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Abstract

Since the time of Galileo (1564 - 1643), Euclidean geometry has been the
foundation on which the theoretical formulations of all geometrical quantities in
all orthogonal curvilinear coordinates in Physics and Mathematics were built. But
with the discovery of the great metric tensor in spherical polar coordinates
(1,0, ®,x°) in all gravitational fields in nature[5] has made Riemannian geometry
to be opened up for exploration and exploitation and hence its application in
Theoretical Physics and Mathematics. In this paper, we derive the Riemannian
vector and acceleration tensor/vectors in Rotational Oblate Spheroidal
coordinates for application in physics and other related fields.

Keywords: Riemannian geometry, great metric tensor, Riemannian velocity and
acceleration and Rotational Oblate Spheroidal coordinates.

1:0 Introductions

Euclidean geometry has been the basic foundation on which Theoretical Physics
and Mathematics are built upon because the geometry has a well-defined metric
tensor for all orthogonal curvilinear coordinates. Base on this well-known
Euclidean metric, we had derived the velocity and ac celebration in some of the
orthogonal curvilinear coordinates [1, 2, 3, 4], added to the known velocity and
acceleration in Cartesian, Cylindrical and Spherical Coordinates, for applications in
Physics and other related fields.

Right from 1854, when George Friedrich Bernhard Riemann published his
geometry for space-time known as Riemann geometry, it was assumed to be



more general than the Euclidean geometry, and it is generally accepted that
Riemannian geometry has the potential of providing a more general foundation
for Theoretical Physics and Mathematics [5]. However, the problem with the
Riemannian geometry is that it was not founded on any metric tensor which
makes its exploitation and possible application to Theoretical Physics and
Mathematics eluded the whole world. Riemann, therefore, left behind the
problem of finding the metric tensors for all gravitational fields in nature. Einstein
tried to solve this problem in his contribution to classical mechanics known as
Einstein’s Geometrical Gravitational Field Equation [5]. In 1916, Karl Schwarzschild
introduced a metric tensor for all gravitational fields due to the static
homogeneous spherical distribution of mass. This metric tensor has been the
basis for the development of Einstein’s Geometrical Theory of Classical Mechanics
in the gravitational field known as General Relativity. Despite the great result
obtained from Einstein Geometrical Gravitational Field Equations, they cannot be
applied to generate any natural metric tensor for the gravitational fields due to
any distribution of mass in nature for all orthogonal curvilinear coordinates.

It is interesting to know that Professor S.X.K Howusu has developed a metric
tensor called the great metric tensor for all gravitational fields in nature in 2009
[5]. This metric tensor is valid for all four coordinates of space-time and all regular
geometries in nature and all regular distributions of mass in any coordinate. The
first watershed of this metric tensor is the discovery of how the well-known
tensorial Riemann’s Geodesic equation of motion for particles of non-zero rest
masses in gravitational field can be written equivalently in terms of (i) Riemann’s
linear momentum vector, (ii) Riemann’s linear acceleration vector, (iii) Riemann’s
gravitational intensity, (iv) Riemann’s gravitational force vector, (v) Riemman’s
Lagrangian, (vi) Riemann’s kinetic energy and gravitational potential energy. All of
which reduce to the corresponding pure Newtonian quantities in the limit of c°,
and in general contain post-Newton or pure Riemannian correction terms of all
orders of c. Therefore the well-known tensorial Riemann’s Geodesic Equations
of Motion for particles of non-zero rest masses in gravitational fields is one of the
most convincing and compelling proofs that the gravitational phenomenon is
dynamical precisely as Galileo and Newton and Cavendish discovered it.

The second watershed of this metric tensor is the discovery that precisely as there
exists one and only one unique Euclidean metric tensor for all space-time without



gravitational field so also there exists precisely one and only one unique
Riemannian metric tensor for all space time with gravitational field which (i)
reduces to the corresponding Euclidean metric tensor in the limit of ¢’ and (ii) in
general contains post Euclid or pure Riemannian correction terms of all orders of
¢, in perfect agreement with the principle of equivalence of physics and the

principle of equivalence of mathematics.

