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ABSTRACT7

8
The total ground state energy and electronic band structure of Graphite and Diamond were calculated

in this work using FHI-aims Density Functional Theory (DFT) code. The density functionals used are

the generalized gradient functional PBE, and PBE+vdW approach as defined by Tkatchenko and

Scheffler. The results obtained from the computations of the ground state energies of diamond and

graphite were -2056.898408114 eV and -2061.703700984 eV respectively. Similarly, the results

obtained from the computations of the electronic band gaps of graphite and diamond were

0.00451936eV and 5.56369215 eV, respectively. These are in good agreement when compared to

the experimental values of 0eV and 5.48eV. These band gaps are within reasonable percentage

errors of 0.0% and 1.46% respectively.
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1. INTRODUCTION12
For many years the band structure emerging from density functional theory really was the13

only electronic structure free of empirical parameters that could be calculated to interpret carrier14

levels, doping, chemical bonding, etc. As such, it still has enormous reach in the community as a15

baseline against which better (formally more rigorous) approximations are compared [1]. The16

electronic band structures of graphite and diamond are particularly very important because of their17

unique semiconducting applications and fascinating properties. Researchers have studied the band18

structure of simple hexagonal graphite using nonlocal ionic pseudopotential [2], compared the band19

structure and DOS of the three graphite structures using an ab initio norm-conserving pseudopotential20

[3].21

On the other hand, an empirical pseudopotential method was used [4] to calculate the band structure22

of diamond.  Louis et al, 1970, also computed the band structure of diamond using nonlocal23

pseudopotential method. Similarly, band gap of diamond was calculated by [6] using both LDA and24
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GGA functionals. The methods mentioned above involved an empirical and/or pseudopotential25

computations, an all-electron/full Potential with numeric atom-centered basis function computational26

method is therefore necessary to study the band structure of these interesting Carbon allotropes. In27

this work, electronic band structure of diamond and graphite were simulated using FHI-aims DFT28

package [7]. The aim of this paper is to re-investigate the ground state electronic properties as well as29

predict the suitable potential electronic applications of diamond and graphite.30

31
2. MATERIAL AND METHODS32
First principles calculations represent the pinnacle of electronic structure calculations. Starting with33

the fundamental constants and Schrödinger's equation as a postulate, these methods proceed to34

describe the nature of atomistic systems to a degree that is almost irrefutable. The methods applied in35

solving Schrodinger’s equation break into two main types: Hartree-Fock (HF) based methods and36

Density Functional Theory (DFT) methods. While both make approximations to make calculations37

possible, they represent the best available methods for atomistic modeling.38

The original idea of DFT (i.e. using the electron density) is dated back to the individual work of [8 and39

9]. In Thomas-Fermi model, they showed that the distribution of electrons in an atom is uniform and40

can be approximated using statistical considerations. In 1964, [10] proved two simple but important41

theorems, which later become the basis of DFT. In 1965, in a trade of simplicity for accuracy, [11]42

invented an ingenious indirect approach to the theory in such a way that the kinetic energy can be43

computed simply to a good accuracy, leaving a small residual correction that is handled separately.44

They showed that one can build a theory using simpler formulas also referred to as Kohn-Sham (KS)45

kinetic energy functional and ground state electron density, namely;46
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where i
are the natural spin orbitals. To give a unique value to the KS kinetic energy functional52

][nT S through Eq. (1.1), KS invoked a corresponding non-interacting reference system, with the53

Hamiltonian:54
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in which there are no electron-electron repulsion terms, and for which the ground state electron57

density is exactly )(


rn . KS thus established that for any real (interacting) system with ground state58

density )(


rn , there always exist a non-interacting system with the same ground state density )(


rn59

For this system there will be an exact determinantal ground state wave function;60

