family are presented. In Section 6, the maximum likelihood estimates are derived for the parameters of TOL-G
family in complete and censored samples. A simulation study is conducted in Section 7. In Section 8, five
applications for TOL-G are presented. Some concluding remarks are given in the last Section.

2. USEFUL EXPANSIONS
In this section, we introduce a useful representation for the TOL-G pdf and cdf.

The pdf given in (6) can be written as

( ) ( ) ( )2 2
2 3 2( ) ( ) ( )

3 2 4 2 3
(1 ) ( ) 2 ( ) 2 ( )( )

(1 ) ( ) (1 ) ( ) (1 ) ( )

G x G x G x
G x G x G xg x e g x e g x ef x

G x G x G x

  
   
  

  


  
  

Using generalized binomial and Taylor expansion in the above equation, we obtain

2 1 3

3 2 4
0 0

( 1) (1 ) ( ) ( ) ( 1) 2 ( ) ( )( )
! (1 ) ( ) ! (1 ) ( )

j j j j j j j

j j
j j

g x G x g x G xf x
j G x j G x
  
 

   

 
 

  
 

  

1 2

2 3
0

( 1) 2 ( ) ( )
! (1 ) ( )

j j j j

j
j

g x G x
j G x



  









2 1 3

2
, 0 , 0

3 4
( 1) (1 ) ( ) ( ) ( 1) 2 ( ) ( )

! (1 ) ! (1 )

j i j j i j i j j j i

j i j i

j j
g x G x g x G x

i i
j j
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1 2

2
, 0

3
( 1) 2 ( ) ( )

! (1 )

j i j j j i

j i

j
g x G x

i
j





   




  
  

 


or

, 1
, 0

( ) ( ),j i j i
j i

f x h x


 


  (8)

where

2
1 1

, 2

3 4( 1) (1 )(1 ) 2 2 ,
!( 1)(1 )

j i j
j j

j i
j j
i ij j i

    


 
                            

and 1( ) ( 1) ( ) ( ) j i
j ih x j i g x G x 
     is the exponentiated-G distribution with power parameter 1.j i 

Integrating (8) with respect to x , we have

, 1
, 0

( ) ( ),j i j i
j i

F x H x


 


  (9)

where, 1
1( ) ( ) .j i

j iH x G x  
  

3. THE SUB-MODELS OF TOL-G
In this section, we introduce three special sub-models of the TOL-G family.

3.1 The TOL-Kumaraswamy (TOLKw) Model

Suppose the cdf and pdf of the Kumaraswamy distribution are the following

 ( ) 1 1 , 0 1,
abG x x x     and 1 1( ) (1 ) , 0 1, , 0,b b ag x abx x x a b      respectively. Then, the cdf

and pdf of TOLKw distribution are given, respectively, by

 
 
   

 

 
 

1 1 1 1

2 (2 1) 1 11
1

( ) 1 1 2 , 0 1,
1 (1 ) 1

a ab b

a ab b

x x
ab

a x xb b
ab

xabf x x x e e x
x

   
 

         
    

          

 
                         
 

and

 
 

 
   

 

 
 

2
1 1 1 1

1 11 1
( ) (1 ) 1 1 , 0 1.

(1 ) 1 (1 ) 1

a ab b

a ab b

x x
a ab b

x x

a ab b

x x
F x e e x

x x

  
 

 

         
    
       

   
                           
               
   

The plots of the density and hazard functions are displayed in Figure 1.
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Fig. 1: Plots of the TOLKw pdf and hrf for selected parameter values.

3.2 The TOL-Lomax (TOLLx) Model

Consider the cdf and pdf of the Lomax distribution ( ) 1 (1 ) , 0,G x x x     and
( 1)( ) (1 ) , 0, , 0,g x x x        respectively. Then, the cdf and pdf of TOLLx are given, respectively,

by

1 (1 ) 1 (1 )
2

(1 ) (1 )2 1 (1 )( ) (1 ) 1 2 , 0,
1 (1 )(1 )

x x
x xxf x x e e x

x

 

 
  
 


    
  

 

 

      
    

        


 
                     

 

and
2

1 (1 ) 1 (1 )
(1 ) (1 )(1 ) (1 )( ) (1 ) 1 1 , 0.

(1 )(1 ) (1 )(1 )

x x
x xx xF x e e x

x x

 

 
   
 

 
    
   

 

 

      
     

       
 

   
                    
            

   
The plots of the density and hazard functions are given in Figure 2.

Fig. 2: Plots of the TOLLx pdf and hrf for selected parameter values.

3.3 The TOL-Frechet (TOLFr) Model
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The cdf and pdf of the Frechet distribution are  ( ) , 0,
ba xG x e x  and

 ( 1)( ) , 0, , 0,
ba xb bg x ba x e x a b    respectively. Then, the cdf and pdf of TOLFr are given, respectively,

by

 

 

   

 

 

 2 ( 1)
1 1

3
1( ) 1 2 , 0,
(1 )(1 ) 1

b bb a x a x
b

b ba x a x

b
b

a e e
a xb b x e e

a xa x

b a x ef x e e x
ee

 
  



 

 

                             


   
                             

and

 

 

 

   

 

 

 

2

1 11 1( ) (1 ) 1 1 , 0.
(1 ) 1 (1 ) 1

b ba x a x
b b

b ba x a x

b b

e e
a x a x

e e

a x a x

e eF x e e x
e e

 
  
 

 

 

   
        
       

 

      
                       

                              
The plots of the density and hazard functions are given in Figure 3.

