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Abstract

Since the time of Galileo (1564 - 1643), Euclidean geometry has been the
foundation on which the theoretical formulations of all geometrical quantities in
all orthogonal curvilinear coordinates in Physics and Mathematics were built. But
with the discovery of the great metric tensor in spherical polar coordinates
(1,0, ®,x°) in all gravitational fields in nature[5] has made Riemannian geometry
to be opened up for exploration and exploitation and hence its application in
Theoretical Physics and Mathematics. In this paper, we derive the Riemannian
vector and acceleration tensor/vectors in Rotational Oblate Spheroidal
coordinates for application in physics and other related fields.

Keywords: Riemannian geometry, great metric tensor, Riemannian velocity and
acceleration and Rotational Oblate Spheroidal coordinates.

1:0 Introductions

Euclidean geometry has been the basic foundation on which Theoretical Physics
and Mathematics are built upon because the geometry has a well-defined metric
tensor for all orthogonal curvilinear coordinates. Base on this well-known
Euclidean metric, we had derived the velocity and ac celebration in some of the
orthogonal curvilinear coordinates [1, 2, 3, 4], added to the known velocity and
acceleration in Cartesian, Cylindrical and Spherical Coordinates, for applications in
Physics and other related fields.

Right from 1854, when George Friedrich Bernhard Riemann published his
geometry for space-time known as Riemann geometry, it was assumed to be



more general than the Euclidean geometry and it is generally accepted that
Riemannian geometry has the potential of providing a more general foundation
for Theoretical Physics and Mathematics [5]. However, the problem with the
Riemannian geometry is that it was not founded on any metric tensor which
makes its exploitation and possible application to Theoretical Physics and
Mathematics eluded the whole world. Riemann therefore left behind the problem
of finding the metric tensors for all gravitational fields in nature. Einstein tried to
solve this problem in his contribution to classical mechanics known as Einstein’s
Geometrical Gravitational Field Equation [5]. In 1916, Karl Schwarzschild
introduced a metric tensor for all gravitational fields due to static homogeneous
spherical distribution of mass. This metric tensor has been the basic for the
development of Einstein’s Geometrical Theory of Classical Mechanics in the
gravitational field known as General Relativity. Despite the great result obtained
from Einstein Geometrical Gravitational Field Equations, they cannot be applied
to generate any natural metric tensor for the gravitational fields due to any
distribution of mass in nature for all orthogonal curvilinear coordinates.

It is interesting to know that a metric tensor called the great metric tensor for all
gravitational fields in nature has been developed by Professor S.X.K Howusu in
2009 [5]. This metric tensor is valid for all four coordinates of space-time and for
all regular geometries in nature and for all regular distributions of mass in any
coordinate. In the limit of c°, it reduces to the well-known Euclidean metric tensor
for all space-time in gravitational fields in nature, in perfect agreement with the
principle of equivalence of Physics and the principle of equivalence of
Mathematics. We are now in position to calculate all the theoretical predictions
of Riemann’s geometrical and physical concepts and principles and compare them
with experimental physical evidence.

Following the introduction of this new metric tensor we had formulated some
Riemannian geometrical quantities in Cartesian Coordinates [6] and some
orthogonal curvilinear coordinates [7,8]. In this paper, we are out again to
generate the Riemannian velocity and acceleration tensor/vector in Rotational
Oblate Spheroidal coordinates for application in physics and mathematics.



2:0THEORY
The Rotational Oblate Spheriodal Coordinates (u, v, w) can be expressed in terms
of Cartesian coordinates (x,y, z) as [5]:

x =wu? +d?)2(1 — v2)z (1)
y = (u? + d?)z(1 — vz (1 — w22 2)
y =uv 3)

The great metric tensor for all gravitational fields in nature in spherical polar

coordinates (7, 8, ¢, x°) is given as [5]:

2
g00:_(1+c_2f) (4)
, -1
911 = (1 + c_zf) (5)
G2z =717 (6)
g33 = 1r?sin? 0 (7)
Guv = 0; Otherwise (8)

The Rotational Oblate Spheroidal coordinates are related to the Spherical polar
coordinates as:

N[

r=[u?+d*(1 —v?)] (9)
0 = cos™ ! id T (10)
|uz + d2(1 - v2)z]
and
o fa-wyz
(]5 = tan~! [T] (11)