S
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where i
are the N lowest eigenstates of the one electron Hamiltonian
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Now, to produce
S
T [n] exactly as the kinetic energy component [12] of T [n] in HK theorem, KS65

reformulate the universal functional as;66

F [n] =
S
T[n] + J [n] + Exc [n]                                                 (1.6)67

where;68

Exc [n] = T [n] –
S
T[n] +

ee
V[n] – J [n]                                                  (1.7)69
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The defined quantityExc [n] is called the exchange-correlation energy functional. The corresponding70

Euler equation for Eq. (1.7) is;71
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Where )(


rVeff is the KS effective potential and is defined by;74
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The second term of Eq. (2.0) is the Hartree potential while the XC potential )(


rV
xc

is given as77
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Therefore, for a given )(


rV
eff

, one gets the )(


rn simply by solving the N one-electron equations;80
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The effective potential from Eq. (1.9) depends on the electron density; therefore the Kohn-Sham85

equations have to be solved self-consistently. The electronic total energy E is typically calculated86

using the sum over the Kohn-Sham eigenvalues;87
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The Kohn-Sham scheme is in principle exact. The approximation only enters when we have to decide89

on an explicit form for the unknown functional for the exchange-correlation energy ][nExc and its90

corresponding potential )(


rV
xc

. The main goal of modern DFT is therefore to find better91

approximations to these two functionals. A great variety of different approximations to )(


rV
xc

have92

been developed. For many years the local density approximation (LDA) has been used [13]. In LDA,93

the exchange correlation energy density at a point in space is taken to be that of the homogeneous94

electron gas with the local electron density. Thus the total exchange correlation energy functional is95

approximated as,96



 rdrnrn xc
LDA
xcE ))(()( 97

(2.5)98

From which the potential is obtained using Eq. 2.1. However, LDA can have significant errors in its99

approximations for some physical and chemical properties computations. Recently, an effective100

potential that depend both on the local density and the magnitude of its local gradient are widely used.101

They are known as generalized gradient approximations (GGA) functionals. The GGA’s total102

exchange correlation energy functional is approximated as,103
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There are many GGA versions among which is the Perdew Burke Ernzerhof (pbe) functional (1997)105

used in this study. On the other hand, there are many DFT computational codes among which is the106

FHI-aims package. FHI-aims is a computer program package for computational materials science107

based only on quantum-mechanical first principles mathematical model. It uses solution methods of108

DFT to compute the total energy and derived quantities of molecular or solid condensed matter in its109

electronic ground state (Blum et al, 2009). In addition, FHI-aims allow describing a wave-function110

based molecular total energy calculation based on Hartree-Fock and many-body perturbation theory111

(MP2 and MP4).112

2.1 Computational Details113

Total ground state energy of graphite and diamond were calculated in the Generalized Gradient114

Approximation (GGA) and Local Density Approximation (LDA) using the [14] and [15], exchange-115

correlation energy functionals respectively. The calculation was performed by using Brillouin-zone of116

12×12×12 k-point grids for the SCF convergence. For the interplanar lattice parameter c of graphite,117

vdW effects correction based on [16] was included into the PBE functional. In order to generate a118

smooth-looking DOS, we used a denser 8×8×8 k-space grid to integrate the DOS for diamond. The119

factors by which the original k-space grid from the SCF cycle is increased are now (8, 8, 8). Together120

with the original k-grid of 12×12×12, this makes for a 96×96×96 integration mesh that is used for the121

DOS. However, we used a less dense 5×5×5 k-space grid to integrate the DOS for graphite. A122

Gaussian broadening of 0.05eV was used for both structures DOS computations. We used an123

experimental lattice constant of a = 3.567 Ǻ and a = 2.461 Ǻ, c = 6.708Ǻ for diamond and graphite124

respectively.125

3. RESULTS126
The following table summarize the output data obtained during FHI-aims computations,127

Table 1.2: Band gaps for Diamond and Graphite128
129

Bands
Structure

Lowest unoccupied
state (eV)

Highest occupied state
(eV)

Energy difference (eV)