We are now in a position to calculate all the theoretical predictions of Riemann’s
geometrical and physical concepts and principles and compare them with
experimental physical evidence.

Following the introduction of this new metric tensor we had formulated some
Riemannian geometrical quantities in Cartesian Coordinates [6] and some
orthogonal curvilinear coordinates [7,8]. In this paper, we are out again to
generate the Riemannian velocity and acceleration tensor/vector in Rotational
Oblate Spheroidal coordinates for application in physics and mathematics. We
choose this coordinate so that the results obtained here can be applied in un-
manned weather satellite and rotational friction coefficient for sphereolds with
the slipping boundary condition as suggested by Jack, B. Kuipers [11]

2:0THEORY
The Rotational Oblate Spheroidal Coordinates (u, v, w) can be expressed in terms
of Cartesian coordinates (x, y, z) as [5]:

x =w(u?+ dz)%(l — vz)% (1)
y = @? +d?2(1 - vz (1 - w?): )
y =uv (3)

The great metric tensor for all gravitational fields in nature in spherical polar

coordinates (7, 8, ¢, x°) is given as [5]:
2
9002_(1+C_2f) (4)

911 = (1 + Cz_zf)_l (5)

G22 =717 (6)



g33 = r?sin? 60 (7)
Guv = 0; Otherwise (8)

The Rotational Oblate Spheroidal coordinates are related to the Spherical polar
coordinates as:

N =

r = [u? +d?*(1 —v?)] (9)
6 = cos™! d - (10)
[uz +d?*(1 - vz)i]
and
L fa=ws
¢ = tan 1 [T] (11)

From the well know transformation equation given by the covariant tensor [10]
and consequently, upon transformation by using (4)-(11) we obtained the
Riemannian metric tensor for all gravitational fields in Rotational Oblate

Spheroidal coordinates as:

goo =—(1+3f) (12)
11 = uu2++v;(;lz T d;L (21 — p2) ; (_nl) <c2_2)n f* (13)
= (@) )
o= . (D) s

g33 = (W? +d*)(1 —v?) (16)



g = 0; Otherwise (17)

It may be noted that the determinant of the metric tensor g, denoted by g is
obtained as:

g = —(u? +v2d?)? (18)
Also, the contravariant metric tensor for this Riemannian metric tensor denoted
as g is given as:

-1

2
g =—(1+5f) (19)
gl = u? + v%d?
u? + d?

(1 — v?)v2d* o 2\ ,
{1+(u2+v2d2)[52 :dz(l—vz)] (Tll)<c_2> f }(1+C—2f) (20)

n=1

[ wd?1-v) @ +dD) O =1\ 2\ ., 2
glz_{(uz+v2d2)[u2+d2(1—v2)];(n)<c_2> f }<1+c_2f) @1
,, (=%

g T u2 4+ p2(g>

2(u? +d?) 2 2\ T . 9
{1+(u2+v2;£2)E;2+d2(1_v2)]1Z(nl)(c—2> f }<1+c_2f> (22)

=1
g> =W +d*)(1 -v)]™ (23)
g*’ = 0; otherwise (24)

These metric tensors define the Riemannian line element, Riemannian volume
element, Riemannian gradient operator, Riemannian divergence, Riemannian curl



and Riemannian Laplacian in Rotational Oblate Spheroidal coordinates, according
to the Theory of Tensor and Vector Analysis [9]. These quantities are necessary
and sufficient for the derivation of fields in all Rotational Oblate Spheroidal
distribution of mass, charge and current. Now for the derivation of the equation
of motion for test particles in all gravitational fields, we shall derive the
expression for Riemannian velocity and acceleration in Rotational Oblate
Spheroidal coordinates.

2:1 Great Riemannian Velocity Tensor/Vector in Rotational Oblate Spheroidal
Coordinates.

