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ABSTRACT 7 
 8 
The total ground state energy and electronic band structure of Graphite and Diamond were calculated 

in this work using FHI-aims (Fritz Haber Institute ab initio molecular simulations) Density Functional 

Theory (DFT) code. The density functionals used are the generalised gradient functional PBE, and 

PBE+vdW approach as defined by Tkatchenko and Scheffler. The results obtained from the 

computations of the ground state energies of diamond and graphite were -2056.898408114 eV and -

2061.703700984 eV respectively. Similarly, the results obtained from the calculations of the electronic 

band gaps of graphite and diamond were 0.0 eV and 5.56369215 eV, respectively. These are in good 

agreement when compared to the experimental values of 0eV and 5.48eV. These band gaps are 

within reasonable percentage errors of 0.0% and 1.46% respectively. This shows that DFT has 

overestimated the band gap of diamond by 0.08 eV in our computations. 

 
 
 9 
Keywords: DFT, Diamond, Electronic Band Structure, DOS, and Graphite. 10 
 11 
1. INTRODUCTION 12 
For many years the band structure emerging from density functional theory was the 13 

only electronic structure free of experimental parameters that could be calculated to interpret carrier 14 

levels, doping, chemical bonding, etc. As such, it still has enormous reach in the community as a 15 

Baseline against which better (formally more rigorous) approximations are compared [1]. The 16 

electronic band structures of graphite and diamond are particularly critical because of their unique 17 

semiconducting applications and fascinating properties. Researchers have studied the band structure 18 

of pure hexagonal graphite using nonlocal ionic pseudopotential [2], compared the band structure and 19 

DOS of the three graphite structures using an ab initio norm-conserving pseudopotential [3].  20 

On the other hand, an empirical pseudopotential method was used [4] to calculate the band structure 21 

of diamond.  Louis et al., 1970, also computed the band structure of diamond using nonlocal 22 

pseudopotential method. Similarly, the band gap of diamond was calculated by [6] using both LDA 23 



and GGA functionals. The methods mentioned above involved an empirical and pseudopotential 24 

computations, an all-electron/full Potential with the numeric atom-centred basis function computational 25 

method is therefore necessary to study the band structure of these new Carbon allotropes. In this 26 

work, the electronic band structure of diamond and graphite were simulated using FHI-aims DFT 27 

package [7]. This paper aims to re-investigate the ground state electronic properties as well as predict 28 

the suitable potential electronic applications of diamond and graphite. 29 

 30 
2. MATERIAL AND METHODS 31 
First-principles calculations continue to be a successful method of electronic structure calculations. 32 

Starting with the fundamental constants and Schrödinger's equation as a postulate, these methods 33 

proceed to describe the nature of atomistic systems to the degree that is almost irrefutable. The 34 

methods applied in solving Schrodinger's equation break into two main types: Hartree-Fock (HF) 35 

based methods and Density Functional Theory (DFT) methods. While both make approximations to 36 

make calculations possible, they represent the best available methods for atomistic modelling.  37 

The original idea of DFT (i.e. using the electron density) is dated back to the individual work of [8 and 38 

9]. In Thomas-Fermi model, they showed that the distribution of electrons in an atom is uniform and 39 

can be approximated using statistical considerations. In 1964, [10] proved two essential but 40 

straightforward theorems, which later become the basis of DFT. In 1965, in trade of simplicity for 41 

accuracy, [11] invented an ingenious indirect approach to the theory in such a way that the kinetic 42 

energy can be computed merely to reasonable accuracy, leaving a small residual correction that is 43 

handled separately. They showed that one could build a theory using simpler formulas also referred to 44 

as Kohn-Sham (KS) kinetic energy functional and ground state electron density, namely;   45 
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Where 
i
are the original spin orbitals? To give a unique value to the KS kinetic energy functional49 

][nTS  through Eq. (1.1), KS invoked a corresponding non-interacting reference system, with the 50 

Hamiltonian:  51 
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In which there are no electron-electron repulsion terms, and for which the ground state electron 53 

density is prec )(


rn ise. KS thus established that for any real (interacting) system with ground state 54 

density )(


rn , there always exists a non-interacting system with the same ground state density 55 