Graphite -6.22855848 -6.23307784 0.00451936
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Diamond -2.66537760 -8.22906975 5.56369215
130
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Fig. 1.1 Band Structure and Density of States of the bulk Diamond as generated by the146
’aimsplot.py’ script.147

148
149
150
151
152
153

154
Fig. 1.2 Band Structure and Density of States of the bulk Graphite as generated by the155
’aimsplot.py’ script.156
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4. DISCUSSIONS158
Fig. 1.1 and 1.2 show the band structures and DOS for diamond and graphite respectively. The159

position of the Fermi level in the band structure of these crystals is shown by the zero on the energy160
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scale and that of symmetry points are indicated by vertical lines on the band graph in Fig. 1.1 and Fig.161

1.2.162

In Fig. 1.1, there is an important characteristic of the band structure, namely the range of energies163

where there are no electronic states across the entire Brillouin zone; this is the band gap. The Fermi164

level within the band gap shows that all state below it remain occupied and all state above remain165

unoccupied. From the plot and shown in Table 1.2, the energy difference between the lowest166

unoccupied state and the highest occupied state along reciprocal space direction number one167

is 5.56369215 eV. This value differs from other theoretical and experimental values by 0.12 eV and168

0.08 eV, respectively [6 and 17]. Since the valence band maximum at Γ-point, and the conduction169

band minimum partially at X -point are on different symmetry point, it shows that diamond is an170

indirect band gap semiconductor with a large energy gap value of 5.56 eV. Similar result of an indirect171

band gap semiconductor for AlAs and diamond were also computed using FHI-aims code [18 and 19].172

The DOS for the unit cell in Fig 1.1 also shows that the number of the electronic states in the valence173

bands is more than that of the conduction bands.174

In Fig. 1.2, there is another important characteristic of the band structure, namely a narrow or zero175

gap range of energies where there are no electronic states; this energy band gap has a value of176

0.00451936 eV as shown in Table 1.2. This approximately zero-gap value agrees with other177

theoretical and experimental values (Krueger, 2010; Charlier et al, 1994) [3 and 20]. It is obvious that178

the Fermi level lies within the conduction band, this shows that the conduction band is partially filled.179

The bands can be seen to touch at the entire L-K region of the Brillouin zone. The overlapping points180

on the Fermi level is between π- nonbonding orbitals in different graphite planes. This is simply181

because, in graphite the strong bonding between the segments connecting nearest-neighbour atoms182

within the layers  (intralayer) is described by sp2 hybridized 2s, 2px, and 2py atomic orbitals (σ-states),183

and the weak interlayer bonding is derived from the overlap between 2pz orbitals (π-states)184

perpendicular to the graphitic planes. The resulting band structure consists of bonding π and σ-states185

and anti-bonding π * and σ * states forming the valence and conduction bands, respectively. The186

weak interactions between graphitic planes is such that these bands split which leads to a zero-gap187

semiconductor and create a wide overlap semimetal [3 and 17]. The splitting of the bands at the188

Fermi level is in agreement with experiment [2]. As the electronic nature of a structure depends on the189
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density of states in the region of the Fermi level, the theoretical overlap three regions of peaks are190

presented in the DOS of Fig. 1.2.191

5. CONCLUSION192
The total ground state energy and electronic band structure of Graphite for hcp and Diamond crystal193

were calculated using the LDA in the parameterization by Perdew and Zunger 1981, the generalized194

gradient functional PBE, and PBE+vdW approach as defined by Tkatchenko and Scheffler. The195

results of the total energy required for binding/stability of the ground state during the optimized196

process were found to converge faster with the 12x12x12 k-grid points in the Brillouin zone of the FHI-197

aims code. We have found that a DFT LDA/GGA calculation of diamond and graphite electronic band198

structure and DOS gives correct location and shape of the Fermi level, band gap, VBM and CBM. The199

comparison between theory and experiment is better than could have been expected from band-gap200

studies with similar formalism.201
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