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ABSTRACT 
 
Analytic study of the xylem flow in a bifurcating green plant is presented. The model involves a set of non-
linear differential equations, which are tackled using the perturbation method of solutions. Solutions of the 
velocity, temperature, concentration, Nusselt and Sherwood numbers are obtained and presented graphically. It 
is observed that increase in the bifurcation angle increases the flow velocity and concentration, Nusselt and 
Sherwood numbers, whereas the soil parameter (magnetic field force) decreases the velocity and Nusselt 
number but increases the concentration and Sherwood number. These results have tremendous effect on the 
growth and yield of the plant. In particular, the increase in the transport velocity and concentration tend to 
increase the rate at which water and nutrients are made available to the plant, thus enhancing the growth and 
yield of the plant (crops); the variation in the electrolytic strength of the soil mineral salt water leading to a 
lower or higher Lorentz force tends to accounts for why some plants do well in some regions than in the others. 
Furthermore, it is seen that when the angle of bifurcation is zero (i.e.  α =0) and the magnetic field and thermal 
diffusion parameter are neglected the flow structures reduce to those of [4]. 
 
Keyword: biomechanics, bifurcation, green plants, magnetic field, soil nature, xylem flow   
 
1     Introduction 
Green plants play very important roles in the lives of man, animals and their environments. They 
produce oxygen that enriches our environment through photosynthetic activities. They are sources of 
food for both man and animals, planks for construction of buildings and other structures, and raw 
material for the industrial production of paper. More so, green plants protect the environment from 
erosion.  
The production of crops and animals for the benefits of man is a global objective that calls for the 
cooperation of all, and the services of experts, especially those in the fields of science. A good 
production of crops and animals depends on a number of favourable conditions. In particular, the 
growth and yield of crops depend on the soil factor that includes the availability of soil water and 
nutrients, soil temperature and soil pollution; atmospheric factor that consists of the presence of 
sunlight, humidity, temperature and wind; the plant factor that embraces the physical properties of the 
plant system; transpiration that is influenced by the soil, atmospheric and plant factors [1]. 
Furthermore, plants nutrients consist of about sixteen known essential elements present in the soil. 
They are classified into two: the macro- and micro- elements. The macro-elements comprise carbon, 
hydrogen, nitrogen, phosphorus, potassium, calcium, magnesium and sulphur, and are required in 
large quantities. The micro-elements, which include copper, zinc, molybdenum, boron, chlorine and 
iron are required in small quantities. The soil water, which is continually absorbed into the plants 
exists as alkaline and salts in the form of nitrogen, sulphur, potassium, magnesium, iron, zinc, 
molybdenum, manganese and boron [1]. These solutions are electrolytes; therefore exist as ions, 
which help to carry electricity at different degrees. The motion of these ions in presence of a magnetic 
field (such as the Earth magnetic field that is caused by the rotation of the Earth) results in electric 
currents, which subsequently gives rise to a magnetic field force (the Lorentz force) that in turn, gives 
the flow a new orientation [2, 3]. Taking cognizance of the afore-mentioned factors, it becomes 
evident that a soil may be fertile but may not be productive. This study attempts to examine the roles 
of the said factors in the transport of soil mineral salt water through the stem via the bifurcations to the 
leaves of the green plants (crops) with their attendant effects on their growth and yield.     
[4] examined the dynamics of the fluid in the xylem and phloem vessels of the tree trunk whose length 
is far greater than the diameter (i. e   dl >> ) such that the ratio of the length to diameter, otherwise 
called the aspect ratio is far less than one (i.e. 1/ <<=ℜ ld ). According to him, the flow in this type 
of channel is Poiseuille, laminar and steady. Furthermore, his model found application in green plants 
like iroko, coconut, paw-paw, plantain and the likes. However, [4] model has some limitations. It 
cannot explain the flow mechanism in plants that develop branches early in their growth stage (as in 
desert plants, guavas, mangoes, pears, indian almond and so on). In such plants, their aspect ratio is 
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approximately greater than or equal to one, and in which case, the flow structure is seen to depend 
mostly on the angle of the bifurcation and Reynolds number. Similarly, the model did not consider the 
effects of bifurcation angle and the nature of the soil on the growth and yield of the plant (crop). 
Therefore, we are motivated to examine, amidst others, the effects of these parameters on the xylem 
flow situation.  
Studies have shown that the fluid bearing vessels of the green plants are porous; the fluids are bio-
magnetic; the flow naturally convective. Therefore, apart from a few antiquated literatures on green 
plants, our study of the biomechanics of green plants shall be reviewed majorly in the light of the 
existing reports on the hydrodynamics of fluids in channels. For example, [5, 6] gave literature 
overviews of the biomechanics of green plants. [4] investigated the xylem and phloem flows at low 
Reynolds number in a tree trunk with aspect ratio far less than one. He modeled the vessel pores as 
valves representing the permeability of a porous medium; solved the governing equations analytically 
by the method of Laplace transforms, and observed that, for the phloem flow the concentration is 
confined near the wall of the green plant and is negative. While for the xylem flow, the concentration 
is more valid at the centre and is positives. Additionally, his results show that concentration decreases 
as porosity increases. 
 