Fig. 3: Plots of the TOLFr pdf and hrf for selected parameter values.

4. MATHEMATICAL PROPERTIES
This section deals with some mathematical properties of the TOL-G family such as: quantile function, ordinary
and incomplete moments, generating function, Rényi entropy, probability weighted moment, Lorenz and
Bonferroni curves, stress strength model and order statistics.

4.1.   Quantile Function

The quantile function of the TOL-G family, say 1( ) ( )Q u F u for (0,1), 0u   and 0  is the solution
of the non-linear equation

1
2

1 (1 )
1

1 (1 ) 4
( ) 1 1 (1 ) 1 ,

2
u

Q u G W e    
 





  


                                    (10)

where 1(.)W denotes the negative branch of the Lambert W function.

4.2. Ordinary, Incomplete Moments and Generating Function
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Let X be a random variable with TOL-G distribution, then the ordinary moment, say ,r is given by

( ) ( )r r
r E X x f x dx





   

, ,
, 0

,j i r j i
j i

 







  (11)

where, , ,( 1)j i j ij i     and , ( ) ( )r j i
r j i x g x G x dx








  is the probability weighted moment of the

baseline distribution. The nth central moment of the TOL-G distribution, say ,n can be obtained from

 1
0

( )
n

n r r
n

r

n
E x

r
  



 
  

 


 1 , , 1
0 , 0

.
n

n r
j i r j

r j i

n
r

  


 


 

 
  

 
 (12)

The cumulants of ,X denoted by, n , is
1

0

1
1

n

n n r n r
r

n
r

   





 
     
 (13)

where, 1 1   , 2
2 2 1     , 3

3 3 2 1 13          , etc. The thr incomplete moment of ,X denoted by
( ),s t is

( ) ( )
t

s
s t x f x dx



 

, ,
, 0

,j i s j i
j i









   (14)

where, , ( ) ( ) .
t

s j i
s j i x g x G x dx




 

The moment generating function, say ( ),xM t of the TOL-G distribution is

, ,
, , 0

( ) ( ) .
!

r
tx

x j i r j i
r j i

tM t E e
r
 







   (15)

Similarly, the probability generating function say, [ ] ( ),xM t of the TOL-G distribution is given by

[ ] , ,
, , 0

(ln )( ) ( ) .
!

r
x

x j i r j i
r j i

tM t E t
r
 







   (16)

4.3. Probability Weighted Moments
The PWM criterion can be constructed for estimating the model parameters of that distribution whose inverse
form cannot be expressed in an explicit form. The PWM are expectation of certain functions of a random
variable and they can be defined for any random variable whose raw moments exist. The ( )thr s PWM of X
with TOL-G distribution, say , ,r sM is given by

 , ( ) ( ) ( ) ,r s r s
r sM E X F x X F x f x dx





  
From (5) and (6), we can obtain
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, , , ,
, , , , 0

( ) ( ) ( ) ( ) ,s h z
j k h z

j k h z

f x F x g x G x






  



where,

2

, , , , 1

( 1) (1 )
3 42 (1 )( 2) .

(1 )! (1 )

j k z j s j h k
h

j k h z k

s s j k
j k k h k hk

z zh

  
 



      



   
                             

 



  

Therefore, we have

, , , , , ,
, , , , 0

.r s j k h z r h z
j k h z

M  





  



(17)

4.4. Rényi Entropy
The concept of entropy has been applied in different areas such as statistics, queuing theory and reliability
estimation. The Rényi entropy is defined as

1( ) (1 ) log ( ) , 0, 0.RI X f x dx  






   
From (6), we obtain

, , ,
, , , 0

( ) ( ) ( ) ,i h
j i h

j i h

f x g x G x 






  



where, 1 ( ) 2
, , ,

3
( 1) ( !) (1 ) 2 ( ) (1 ) .i h j j j i j i j

j i h
j j i

i j
j h

   
                

        
   








Consequently, the Rényi entropy for the TOL-G family is given by

1
, , ,

, , , 0

( ) (1 ) log ( ) ( ) .i h
R j i h

j i h

I X g x G x dx


 

 

 
   
 
 
 


(18)

4.5. Lorenz and Bonferroni Curves
The Lorenz and Bonferroni curves have been used in different areas such as reliability, economics, demography,
insurance and medicine. The Lorenz ( )FL x and Bonferroni  ( )B F x curves are defined respectively as
follows:

 
0 0

( )1 1( ) ( ) , ( ) ( ) .
( ) ( ) ( ) ( )

x x
F

F
L xL x t f t dt B F x t f t dt

E x F x E x F x
   

Therefore, these quantities for the TOL-G distribution are given below

, 1,
, 0

, 1,
, 0

( ) ,
j i j i

j i
F

j i j i
j i

L x



 




















(19)

and
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, 1,

, 0

, 1,
, 0

( ) .
( )

j i j i
j i

j i j i
j i

B F x
F x



 




















(20)

4.6. Stress Strength Model
The stress strength model is a common criterion used in different applications in physics and engineering such
as strength failure and system collapse. Let 1X and 2X be two independent random variables with

1 1TOL( , , )   and 2 2TOL( , , )   distributions. Then, the stress strength model is given by