)(


rn  For this system there will be an exact determinantal ground state wave function;          56 
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where 
i
 are the N lowest eigenstates of the one-electron Hamiltonian 
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 Now, to produce 
S
T [n] precisely as the kinetic energy component [12] of T [n] in HK theorem, KS 60 

reformulate the universal functional as;  61 

                                                            F [n] = 
S
T[n] + J [n] + Exc  [n]                                                 (1.6) 62 

   where;                            63 

                                                   Exc [n] = T [n] – 
S
T[n] +

ee
V[n] – J [n]                                                  (1.7) 64 

The defined quantity Exc [n] is called the exchange-correlation energy functional. The corresponding 65 

Euler equation for Eq. (1.7) is;        66 
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Where )(


rVeff is the KS effective potential and is defined by; 68 
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The second term of Eq. (2.0) is the Hartree potential while the XC potential )(


rV
xc

 is given as                          71 

                                        




][

][
)(

rn

n
rV Exc

xc



                                                                        (2.1) 72 

Therefore, for a given )(


rV
eff

, one gets the )(


rn  simply by solving the N one-electron equations; 73 
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and setting   75 
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The productive potential from Eq. (1.9) Depends on the electron density; therefore the Kohn-Sham 77 

equations have to be solved self-consistently. The electronic total energy E is typically calculated 78 

using the sum over the Kohn-Sham eigenvalues; 79 
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The Kohn-Sham scheme is in principle exact. The approximation only enters when we have to decide 81 

on an explicit form for the unknown functional for the exchange-correlation energy ][nExc  and its 82 

corresponding potential )(


rV
xc

. The main goal of modern DFT is therefore to find better 83 

approximations to these two functionals. A great variety of different approximations )(


rV
xc

have been 84 

developed. For many years the local density approximation (LDA) has been used [13]. In LDA, the 85 

exchange-correlation energy density at a point in space is taken to be that of the homogeneous 86 

electron gas with the local electron density. Thus the total exchange-correlation energy functional is 87 

approximated as, 88 
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From which the potential is obtained using Eq. 2.1. However, LDA can have significant errors in its 90 

approximations for some physical and chemical properties computations. Recently, an effective 91 

potential that depend both on the local density and the magnitude of its local gradient are widely used. 92 

They are known as generalized gradient approximations (GGA) functionals. The GGA's total 93 

exchange-correlation energy functional is approximated as, 94 
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There are many GGA versions among which is the Perdew Burke Ernzerhof (be) functional (1997) 96 

used in this study. On the other hand, there are many DFT computational codes among which is the 97 

FHI-aims package.  FHI-aims is a computer program package for computational materials science 98 

based only on quantum-mechanical first principles mathematical model. It uses solution methods of 99 

DFT to compute the total energy and derived quantities of molecular or solid condensed matter in its 100 

electronic ground state (Blum et al, 2009). In addition, FHI-aims allow describing a wave-function 101 



based molecular total energy calculation based on Hartree-Fock and many-body perturbation theory 102 

(MP2 and MP4). 103 

2.1 Computational Details 104 

Total ground state energy of graphite and diamond were calculated in the Generalized Gradient 105 

Approximation (GGA) and Local Density Approximation (LDA) using the [14] and [15], exchange-106 

correlation energy functionals respectively. The calculation was performed by using Brillouin-zone of 107 

12×12×12 k-point grids for the SCF convergence. For the interplanar lattice parameter c of graphite, 108 

vdW effects correction based on [16] was included into the PBE functional.  In order to generate a 109 

smooth-looking DOS, we used a denser 8×8×8 k-space grid to integrate the DOS for diamond. The 110 

factors by which the original k-space grid from the SCF cycle is increased are now (8, 8, 8). Together 111 

with the original k-grid of 12×12×12, this makes for a 96×96×96 integration mesh that is used for the 112 

DOS. However, we used a less dense 5×5×5 k-space grid to integrate the DOS for graphite. A 113 

Gaussian broadening of 0.05eV was used for both structures DOS computations. We used an 114 

experimental lattice constant of a = 3.567 Ǻ and a = 2.461 Ǻ, c = 6.708Ǻ for diamond and graphite 115 

respectively. Figure 1.1 shows crystalline structures that were used for computational simulations. In 116 

(Figure 1.1a), diamond crystalline lattice is presented. For graphite (Figure 1.1b), graphene sheets are 117 

shown, however a unit cell of the bulk graphite structure was used for this work. 118 

  119 
                       (a)                                               (b) 120 
 121 
Figure 1.1: Structures Simulated (a) Diamond (b) Graphite 122 
 123 
3. RESULTS 124 
The following table summarises the output data obtained during FHI-aims computations, 125 