The concept of bifurcation (in sense that a flow system divides into two or more daughter channels) is 
seen in both natural and industrial settings. Therefore, it has relevance in science and engineering. To 
this end, a number of literatures exist on the dynamics of fluid in such systems. For example, [7] 
introduced the use of theoretical approach or mathematical tools in the study of branching flows; [8] 
studied the effect of bifurcation angles on the steady flow in a straight terminal aneurysm model with 
asymmetric outflow through the branches using the Laser-Doppler velocity and fluctuating intensity 
distribution. They observed that the size of the recirculation zones in the afferent vessel, the flow 
activity inside the aneurysm, and the shear stress acting on the aneurismal wall increase as the 
bifurcation angle increases. More so, [9, 10] examined numerically and experimentally the flow 
structure in bifurcating pipes, and observed that the increase in bifurcation angle increases the inlet 
pressure, which subsequently increases the flow velocity. [11] examined theoretically the behaviour of 
an incompressible side-branching flow at high Reynolds number, and compared their results with that 
of direct numerical simulation at moderate Reynolds number. They observed that near the branch the 
flow adjusts itself to the imposed downstream pressure in the daughter through a jump in the flow 
properties across the daughter entrance. Furthermore, they noticed that for large pressure drops in 
the daughter tube the fluid is sucked in at high velocities from the mother and thereby provides a 
favourable upstream feedback. [12] investigated the equilibrium configuration and stability of a 
channel bifurcation in braided rivers, and showed that an increase in bifurcation angle increases the 
transport velocity. [13] showed that changes in bifurcation angle alter the flow condition and changes 
the magnitude of the wall shear stress. [14] investigated a three-dimensional one-to-two symmetrical 
flow in which the mother is straight and of circular cross-section, containing a fully developed incident 
motion, while the diverging daughters are straight and of semi-circular cross-section.  Using the 
method of direct numerical simulation and slender modeling for a variety of Reynolds number and 
divergent angles, they observed that a flow separation or reversal occurs at the corners of the 
junction, and the inlet pressure increases as the bifurcation angle increases.  [15] studied blood flow 
in bifurcating arteries using the method of regular perturbation, and noticed that an increase in 
bifurcation angle and Reynolds number increase the transport velocity factor.  
 
The flow through porous media is prevalent in both natural and artificial settings. Therefore, it is of 
great interest in science and engineering. For this cause, [16] investigated the flow in a rotating 
straight pipe and showed that the Nusselt number increases with increase in porosity. Furthermore, 
[17] studied the flow in a curved porous channel with rectangular cross-section filled with a fluid 
saturated porous medium with the flow driven by a constant azimuthally pressure gradient used the 
generalized Fourier series method of solution, and found that the velocity profiles depend on the 
geometry of the channel and Darcy number. [18] examined the fluid-mechanical aspect of the flow in 
bifurcating arteries, and observed that an increase in bifurcation angle and Reynolds number 
produces a commensurate increase in the wall shear stress. Similarly, the flow problems through non-
porous channels in the presence of chemical reactions were also considered. [19] studied a two-
dimensional flow of an incompressible viscous fluid through a non-porous channel with heat 
generation and chemical reaction by the methods of similarity transformation, homotopy analysis and 
numerical. They observed that an increase in the Reynolds number decreases the tangential velocity 
but increases the heat and mass transfer; the increase in the Eckert number and heat 
generation/absorption parameter increase the temperature; the increase in the chemical reaction 
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parameter decreases the concentration profiles, and an increase in the Grashof number increases the 
flow velocity.  
 