2 1 1 1 1 2 2 2
0

Pr( ) ( , ; ) ( , ; ) .R X X f F dx     


   
Using (5) and (6), we have

1 1 1 2 2 2 ,
, 0

( , ; ) ( , ; ) ( ) ( ) ,k h
k h

k h

f F g x G x      






 

where,
 1 1 2

, 1 1 1 2 3 4( 1) ( !) (1 ) ,k h
k h k             

1 1
1 1 2 2 1 2 2 2

3 4
(1 )(1 )(1 ) (1 ) ,k k kk k

h h
                                 

2
1

2 2 1 2 1 2
0 0

2 3
( 1) ( !) (1 ) (1 ) ( ) ,

w
w w k

w s

w s k w
k w

w s h
      

 

     
       

   


   1
3 1 2 1 2 1 2 32 (1 ) (1 )(1 ) ,            

1 1 2 1 2
3

(2 ) (1 ) (2 ) ,k k k
h

   
            

1
2 1 2 1 2 1 2

4
(1 ) ( )(2 ) ,k k k

h
                   

3 1 2 1 2
5

(2 ) ,k k
h

   
          

and
2 1

4 1 2 1 2 2 1 2 1
0 0

2 4 3
2 ( 1) (1 )(1 ) (2 ) .

w
w w w s k

w s

w s w s w
w s h h

        
 

 

                                


Therefore, the stress strength model is given below

,
, 0

,k h
k h

R 






  (21)

where, 1
, ,( 1) .k h k hk h    

4.7. Order Statistics
Order statistics play an important role in probability and statistics. Let 1, 2: :,...n n n nX X X  be the ordered

sample from a continuous population with pdf ( )f x and cdf ( )F x . The pdf of :k nX , the thk order statistic is
given by
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:

1

0

1( ) ( 1) ( ) ( ) ,
( , 1)k n

n k
w k w

X
w

n k
f x f x F x

wk n k


 



 
      


where, (.,.) is the beta function. Substitution from (5) and (6) in the above equation and after some algebra,
we arrive at

: , , , , 1
0 , , , , 0

( ) ,
k n

n k

X j i s h m s m
w j i s h m

f x h
 

 
 

   (22)

where,
1 1

, , , , 1

1 1( 1) (1 )
( 1) ! ( , 1) (1 )

w j i s m j k w j s i h

j i s h m i

n k k w k w j
w j is m s k n k

  
 

         



         
     

        

3 1 42 ( 2)(1 )( 1) .
1

s
s i h s i i h s iii

h m h m
 


            
                

Furthermore, the thr moment of the thk order statistic for TOL-G family is given by

 : , , , , ,
0 , , , , 0

,
n k

r
k n j i s h m r s m

w j i s h m

E x 
 




 

   (23)

where, , , , , , , , ,( 1) .j i s h m j i s h ms m     .

5.   CHARACTERIZATIONS RESULTS
This section is devoted to the characterizations of the TOL-G distribution in different directions: (i) based on the
ratio of two truncated moments; (ii) in terms of the hazard function; (iii) in terms of the reverse hazard function.
Note that (i) can be employed also when the cdf does not have a closed form. We would also like to mention
that due to the nature of TOL-G distribution, our characterizations may be the only possible ones. We present
our characterizations (i)-(iii) in three subsections.

5.1.   Characterizations based on two truncated moments
This subsection is devoted to the characterizations of TOL-G distribution based on the ratio of two truncated
moments. Our first characterization employs a theorem due to Glanzel [17], see Theorem 1 of Appendix A. The
result, however, holds also when the interval H is not closed, since the condition of the Theorem is on the
interior of .H

Proposition 5.1. Let :X  be a continuous random variable and let,
1( )

( )
1

( )( ) 1 2
(1 ) ( )

G x
G xG xq G x e

G x

 



          

and
( )
( )

2 1( ) ( )
G x
G xq x q x e


 for x . The random variable X has

pdf (6) if and only if the function  defined in Theorem 1 is of the form

( )
( )1( ) , .

2

G x
G xx e x





 

Proof. Suppose the random variable X has pdf (6), then

 
( )
( )

11 ( ) ( ) , ,
1

G x
G xF x E q X X x e x





      

and

 
( )
( )

21 ( ) ( ) , .
2(1 )

G x
G xF x E q X X x e x
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Further,
( )
( )1

1 2
( )

fo( ) ( ) ( ) 0 .
2

r
G x
G xq xx q x q x e x





   

Conversely, if  is of the above form, then

21

1 2

( ) ( )
( ) ( ) ( ) , ,

( ) ( ) ( )
x q xs x g x G x x

x q x q x






   



and consequently

1( ) ( ) , .s x G x x  

Now, according to Theorem 1, X has density (6).

Corollary 5.1. Let :X  be a continuous random variable and let 1( )q x be as in Proposition 5.1. The
random variable X has pdf (6) if and only if there exist functions 2q and  defined in Theorem 1 satisfying
the differential equation

21

1 2

( ) ( )
( ) ( ) , .

( ) ( ) ( )
x q x g x G x x

x q x q x






 



Corollary 5.2. The general solution of the differential equation in Corollary 5.1 is

 
( ) ( )

12( ) ( )
1 2( ) ( ) ( ) ( ) ( ) ,

G x G x
G x G xx e g x G x e q x q x dx D
 

 
  

 
   
 
 


where D is a constant. We like to point out that one set of functions satisfying the above differential equation is
given in Proposition 5.1 with 0.D Clearly, there are other triplets 1 2( , , )q q  which satisfy conditions of
Theorem 1.