From the well know transformation equation given by the covariant tensor [10]

and consequently, upon transformation by using (4)-(11) we obtained the



Riemannian metric tensor for all gravitational fields in Rotational Oblate

Spheroidal coordinates as:

Joo = — (1 + Cz_zf) (12)
_u? +v?d? u? Sy 2\" .
11 = u? +d? +u2+d2(1—v2);(n)<c_2> / (13)
—uvd? S 1y 2\" .
g12=u2+d2(1—v2);(n)<c_2> / (14)
u? + v?d? vid "
92 =0 =) T +d2(1—v2)z ( ) 1 (15)
g33 = (W +d*)(1 —v?) (16)
g = 0; Otherwise (17)

It may be noted that the determinant of the metric tensor g,,,,, denoted by g is

obtained as:

g = —W?® +v?d*)? (18)
Also, the contra variant metric tensor for this Riemannian metric tensor denoted
as g is given as:

-1

g = (14 5/) (19)



u? + v2d?
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(1 —_ UZ)U2d4 o)
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wd?(1 =)@ +d?) N =1y (2) n (4, 2
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_a-vy
T

22

uz(u2+d2) i 1N/ 2 n i 7
{1+(u2+v2d2)[u2+d2(1_v2)]2(n)(C_2> f }(1+C—2f) (22)

n=1
9% =[W? +d»)H( - vH)]™ (23)
gt¥ = 0; otherwise 24

These metric tensors define the Riemannian line element, Riemannian volume
element, Riemannian gradient operator, Riemannian divergence, Riemannian curl
and Riemannian Laplacian in Rotational Oblate Spheroidal coordinates, according
to the Theory of Tensor and Vector Analysis [9]. These quantities are necessary
and sufficient for derivation of fields in all Rotational Oblate Spheroidal
distribution of mass, charge and current. Now for the derivation of the equation
of motion for test particles in all gravitational fields, we shall derive the
expression for Riemannian velocity and acceleration in Rotational Oblate
Spheroidal coordinates.



2:1 Great Riemannian Velocity Tensor/Vector in Rotational Oblate Spheroidal
Coordinates.

According to the theory of tensor analysis, the linear velocity in four-dimensional

space — time, u® is given in all gravitational fields in all orthogonal curvilinear
coordinates x% by [Spiegel, 1974]:

d

uO_’ a

= —x (25)

Where T is proper time and a dot denotes one differentiation with respect to time
in Einstein Cartesian coordinate(x, y, z, x%), u°, u!,u?and u3 are given as:

= x@

u® =x% =ct (26)
ul=xl=u (27)
u2 — xZ =P (28)
and

udt=x3=w (29)

It may be noted that in Minkwoski Cartesian coordinates, x° is given as:
u® = ict (30)

The Great Riemannian Linear velocity tensor according to the theory of Tensor
Analysis, the coordinates(u, v, w, x°) is given as [9]:

QR = [Uur Uv UW’ Uxo] (31)
where
2 1
2
(Us)y = —c(1+5f) ¢ (32)
] - 1
u? + v?d>? u? 12\t |
— - nl .
(QR)1 Tl w2+ d2 +u2 +d2(1—v2)z:1( n )<c2> f* (33)
| n= i

]
N| =

n

[ 2 2 72 2 74 it
(QR)Z B _u(l-l_—vvza; T ;2((11 — v2) Zl (_nl) (c%) fn_ v (34)




and

(Ug), = [? + d?(1 — v?) 2w (35)

This is the great Riemannian velocity vector in Rotational Oblate Spheroidal
coordinates.

2:2 Great Riemannian Acceleration Tensor/Vector in Rotational Oblate
Spheroidal Coordinates

Following the development of Great Riemannian velocity tensor/vectors, the
Riemannian linear acceleration tensor in 4-dimensional space —time, ai in
gravitational fields in nature and all orthogonal curvilinear coordinates x% isb y
theory of tensor analysis as [9]:

ag = ¥% + [ %" (36)

Where I}7, is the Christoffel symbol of the second kind (or Coefficient of affine
connection) Pseudo tensor and a dot denotes one differentiation with respect to
proper timet. The non-zero results of Fj‘v based upon the great metric tensor in
Rotational Oblates Spheroidal coordinates are given as:

1
F(())o = 5900900,0 (37)
0 1 00
Io1 = 59 9oo,1 (38)
0 1 00
oz = 59 9oo,2 (39)
0 1 00
o3 = Eg 9oo,3 (40)
0 1 00
I} = _Eg 911,0 (41)
1

F1°2 = _5900912,0 (42)



1
onz = _5900922,0

1
F393 = - 5900933,0

1 1
F010 = _5911900,1 - 5912900,2
1 1
F011 = _5911911,0 - 5912912,0
1 1
Toz = _5911921,0 + 5912922,0
1 T L, 12
I = _E.g 9111 — E.g G112 T 9 9121
1 1
I =-9"9112 + 5909221
2 2
1 1
s =9 9113 + 599123
2 2
1 1

Iy = 99212 — 5911922,1 + 5912922,2

1 1
I); = 5911921,3 + 5912922,3

I35 = _%(911.933,1 - %912933,2
[ = —%921911,0 - %922912,0
51 = %921911,0 + %922912,0
I, = %921921,0 + %922922,0

1 1
4 = 5921911,1 + 9%%g121 — 5922911,2

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)
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(53)

(54)

(55)

(56)

(57)



1 1
% = 5921911,2 + 5922922,1

1 1
s =59%'0113 + 59729123
2 2
[z — 421 _1 21 1 22
22 =97 921,2 29 9221 T+ 29 9222
1 1
[ ==9%19213 +59%% 9223
2 2
1 1

F323 = _5921933,1 - 5922;933,2

1
F030 == 5933900,3

1
F131 = - 5933911,3

1
F132 = - 5933912,3

1
F133 = 5933933,1

1
F232 == 5933922,3

1
F233 = 5933933,2

1
F333 = 5933933,3

F#“V = 0; otherwise

It follows from equation (36) — (70) that:

+ 2I% 0 + 2,02 + T2

and

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)
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(70)

(71)



ay =i + c?Tgot? + 2cT tu + 2cTtu + THu? + 2TLav + 2Mkhuw + T, 02
+ 2T 0w + [35w? (72)

and

as = U+ c?Tgt? + 2cTE tu + 2cTé 0 + TA U2 + 2500 + 2T5uw + T4 12
+ 2I4 0w + THWw? (73)

and

az = w + c?Igyt? + 2cTgtw + +T5 02 + 2500 + 2T aw
+ I3, 12 (74)

Wherein Einstein coordinate coordinates of space-time in Rotational Oblate
Spheroidal coordinates:

xl=wx?=v; x3=uw x°=ct (75)

Equation (71) — (73) is called the Great Riemann Linear Acceleration Tensor in
Rotational Oblate Spheroidal coordinates.

Hence, the Great Riemannian Acceleration Vector ay is defined as:

ar = [(aR)w (aR)v: (aR)w: (aR)xo ] (76)
where

(ag)xe = (goo)7al (77)
(ap)y = (g11)2a} (78)
(ag)y = (g22)2a3 (79)
and

(aR)w = (g33)7a} (80)

Equation (77) — (80) is the Great Riemannian acceleration vector for all
gravitational fields in nature in Rotational Oblate Spheroidal coordinates.



3:0 Results and discussions

In this paper, we have derived the components of the Great Riemannian Linear
velocity tensor/vector and the Great Riemannian linear acceleration
tensor/vector in Rotational Oblate Spheroidal Coordinates as (71) — (73) and (77)
— (80) respectively. These results obtained in this paper are necessary and
sufficient for expressing all Riemannian mechanical quantities in all gravitational
fields in nature (Riemannian Linear Momentum, Riemannian Kinetic Energy,
Riemannian Lagragian and Riemannian Hamiltonian) in terms of Rotational Oblate
Spheroidal coordinates.

4:0 Conclusions

The Great Riemannian velocity vector (71) — (73) and the Great Riemannian Linear
Acceleration vector (77) — (80) obtained in this paper pave a way for expressing all
Riemannian Dynamical laws of motion (Newton’s law, Lagrange’s law, Hamilton’s
law, Einstein Special Relativistic law of motion and Schrédinger’s law of quantum
mechanics) entirely in terms of Rotational Oblate Spheroidal coordinates.
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