The study of the flow of fluids has been extended to include the effect of magnetic field. [20] 
considered the flow of viscous incompressible fluid embedded with small spherical particles in a non-
conducting channel with hexagonal cross-section in the presence of a transverse magnetic field using 
the method of integral transformation, noticed that the velocity of the fluid and particles decrease with 
increase in the intensity of magnetic field. [21] investigated the effect of magnetic field on the flow in a 
rectangular enclosure using perturbation technique, reported that the imposed magnetic field 
diminished the wall shear stress. [22] examined the influence of magnetic field on the skin friction 
factor of a steady fully developed laminar flow through a pipe by experimental and finite difference 
numerical scheme. They observed that the pressure drop varies in proportion to the square of the 
magnetic field and the sine angle; the pressure is proportional to the flow rate, and the axial velocity 
asymptotically approaches its limit as the Hartmann number becomes large.  
 
More so, there are research reports on the magneto-hydrodynamic convective flow. Magneto-
hydrodynamic convective heat and mass transfer in porous and non-porous media is of considerable 
interest in technical field due to its applications in industries, geothermal, high temperature plasma, 
liquid metal and MHD power generating systems. [23] studied the free convection flow through a 
vertical porous channel in the presence of an applied magnetic field using the finite difference 
numerical approach, and noticed that the velocity decreases with the increase in the magnetic and 
porosity parameters throughout the region. [24] considered the fully developed mixed convective flow 
in a vertical channel filled with nano-fluids in the presence of a uniform transverse magnetic field 
using the closed form solutions. They observed that magnetic field enhances the nano-fluid velocity in 
the channel; the induced magnetic field vanishes in the central region of the channel. In addition, they 
noticed that the critical Raleigh number at the onset of the instability of the flow is strongly dependent 
on the volume fraction of nano-particles and the magnetic field. [25] studied the  magneto-
hydrodynamic free convective and oscillatory flow through a vertical channel filled with porous 
medium with non-uniform wall temperatures using the method of asymptotic expansions. They noticed 
that the velocity of the fluid increases  with the increase in Grashof number but  decreases due to 
increase in the porosity parameter or magnetic parameter; the temperature of the fluid decrease as 
radiation parameter, heat generation/absorption parameter or Prandtl number increases. Furthermore, 
they found that the skin-friction coefficient at the wall increases with the increase in Grashof number 
but decreases with the increase in porosity parameter, magnetic parameter, radiation parameter, heat 
generation/absorption parameter or Prandtl number; the Nusselt number at the wall increases due to 
the increase in the radiation parameter, heat generation/absorption parameter or Prandtl number. [26] 
investigated the effects of magnetic field and convective force on the flow in bifurcating porous fine 
capillaries, and found that magnetic field reduces the flow velocity, whereas the convective force 
increases it. More so, [27] examined analytically the blood flow in bifurcating arteries, and observed 
that an increase in heat exchange parameter and Grashof number increase the velocity, 
concentration and Nusselt number of the flow while an increase in the heat exchange parameter 
increases the Sherwood number. [28] considered analytically a  span-wise fluctuating magneto-
hydrodynamic (MHD) convective flow problem of a viscous, incompressible and electrically 
conducting fluid through a porous medium filled in an infinite vertical channel, with  the walls 
subjected to span-wise cosinusoidally varying species concentration and temperature. They observed 
that the velocity increases with the increase in the buoyancy forces due to concentration and thermal 
diffusions, and permeability but decreases with the increase in the  magnetic field, Prandtl number, 
heat generation/absorption parameter, Schmidt number, radiation parameter and frequency of 
oscillations; the skin-friction amplitude increases with the increase in the Grashof number (due to 
concentration gradient), permeability, Schmidt number and radiation parameter while it decreases 
with the increase in the Grashof number, magnetic field, Prandtl number and heat generation/ 
absorption. Also, they noticed that there is always a phase lead in the skin-friction, which  increases 
with the increase in Grashof number (due to concentration gradient), permeability and radiation 
parameter but decreases with the increase in  magnetic field, Prandtl number, heat 
generation/absorption, and Schmidt number; the temperature decreases as Prandtl number, heat 
generation/absorption and frequency of oscillations increase; the species concentration also 
decreases with the increase in Schmidt, radiation parameter and frequency of oscillations. 
Furthermore, they saw that the amplitudes of the Nusselt number and Sherwood number increase 
sharply and decrease mildly with the increase in the different parameters involved; there is always a 
phase log for the Sherwood number. [29] considered the flow in a bifurcating river, and found that 
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bifurcation angle, Reynolds number and thermal differentials increase the velocity factor, while the 
Hartmann number decreases it. [30] elaborately investigated analytically the effects of radiation and 
hall current on the MHD free convective three -dimensional flow of an incompressible viscous fluid in 
a vertical parallel plates channel filled with a porous medium. They observed that the velocity 
component for the primary flow enhances with the increase in Reynolds number, Darcy parameter, 
hall parameter, Grashof number, Peclet number and pressure gradient but reduces with the increase 
in the intensity in magnetic field  (Hartmann number) and radiation parameter; the velocity component 
for secondary flow enhances with the increase in Darcy number and hall parameter but reduces with 
the increase in Reynolds number, magnetic field, Gashof number, Peclet number, pressure gradient 
and radiation parameter; the resultant velocity enhances with the increase in Reynolds number, Darcy 
number, hall parameter and pressure gradient  but reduces with the increase in magnetic field, 
Grashof number, Peclet number, radiation parameter and frequency of oscillation. Similarly, they 
noticed that the temperature reduces with increase in radiation parameter or Peclet number while it 
enhances initially and then gradually reduces with the increase in the frequency of oscillation; the 
amplitude of rate of heat transfer decreases with the increase in  radiation parameter and Peclet 
number; the phase angle decreases with the increase in the Peclet number but increases with 
increase in the radiation parameter; there is a phase log for the values of the frequency of oscillations.  
Furthermore, they saw that the amplitude increases with the increase in Reynolds number, pressure 
gradient, Grashof number and hall parameter, permeability of the porous medium, Peclet number, 
radiation parameter for small values of frequency of oscillation but decreases for large values of 
frequency of oscillation; the effect of Darcy number is insignificant for large values of frequency of 
oscillations. More so, it is seen that the amplitude decreases with increase in magnetic field; the 
phase angle increases with increase in Reynolds number, hall parameter, Peclet number, radiation 
parameter and Grashof number but decreases with the increase in Darcy number, magnetic field and 
pressure gradient. 
 