5.2 Characterization in terms of hazard function
The hazard function, ,Fh of a twice differentiable distribution function, ,F satisfies the following first order
differential equation

( )( ) ( ).
( ) ( )

F
F

F

h xf x h x
f x h x


 

It should be mentioned that for many univariate continuous distributions, the above equation is the only
differential equation available in terms of the hazard function. In this subsection we present non-trivial
characterizations of TOL-G distribution for two cases: 0  and 1  in terms of the hazard function.

Proposition 5.2. Let :X  be a continuous random variable. The random variable X has pdf (6) if and
only if its hazard function ( )Fh x satisfies the following differential equation
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( )
( )

( )2
( )

2 ( ) ( )
3 ( ) ( )

( )( ) 1 2
(1 ) ( )

( )( ) ( )
(1 )( )

( ) ( )( ) 1 1 1
(1 ) ( ) (1 ) ( )

G x
G x

G x
G x

F F G x G x
G x G x

G xg x e
G x

g x dh x h x e
dxG x

G x G xG x e e
G x G x





 

 


 


 
 





 

           
                            

, .x

 
 
 
    
 
 
   

Proof. If X has pdf (6), then clearly the above differential equation holds. If the differential equation holds,
then

( )
( )

( ) 2
( )

( ) ( )
3 ( ) ( )

( )( ) 1 2
(1 ) ( )

( )
(1 ) ( ) ( )( ) 1 1 1

(1 ) ( ) (1 ) ( )

G x
G x

G x
G x

F G x G x
G x G x

G xg x e
G xd de h x

dx dx G x G xG x e e
G x G x





 

 


  
 



 

                   
                                

,








 
 


from which we arrive at the hazard function (7).

5.3 Characterizations in terms of the reverse hazard function
The reverse hazard function Fr of a twice differentiable distribution function, ,F is defined as

( )( ) , support of .
( )F

f xr x x F
F x
 

In this subsection we present a characterization of TOL-G distribution in terms of the reverse hazard function.

Proposition 5.3. Let :X  be a continuous random variable. The random variable X has pdf (6) if and
only if its reverse hazard function ( )Fr x satisfies the following differential equation

( )
( )

( )2
( )

2 ( ) ( )
3 ( ) ( )

( )( ) 1 2
(1 ) ( )

( )( ) ( )
(1 )( )

( ) ( )( ) 1 1
(1 ) ( ) (1 ) ( )

G x
G x

G x
G x

F F G x G x
G x G x

G xg x e
G x

g x dr x r x e
dxG x

G x G xG x e e
G x G x





 

 


 


 
 





 

                
                         

, .x




 



 
 

Proof. Is similar to that of Proposition 5.2.

6. MAXIMUM LIKELIHOOD ESTIMATION
This section discusses the maximum likelihood estimates (MLEs) of the parameters of the TOL-G family for
complete and censored samples.

6.1.   Maximum Likelihood Estimation in Complete Samples

Let 1 2, ,..., nx x x be the observed values of a random sample from TOL-G family with set of parameters

( , , )T    , then the corresponding log-likelihood function is given by

       
1 1 1

( , )
2 log log 1 log ( , ) 3 log ( , )

( , )

n n n
i

i i
ii i i

G x
n n g x G x

G x
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( , )
( , )

1

( , )
log 1 2 .

(1 ) ( , )

i

i

G xn
G xi

ii

G x
e

G x




 
 

 





            
 (24)

The components of the score vector , ,
  

   
      

  
 are

 
( , )
( , )2

2 ( , )
1 1 ( , )

( , ) ( , ) 1 ( , )( , )( 2) 2 ,
(1 ) ( , ) (1 ) ( , )1 2

(1 ) ( , )

i

i

i

i

G x
G xn n

i i ii
G x

ii i G xi

i

G x G x G x eG xn
G x G x e

G x











    
      

 
 




 

 
 

                  
    

   

  (25)

( , )
( , )

( , )
1 ( , )

( , )2 1
(1 ) ( , )

,
( , )1 2

(1 ) ( , )

i

i

i

i

G x
G xi

n
i

G x
i G xi

i

G x e
G x

G x e
G x











 
 

  
 

 





          
   

    
   

 (26)

and

2
1 1 1

( , ) ( , ) ( , )
3

( , ) ( , ) ( , )

n n n
i i i

i i ii i i

g x G x G x
g x G x G x

  


     

     
                
  

 
( , )
( , )3 2

2 ( , )
1 ( , )

( , ) ( , ) 1 ( , ) (2 1) ( , )2 ,
(1 ) ( , )1 2

(1 ) ( , )

i

i

i

i

G x
G xn i i i i

G x
i G xi

i

G x G x G x G x e

G x e
G x











      
  

 
 






 
           

   
    

   

 (27)

where, ( , ) ( , ) and ( , ) ( , ) .i i i ig x g x G x G x           

The MLEs, say ˆ ˆˆ ˆ( , , )   of ( , , )T    can be obtained by equating the system of nonlinear equations
(25) through (27) to zero and solving them simultaneously. Clearly, if analytical solutions are not possible we
use certain software Package. For the purposes of interval estimation and testing hypotheses for the vector of
parameters ( , , )T    , we derive the ( 3) ( 3)q q   observed information matrix  ( ) wvJ J  (for

, , ,w v    ) to be

( )
J J J

J J J J
J J J

  

  

  

 
 

   
 
 

whose elements are given in Appendix B.