According to the theory of tensor analysis, the linear velocity in four-dimensional
space-time, u% is given in all gravitational fields in all orthogonal curvilinear
coordinates x* by [Spiegel, 1974]:

_d
_drx

where T is the proper time (time on a clock at rest outside gravitational field) is a
contra-variant tensor of rank one which is called the linear velocity tensor and it is
denoted by x*

a a

u = x@ (25)

Einstein Cartesian coordinate(x, v, z, x%), u®, ut, u?and u3 are given as:

10 = %0 = cf (26)
ul — xl =1 (27)
ur=x*=v (28)

and

ud = %3 = w (29)

It may be noted that in Minkowski Cartesian coordinates, x° is given as:
u® =ict (30)

The Great Riemannian Linear velocity tensor according to the theory of Tensor
Analysis, the coordinates(u, v, w, x°) is given as [9]:



QR = [Uur U, Uy, Uxo] (31)

where
2 \?.
(Ugr), = —c (1 +C—2f) £ (32)
(42 + 1242 u> o NI n'%'
(gR)lz U2 + d2? +u2+d2(1—v2)z(n)<c_2) o (33)
| n=1 A
(42 + 1242 244 had 1\ /23" n'%.
(QR)ZZ_(l—vz) +u2+d2(1—v2)Z(n)<c_2) f_ v (34
and
(Ug), = [u? + d2(1 — v®)]ow (35)

This is the great Riemannian velocity vector in Rotational Oblate Spheroidal
coordinates.

It may be noted that the Riemannian velocity vector obtained here is also a tensor
of rank one (i.e vector), but the magnitude is different from the Riemannian
velocity tensor as derived from the transformation.

2:2 Great Riemannian Acceleration Tensor/Vector in Rotational Oblate
Spheroidal Coordinates

Following the development of Great Riemannian velocity tensor/vectors, the
Riemannian linear acceleration tensor in 4-dimensional space-time, ag in
gravitational fields in nature and all orthogonal curvilinear coordinates x¢ is given
by the theory of tensor analysis as [9]:

ag = X%+ TE %M%Y (36)

Where agy is the Riemannian acceleration tensor of the rank one and I, is the
Christoffel symbol of the second kind (or Coefficient of affine connection) Pseudo



tensor, and a dot denotes one differentiation concerning proper timet. The non-
zero results of F,f‘v based upon the great metric tensor in Rotational Oblates
Spheroidal coordinates are given as:

1
Fgo = 5900900,0 (37)
0 1 00
[o1 = Eg Joo1 (38)
0 1 00
Io2 = 59 9oo,2 (39)
0 1 00
o3 = 59 9oo,3 (40)
0 1 00
I} = _Eg 911,0 (41)
0 1 00
I}, = _59 912,0 (42)
0 1 00
[y = _Eg 9220 (43)
0 1 00
I35 = —59 933,0 (44)
1 1
r'010 = _5911900,1 - 5912900,2 (45)
1 1 11 1 12
[o1 = _59 9110 — Eg 912,0 (46)
1 1 11 1 12
[o2 = —59 9210 + 5979220 (47)
1 1 11 1 12 12
Iy = =59 79111 759 9112 + 979121 (48)
1 1

I, = 5911911,2 + 5912922,1 (49)



1 1
s = 5911911,3 + 5912912,3

1 1
I = 99212 — 5911922,1 + 5912922,2
1 1
I}; = 5911921,3 + 5912922,3
1 1

F3.13 = _5911933,1 - 5912933,2

1 1
r‘020 = _5921911,0 - 5922912,0

1 1
g = 5921911,0 + 5922912,0

1 1
I§, = 5921921,0 + 5922922,0

1 1

4 = 5921911,1 + 9*%g121 — 5922911,2
1 1

% = 5921911,2 + 5922922,1

1 1
I = 5921911,3 + 5922912,3

1 1
5 = 9% 9212 — 5921922,1 + 5922922,2

1 1
7 = 5921921,3 + 5922922,3

1 1
F323 = _5921933,1 - 5922;933,2

1
ngo = - 5933900,3

1
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1
F132 = - 5933912,3

(50)
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lﬂ133 = 5933933,1 (66)
3 1 33