The purpose of this paper, which is the part one of this study, is to investigate the effects of bifurcation 
angle and the nature of the soil in which the plant grows on the flow of mineral salt water in a green 
plant that bifurcates with their attendant implications on agricultural productivity.     
   
The paper is organized as follows: the material and methods, results, discussion and conclusion.  
 
2     Methodology 
 

x = 0

Soil level 

Tree trunk

x 

 
      Fig. 1 The physical representation of the model 
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In a typical green plant, the carriers of the fluids are the xylem and phloem vessels. The phloem 
vessels carry the manufactured materials from the leaves down through the stem to other parts of the 
tree. Here, the flow is in the direction of gravity. For the xylem flow, which is anti-gravity, the soil 
mineral salt water is absorbed by the roots, and is conveyed through the stem (tree trunk) to the 
leaves. A close examination of the cross-section of a typical green plant shows that it is made up of 
interconnected spores and capillaries through which the fluids flow. Therefore, the plant tissues are 
porous. The mineral salt water, by the nature of its chemical content is electrolytic, and therefore, is 
magnetically susceptible. The fluid viscosity is a function of temperature and magnetic field. We shall 
also assume that the bifurcating channels are symmetrical; the flow is creepy, with a Reynolds 

number of about 0.02 [4]. If therefore, ( ''' ,, wvu ) are the velocity vectors with respect to the 

orthogonal coordinate directions ( ''' ,, xr θ ), ρ the fluid density, 'p  the pressure, µ the viscosity, mµ  