6.2. Maximum Likelihood Estimation in Censored Samples

If the lifetime of the first r failed items 1 2, ,..., rx x x have been observed, then the likelihood function under
type-II censoring is given by

 0
1

( , ) ( , ) 1 ( , ) ,
r

n r
i i

i

L x A f x F x   



 
    
 
 (28)

where,  1 2, ,..., ,T
rx x x x ( , , )T    and A is a constant. Using (5) and (6) in (28), the log-likelihood

function for the TOL-G family in censored samples is given by
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(32)

The MLEs, say ˆ ˆˆ ˆ( , , )   of ( , , )T    in censored samples can be obtained by setting the
system of nonlinear equations (30) through (32) to zero and solving them simultaneously.

7. SIMULATION STUDY
In this section we evaluate the performance of the MLEs of the model parameter for the TOLLx distribution
using Monte Carlo simulation varying the sample size and for selected parameter values. The simulation is
repeated 1000 times each with sample size 20,50,150,300n  and 500. The parametric values are; first group:

0.70,  2.50,  1.20,  2.00  and for second group 1.00,  5.00,  1.10,  2.00.  The
MLEs are obtained by maximizing the log-likelihood function in (24) using optim routine in R software.

Tables (1) and (2) provide the maximum likelihood estimates (MLEs), average bias (Bias), mean square
errors (MSE), coverage probability (CP) for the parameters , , , and  under different sample sizes. From
Tables (1) and (2), we observe that Biases and MSEs decrease as sample size increases, MLEs tends close to the
original values. The CP of the confidence intervals are quite close to the nominal level of 95 % so the MLEs and
their asymptotic results can be used for estimating and constructing confidence intervals.

Table (1):MLEs, Bias, MSE and CP for first group.

n parameters MLEs Bias MSE CP

20

 0.4512 0.0498 0.2400 0.9100
 3.8171 1.7070 6.1006 0.7388
 1.6254 0.1151 0.2431 0.9512

 2.9229 0.4229 0.8144 0.9801

50

 0.4900 0.0457 0.2340 0.9207
 3.1816 1.1136 5.6348 0.8950
 1.4112 0.1112 0.1993 0.9808

 2.9253 0.3253 0.7217 0.9990
150  0.5962 0.0312 0.2102 0.9477

 3.1261 0.8261 2.1361 0.8993
 1.3830 0.1070 0.1489 0.9604

 2.3619 0.2381 0.5219 0.9447

300

 0.6397 0.0237 0.1867 0.9705
 2.9230 0.5550 1.0371 0.9210
 1.3924 0.0186 0.0310 0.9509

 2.1241 0.1245 0.4598 0.8737

500

 0.7059 0.0114 0.1001 0.9501
 2.4888 0.1078 0.5571 0.9409
 1.2610 0.0105 0.0181 0.9511

 1.9997 0.1104 0.3403 0.9409
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Table (2):MLEs, Bias, MSE and CP for second group.

n parameters MLEs Bias MSE CP

20

 0.3410 0.1990 0.5500 0.9925
 8.1291 2.1291 5.4283 0.8810
 1.6611 0.9610 2.1992 0.9197

 4.2878 0.3278 1.9908 0.6500

50

 0.4234 0.1266 0.4557 0.8995
 7.9731 2.0502 4.0956 0.8798
 1.4015 0.8075 1.1288 0.9508

 3.0301 0.2009 1.8106 0.7054
150  0.5191 0.0105 0.3061 0.9765

 6.0902 1.0112 3.0413 0.9011
 1.3929 0.5058 0.8697 0.9318

 2.9769 0.1231 1.7890 0.8491

300

 0.7803 0.1191 2.2083 0.9891
 5.7405 0.7425 3.4347 0.9113
 1.1831 0.3039 0.5474 0.9204

 1.9930 0.3161 0.5604 0.8903

500

 0.9994 0.0023 1.1021 0.9501
 5.1101 0.3607 0.8446 0.9502
 1.1142 -0.0090 0.2366 0.9493

 2.0191 0.0158 0.2033 0.9530
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8. APPLICATIONS

In this section, we introduce five application to real data to show the applicability of the TOL-G family in
complete and censored samples. We focus on the TOLLx distribution introduced in Subsection 3.2.