Iy, = _59 9223 (67)
3 1 33

I35 = Eg Y332 (68)
3 1 33

I35 = Eg 9333 (69)

[7, = 0; otherwise (70)

It follows from equation (36) — (70) that:

ay = ct + c*Tet? + 2cT ti + 2¢T, it + 2cT t0 + 2cT s tw + I 12
+ 2500 + T2 + Tsw? (71)
and
ayr =i + c?Tgyt? + 2cT tu + 2cT tu + THu? + 2TL a0 + 2Mhuw + T, 02
+ 2[5 0w + [35Ww? (72)
and
az = ¥+ c?T§t? + 2cTE tu + 2cTét0 + THU? + 2T5uv + 2T5uw + 412
+ 2T&4 0w + T w? (73)
and
ap = w + c?Tgyt? + 2cTg3tw + +T5 0% + 2500 + 2T uw
+ I3, 02 (74)

Wherein Einstein coordinate coordinates of space-time in Rotational Oblate
Spheroidal coordinates:

xt=wx?=v; x3=wu; x°=ct (75)

Equation (71) — (73) is called the Great Riemann Linear Acceleration Tensor in
Rotational Oblate Spheroidal coordinates.

Hence, the Great Riemannian Acceleration Vector ay, is defined as:



ag = [(ag)wu, (ar)v, (ag)w, (@r)xo ] (76)

where

(ag)xo = (goo)2al (77)
(ap)u = (g11)7ak (78)
(aR)y = (gz2)7a2 (79)
and

(ag)w = (g33)7a} (80)

Equation (77) — (80) is the Great Riemannian acceleration vector for all
gravitational fields in nature in Rotational Oblate Spheroidal coordinates.

It may be noted that the Riemannian acceleration vector obtained is also a tensor
of rank one but the magnitude is different from the Riemannian acceleration
tensor as derived from the transformation.

It is now most interesting and instructive to note that the Riemann’s acceleration
vector obtained here can be used to the developed natural extension of the
Riemann’s Vectorial Geodesic Equation of Motion from the gravitational field to
other interaction fields in nature given as:

mea = F™9 (81)
Or equivalently
moag = F{ + F9 (82)

Where aj is the Riemann’s acceleration vector in the gravitational field, F is the
Riemann's gravitational force vector, and F™ is the sum of all the non-
gravitational vector forces acting on the particles. And this equation can be
applied in all non-gravitational interaction fields in nature since every interaction
field in nature has a corresponding vectorial force expression or representation in
four-dimensional space-time. Consequently, the Riemann’s Vectorial Geodesic
Equation of Motion can be applied to every system in nature, without exception.



Therefore, it can be used to develop the following:

e Riemann’s Dynamical Theory of the vertical free falling particle,

e Riemann’s Dynamical Theory or the plane projective,

e Riemann’s Dynamical Theory of the free fall in a viscous medium,

e The Gravitational Field of a Body with Rotational Symmetry in Einstein’s
Theory of Gravitation,

e The influence of Inertia on the Rotational Dynamics of Spheroidal particles
suspended in shear flow,

e Andsoon.

3:0 Results and discussions

In this paper, we have derived the components of the Great Riemannian Linear
velocity tensor/vector and the Great Riemannian linear acceleration
tensor/vector in Rotational Oblate Spheroidal Coordinates as (71) — (73) and (77)
— (80) respectively. These results obtained in this paper are necessary and
sufficient for expressing all Riemannian mechanical quantities in all gravitational
fields in nature (Riemannian Linear Momentum, Riemannian Kinetic Energy,
Riemannian Lagragian and Riemannian Hamiltonian) regarding Rotational Oblate
Spheroidal coordinates.

4:0 Conclusions

The Great Riemannian velocity vector (71) — (73) and the Great Riemannian Linear
Acceleration vector (77) — (80) obtained in this paper pave a way for expressing all
Riemannian Dynamical laws of motion (Newton’s law, Lagrange’s law, Hamilton’s
law, Einstein Special Relativistic law of motion and Schrédinger’s law of quantum
mechanics) entirely in terms of Rotational Oblate Spheroidal coordinates.
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