Table 1.2: Band gaps for Diamond 126 
 127 



        Bands                     
Structure 

Lowest unoccupied 
state (eV) 

Highest occupied 
country (eV) 

Energy difference (eV) 

Diamond -2.66537760 -8.22906975 5.56369215 
 128 
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 148 

Fig. 1.2 Band Structure and Density of States of the bulk Diamond as generated by the 149 
'aimsplot.py.' script. 150 
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 157 
Fig. 1.3 Band Structure and Density of States of the bulk Graphite as generated by the 158 
'aimsplot.py.' script. 159 



4. DISCUSSIONS 160 
Fig. 1.2 and 1.3 show the band structures and DOS for diamond and graphite respectively. The zero 161 

shows the position of the Fermi level in the band structure of these crystals on the energy scale, and 162 

vertical lines indicate that of symmetry points on the band graph in Fig. 1.2 and Fig. 1.3. 163 

 In Fig. 1.2, there is an essential characteristic of the band structure, namely the range of energies 164 

where there are no electronic states across the entire Brillouin zone; this is the band gap. The Fermi 165 

level within the band gap shows that all state below it remains occupied and all state above remain 166 

unoccupied. From the plot and shown in Table 1.2, the energy difference between the lowest empty 167 

land and the highest occupied country along reciprocal space direction number one 168 

is 5.56369215 eV. This value differs from other theoretical and experimental values by 0.12 eV and 169 

0.08 eV, respectively [6 and 17]. Since the valence band maximum at Γ-point and the conduction 170 

band minimum partially at X - the point is on different symmetry point, it shows that diamond is an 171 

indirect band gap semiconductor with a significant energy gap value of 5.56 eV. The similar result of 172 

an indirect bandgap semiconductor for AlAs and diamond were also computed using FHI-aims code 173 

[18 and 19]. The DOS for the unit cell in Fig 1.2 also shows that the number of the electronic states in 174 

the valence bands is more than that of the conduction bands. 175 

In Fig. 1.3, there is another important characteristic of the band structure, namely a narrow or zero 176 

gap range of energies where there are no electronic states; the Figure shows that graphite does not 177 

have a gap because there is an overlap between the valence and conduction bands. This zero-gap 178 

value agrees with other theoretical and experimental work [3 and 20]. It is obvious that the Fermi level 179 

lies within the conduction band, this shows that the conduction band is partially filled. The bands can 180 

be seen to touch at the entire L-K region of the Brillouin zone. The overlapping points on the Fermi 181 

level is between π- nonbonding orbitals in different graphite planes. This is simply because, in 182 

graphite the strong bonding between the segments connecting nearest-neighbour atoms within the 183 

layers  (intralayer) is described by sp2 hybridized 2s, 2px, and 2py atomic orbitals (σ-states), and the 184 

weak interlayer bonding is derived from the overlap between 2pz orbitals (π-states) perpendicular to 185 

the graphitic planes. The resulting band structure consists of bonding π and σ-states and anti-bonding 186 

π * and σ * states forming the valence and conduction bands, respectively. The weak interactions 187 

between graphitic planes is such that these bands split which leads to a zero-gap semiconductor and 188 

create a wide overlap semi-metal [3, 17 and 21]. The splitting of the bands at the Fermi level is in 189 

agreement with experiment [2]. As the electronic nature of a structure depends on the density of 190 



states in the region of the Fermi level, the theoretical overlap three regions of peaks are presented in 191 

the DOS of Fig. 1.3. 192 

5. CONCLUSION 193 
The total ground state energy and electronic band structure of Graphite for hcp and Diamond crystal 194 

were calculated using the LDA in the parameterization by Perdew and Zunger 1981, the generalized 195 

gradient functional PBE, and PBE+vdW approach as defined by Tkatchenko and Scheffler. The 196 

results of the total energy required for binding/stability of the ground state during the optimized 197 

process were found to converge faster with the 12x12x12 k-grid points in the Brillouin zone of the FHI-198 

aims code. We have found that a DFT LDA/GGA calculation of diamond and graphite electronic band 199 

structure and DOS gives correct location and shape of the Fermi level, band gap, VBM and CBM. The 200 

comparison between theory and experiment is better than could have been expected from band-gap 201 

studies with similar formalism. 202 
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