8.1. Complete Data Sets
In this subsection, we provide four application for TOLLx distribution in complete (uncensored) data sets. The
first data set from Ratan [18] and it contain 50 observations on burr (in the unit of millimeter), the diameter is 12
mm and the sheet thickness is 3.15 mm. The data are given as follows: 0.04, 0.02, 0.06, 0.12, 0.14, 0.08, 0.22,
0.12, 0.08, 0.26, 0.24, 0.04, 0.14, 0.16, 0.08, 0.26, 0.32,0.28, 0.14, 0.16, 0.24, 0.22, 0.12, 0.18, 0.24, 0.32, 0.16,
0.14, 0.08, 0.16, 0.24, 0.16, 0.32, 0.18, 0.24,0.22, 0.16, 0.12, 0.24, 0.06, 0.02, 0.18, 0.22, 0.14, 0.06, 0.04, 0.14,
0.26, 0.18, 0.16.
The second data set are the quarterly earnings per Johnson and Johnson Share (1960 to 1980) Source R package.
The data are: 0.71, 0.63, 0.85, 0.44, 0.61, 0.69, 0.92, 0.55, 0.72, 0.77, 0.92, 0.60, 0.83, 0.80, 1.00, 0.77,
0.92,1.00,1.24, 1.00, 1.16, 1.30, 1.45, 1.25, 1.26, 1.38, 1.86, 1.56, 1.53, 1.59, 1.83, 1.86, 1.53, 2.07, 2.34, 2.25,
2.16, 2.43, 2.70, 2.25, 2.79, 3.42, 3.69, 3.60, 3.60, 4.32, 4.32, 4.05, 4.86, 5.04, 5.04, 4.41, 5.58, 5.85, 6.5, 5.31,
6.03, 6.39, 6.93, 5.85, 6.93, 7.74, 7.83, 6.12, 7.74, 8.91, 8.28, 6.84, 9.54, 10.26, 9.54, 8.73, 11.88, 12.06, 12.15,
8.91, 14.04, 12.96, 14.85.
The third data corresponding to intervals in days between 109 successive coal-mining disasters in Great Britain,
for the period (1875-1951) published by Maguire et al. [19]. The sorted data are given as follows: 1, 4, 4, 7, 11,
13, 15, 15, 17, 18, 19, 19, 20, 20, 22, 23, 28, 29, 31, 32, 36, 37, 47, 48, 49, 50, 54, 54, 55, 59, 59, 61, 61, 66, 72,
72, 75, 78, 78, 81, 93, 96, 99, 108, 113, 114, 120, 120, 120, 123, 124, 129, 131, 137, 145, 151, 156, 171, 176,
182, 188, 189, 195, 203, 208, 215, 217, 217, 217, 224, 228, 233, 255, 271, 275, 275, 275, 286, 291, 312, 312,
312, 315, 326, 326, 329, 330, 336, 338, 345, 348, 354, 361, 364, 369, 378, 390, 457, 467, 498, 517, 566, 644,
745, 871, 1312, 1357, 1613, 1630
The fourth data set consists of 50 observations, hole diameter and sheet thickness are 9 mm and 2 mm
respectively from Ratan [18]. Hole diameter readings are taken on jobs with respect to one hole, selected and
fixed as per a predetermined orientation. The data are: 0.06, 0.12,0.14, 0.04,0.14,0.16, 0.08, 0.26, 0.32, 0.22,
0.16, 0.12, 0.24, 0.06, 0.02, 0.18, 0.22, 0.14, 0.22, 0.16,0.12, 0.24, 0.06 ,0.02, 0.18, 0.22, 0.14, 0.02, 0.18, 0.22,
0.14, 0.06, 0.04, 0.14, 0.22, 0.14, 0.06, 0.04, 0.16, 0.24, 0.16, 0.32, 0.18, 0.24, 0.22, 0.04, 0.14, 0.26, 0.18,0.16
The MLEs are computed using Quasi-Newton Code for Bound Constrained Optimization (L-BFGS-B) and the
log-likelihood function evaluated. The goodness-of-fit measures, Anderson-Darling (A∗), Cramér–von Mises
(W∗) are computed. The lower the values of these criteria, the better the fit. The value for the Kolmogorov
Smirnov (KS) statistic and its p-value are also provided.
We compare the TOLLx distribution with those of the Lomax (Lx), beta Lomax (BLx) (Lemonte and Cordeiro
[20]), exponentiated Lomax (ELx) (El-Bassiouny et al.[21]) Kumaraswamy Lomax (KwLx) (Lemonte and
Cordeiro, [20), Weibull Lomax (WLx) (Tahir et al., [22]) The MLEs and some statistics of the models for all
data sets are presented in Tables (3-10).

Table 3: The MLEs for the first data set.

Distribution
Estimates with standard error in parenthesis

̂ ̂ ̂ ̂ â b̂

TOLLx 0.0847
(0.9966)

0.4622
(0.3952)

2.2790
(8.6509)

19.1411
(66.8045) --- ---

WLx --- 35.0886
(138.6751) --- 9.4534

(37.7751)
1.6103
(0.2010

0.0462
(1.0384)

KwLx --- 183.1897
(79.1424) --- 793.5680

(231.0023)
2.1456

(0.2676)
925.9396

(315.5829)

BLx --- 163.6522
(151.2978) --- 24.2602

(127.8382)
3.0318

(0.5768)
103.7089
(33.2213)

ELx --- 1207.8458
(823.9346)

3.1707
(0.7087)

106.2892
(76.5806) --- ---

Lx --- 573.9920
(237.4615) --- 93.6344

(38.2760) --- ---
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Table 4: Some statistics for the models fitted to the first data set.

Distribution Statistics
A* W* L KS P-value

TOLLx 0.4205 0.0716 -57.0434 0.0769 0.7493
WLx 0.5101 0.0798 -56.0772 0.0876 0.7119

KwLx 0.6640 0.1085 -55.7727 0.1127 0.5489
BLx 1.0915 0.1819 -53.3633 0.1541 0.1860
ELx 1.2651 0.2124 -52.2737 0.1652 0.1305
Lx 1.1005 0.1835 -40.6059 0.2806 0.0008

Table 5: The MLEs for the second data set.

Distribution
Estimates with standard error in parenthesis

̂ ̂ ̂ ̂ â b̂

TOLLx 0.2516
(0.3996)

3.9758
(3.1002)

328.1790
(137.3812)

15.0087
(62.5546) --- ---

WLx --- 0.0967
(0.0026) --- 0.0037

(0.0006)
5.7014

(0.5065)
2.4333

(3.7434)

KwLx --- 0.9009
(0.0484) --- 171.7518

(104.1595)
1.1316

(0.1046)
63.5329

(22.4535)

BLx --- 301.7541
(156.1994) --- 5.3708

(16.5882)
1.2320

(0.1869)
14.5150

(52.2568)

ELx --- 53.6032
(20.0232)

218.4295
(84.2147)

1.257178
(0.2034) --- ---

Lx --- 180.6657
(137.1960)

--- 862.8725
(478.399) --- ---

Table 6: Some statistics for the models fitted to the second data set.
Distribution Statistics

A* W* L KS P-value
TOLLx 1.4195 0.2156 216.8447 0.0859 0.4299

WLx 1.4843 0.2291 213.7185 0.1183 0.1907
KwLx 1.5016 0.2361 215.0746 0.1129 0.2346
BLx 1.4785 0.2331 214.8074 0.1168 0.2018
ELx 1.4791 0.2337 214.8122 0.1164 0.2048
Lx 1.4746 0.2324 215.7926 0.0968 0.4102

Table 7: The MLEs for the third data set.

Distribution
Estimates with standard error in parenthesis

̂ ̂ ̂ ̂ â b̂

TOLLx -0.4146
(0.9354)

0.6940
(5.9101)

16.5184
(42.1278)

0.5282
(0.1923) --- ---

WLx --- 0.0778
(0.0171) --- 0.0277

(0.0538)
5.5496

(1.3507)
0.9743

(1.3423)

KwLx --- 0.0484
(0.1183) --- 311.6364

(203.2984)
1.1596

(0.1521)
77.1793

(214.4590)

BLx --- 301.0638
(144.6873) --- 0.1107

(0.7141)
1.2256

(0.1933)
23.0306

(49.4264)

ELx --- 2.4852
(0.7436)

326.1827
(150.7728)

1.2060
(0.1911) --- ---

Lx --- 4.7407
(2.4544) --- 874.6789

(538.2643) --- ---
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Table 8: Some statistics for the models fitted to the third data set.
Distribution Statistics

A* W* L KS P-value
TOLLx 0.4548 0.0660 698.8196 0.0669 0.7142

WLx 0.5223 0.0762 700.8432 0.0708 0.6449
KwLx 0.5970 0.1020 701.1456 0.0661 0.7284
BLx 0.6960 0.1219 701.6078 0.0749 0.5741
ELx 0.6865 0.1201 701.7234 0.0746 0.5787
Lx 0.4707 0.0703 700.7164 0.0640 0.7628

Table 9: The MLEs for the fourth data set.

Distribution
Estimates with standard error in parenthesis

̂ ̂ ̂ ̂ â b̂

TOLLx -0.1718
(0.7065)

0.6543
(0.4913)

4.2929
(1.4339)

32.6701
(13.4579) --- ---

WLx --- 35.0033
(116.6274) --- 8.7573

(29.4706)
1.5301

(0.1922)
2.3223

(0.9388)

KwLx --- 135.4032
(383.1977) --- 293.9294

(739.0565)
2.0434

(0.26663)
196.8303

(437.5716)

BLx --- 294.8861
(32.3921) --- 69.2109

(44.5040)
2.6689

(0.4853)
74.0116
(4.2323)

ELx --- 358.5664
(120.2875)

31.4201
(97.3856)

2.7340
(0.5911) --- ---

Lx --- 741.8985
(306.8088) --- 112.7277

(233.3167) --- ---

Table 10: Some statistics for the models fitted to the forth data set.
Distribution Statistics

A* W* L KS P-value
TOLLx 0.6694 0.1067 -59.3151 0.1216 0.4504

WLx 0.8579 0.1468 -58.9369 0.1494 0.2145
KwLx 1.2648 0.2239 -57.0273 0.1742 0.0963
BLx 1.7772 0.3223 -54.6241 0.2097 0.0246
ELx 1.9583 0.3568 -53.6001 0.2176 0.0176
Lx 1.7879 0.3244 -52.4523 0.2859 0.0006

The values in Tables (3-10) show that the TOLLx model has the smallest values for A*, W*, KS and largest P-
values among all fitted models (for the four real data sets). So, the TOLLx model could be selected as the best
model.
The estimated pdfs and cdfs plots are displayed in Figures (4), (5), (6) and (7). It is clear from Figures (4-7), that
the new TOLLx distribution provides the best fits to the four data sets.

UNDER PEER REVIEW



19

Fig. 4: Estimated pdfs and cdfs plots of the TOLLx distribution for data set 1.

Fig. 5: Estimated pdfs and cdfs plots of the TOLLx distribution for data set 2.

Fig. 6: Estimated pdfs and cdfs plots of the TOLLx distribution for data set 3
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Fig. 7: Estimated pdfs and cdfs plots of the TOLLx distribution for data set 4.

8.2. Censored Data Set
In this subsection, we provide an application for TOLLx model under type-II censored data. The data consist of
death times (in weeks)of patients with cancer of tongue with aneuploidy DNA profile (Lee and Wang, [23]).
The MLEs are computed using Quasi-Newton Code for Bound Constrained Optimization (L-BFGS-B) and the
log-likelihood function evaluated. The statistics AIC and BIC are computed and compared the proposed and
competitive models: The lower the values of these criteria, the better the fit.
We compare the TOLLx distribution with those of the Lomax (Lx), beta Lomax (BLx) (Lemonte and Cordeiro
[20]), exponentiated Lomax (ELx) (El-Bassiouny et al.[21]) Kumaraswamy Lomax (KwLx) (Lemonte and
Cordeiro [20]), Weibull Lomax (WLx) (Tahir et al. [22]) The MLEs and some statistics of the models for all
data sets are presented in Tables (11) and (12)

Table 11: The MLEs for the fifth data set.

Distribution
Estimates with standard error in parenthesis

̂ ̂ ̂ ̂ â b̂

TOLLx 0.4250
(1.1092)

0.0.8359
(0.5549)

22.7855
(15.3342)

0.4610
(0.1053) --- ---

WLx --- 0.0685
(0.0099) --- 0.4343

(0.1061)
2.0572

(0.6190)
8.1386

(0.8779)

KwLx --- 0.2868
(0.1768) --- 5.9296

(2.4534)
2.2666

(0.9474)
2.2959

(2.0349)

BLx --- 14.5901
(10.5600) --- 4.1448

(5.8967)
0.0552

(0.1141)
0.2018

(0.1819)

ELx --- 0.7443
(0.3257)

39.2425
(38.6966)

1.2541
(0.4195) --- ---

Lx --- 0.3471
(13.5801) --- 93.6344

(38.2760) --- ---
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Table 12: Some statistics for the models fitted to the fifth data set.

Distribution Statistics
L AIC BIC

TOLLx -181.2062 370.4124 378.2174
WLx -183.7187 375.4373 383.1423

KwLx -183.8169 375.6337 383.4387
BLx -183.9097 375.8194 383.6243
ELx -182.5575 372.1150 376.9687
Lx -185.7654 375.5309 379.4334

The values in Table 12 prove that the TOLLx model has the lowest values for AIC and BIC. Then, the TOLLx
distribution could be chosen as the best model within other competitive models. The estimated cdfs plots are
displayed in Figure (8). It is clear from Figure 8, that the TOLLx distribution provides a better fit to the
censored data as compared to other models.

Fig. 8: Plots of estimated cdfs of the models compared in censored data set.

9. CONCLUSION
We propose a new class of continuous distributions, called the transmuted odd Lindley-G (TOL-G) family by
using the OL-G family as a parent distribution in the T-G class of distributions. We study the mathematical
properties of the new family such as ordinary and incomplete moments, generating function, Rényi of entropy,
stress strength model, probability weighted moment and order statistics. Certain characterizations of the new
family are also introduced. The method of maximum likelihood is used to estimate the model parameters in
complete and censored samples. Five real data sets are used to illustrate that some sub-models corresponding to
the TOL-G family can give better fit than similar models generated by well-known families.
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APPENDIX A

Theorem 1. Let ( , , )F  be a given probability space and let [ , ]H a b be an interval for some d b
( , might as well be allowed).a b    Let :X H be a continuous random variable with the
distribution function F and let 1q and 2q be two real functions defined on H such that
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2 1( ) ( ) ( ), ,E q X X x E q X X x x x H         

is defined with some real function . Assume that 1 2
1 2, ( ), ( )q q C H C H  and F is twice continuously

differentiable and strictly monotone function on the set .H Finally, assume that the equation 1 2q q  has no
real solution in the interior of .H Then F is uniquely determined by the functions 1 2,q q and , particularly

 
1 2

( )( ) exp ( ) ,
( ) ( ) ( )

x

a

uF x C s u du
u q u q u





 


where the function s is a solution of the differential equation 1

1 2

qs
q q




 


and C is the normalization

constant, such that 1.
H

dF 
We like to mention that this kind of characterization based on the ratio of truncated moments is stable in the
sense of weak convergence (see Glanzel [24]), in particular, let us assume that there is a sequence  nX of

random variables with distribution function  nF such that the functions 1 2,n nq q and ( )n n N  satisfy the

conditions of Theorem 1 and let 1 1 2 2,n nq q q q  for some continuously differentiable real functions 1q and

2.q Let, finally, X be a random variable with distribution .F Under the condition that 1 ( )nq X and 2 ( )nq X
are uniformly integrable and the family  nF is relatively compact, the sequence nX converges to X in

distribution if and only if n converges to , where

2

1

( )
( )

( )

E q X X x
x

E q X X x


  
  

This stability theorem makes sure that the convergence of distribution function is reflected by corresponding
convergence of the function 1 2,q q and , respectively. It guarantees, for instance, the convergence of
characterization on the Wald distribution to that of the Levy-Smirrnov distribution if . 
A further consequence of the stability property of Theorem 1 is the application of this theorem to special
tasks in statistical practice such as the estimation of the parameters of discrete distributions. For such
purpose, the functions 1 2,q q and, specially,  should be as simple as possible. Since the function triplet is
not uniquely determined it is often possible to choose  as a linear function. Therefore, it is worth analyzing
some special cases which helps to find new characterizations reflecting the relationship between individual
continuous univariate distributions and appropriate in other areas of statistics.

APPENDIX B

The elements of the observed information matrix are given below
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