the magnetic permeability of the fluid, g the gravitational field vector acting in the reverse direction of 
the flow, 'T  and 'C  are, respectively, the fluid temperature and concentration (quantity of material 
being transported), while Tw  and Cw  are the constant wall temperature and concentration at which 
the  channel is maintained, whereas  T∞ and C∞  are, respectively, the temperature  and concentration 
at equilibrium. More so, assuming that the flow is fully developed in the mother channel and the 

velocity is symmetrical about the 'θ  axis such that variations about 'θ is zero the coordinate   

becomes ( '',xr ) and the velocity vector becomes ( '',wu ), then the models describing the motion of 
the fluid in the bifurcating green plant in cylindrical polar coordinates as shown in Fig 1, considering 
Boussinesq approximation are:

  
       

 

     

( )' '1 '
0

' ' '

r u u

r r x

∂ ∂+ =
∂ ∂                     (1)    

         
                       

2 2

'2 2 '2

' ' 1 ' ' '
0

' ' ' '

p u u u u

r r r r r x
µ  ∂ ∂ ∂ ∂= − + + − + ∂ ∂ ∂ ∂           (2)

                   

                                 

( )
2 2

'2 '2

' ' 1 ' '
0 ' ' '

' ' ' t

p w w w
g T T

x r r r x
µ ρ β ∞
 ∂ ∂ ∂ ∂=− + + + + − ∂ ∂ ∂ ∂      

 

                                             
( )

2

2

''
' ' '

'
e o

c
m

B wv
g C C

σµρ β
κ ρ µ∞+ − − −

                      (3) 

                        

             

( )
2 2

2 2

' ' ' 1 ' '
' ' '

' ' ' ' ' 'p o

T T T T T
C u v k QT T

x r r r r x
ρ ∞

 ∂ ∂ ∂ ∂ ∂ + = + + − −  ∂ ∂ ∂ ∂ ∂                                                   (4)   

                   

( )
2 2

2
2 2

' ' ' 1 ' '
' ' '

' ' ' ' ' ' r

C C C C C
u v D k C C

x r r r r x ∞
 ∂ ∂ ∂ ∂ ∂+ = + + + − ∂ ∂ ∂ ∂ ∂       (5)

    
The general analysis of the physical geometry of the problem presented in Fig.1 shows that  the  
boundary conditions can be split into two distinct parts, namely, mother or upstream, 0<x and 
daughter or downstream, 0>x

.
 

For the upstream, 

             ( ,, ,wu )  = (1,1)  and ( ',' CT ) = ( ∞∞ CT , )       at   r’ = 0            (6) 

              ( ,, ,wu )  = (0,0)  and ( ',' CT ) = ( ww CT , ),       at   1'=r         (7) 

and 

for the downstream, 

( ,, ,wu ) = (0,0)  and ( ',' CT ) = ( 0,0 )       at   0'=r          (8)   

         ( ,, ,wu )=(0,0) and ( ',' CT )=( ww CT 21 ,γγ ), 121 <= γγ  at '' xr α=          (9) 
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Introducing the following  non-dimensional parameters 
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                 mPe = ScRe ,  hPe = PrRe , M1
2=χ2+M2

, 

 
where β1 and  β2  are  the volumetric expansion coefficient for temperature and concentration 
respectively, Θ  and Φ  are the non-dimensionalized temperature and concentration, respectively, κ  
is the permeability parameter of the porous medium, Bo is the applied uniform magnetic field strength 

due the nature of the soil and the earth field, σe  is the electrical conductivity of the fluid, ok  the 

thermal conductivity, Cp the specific heat  capacity at constant pressure, Q is the heat absorption 

coefficient, D the diffusion coefficient, 2
rk  is the rate of chemical reaction of the soil mineral salt 

solution, α and β are the angles at which the plant bifurcates, ℜ  is the aspect ratio, υ  is the 

kinematic viscosity, Ro is the characteristic radius of the tree trunk, 2M is the soil parameter, Re is 

the Reynolds number, 2N is the environmental temperature differential parameter, 2χ  is the porosity 

parameter, 2
1δ  is the chemical reaction parameter, Sc  the Schmidt number, Pr the Prandtl number, 

(Gr, Gc) are the Grashof number due to temperature and  concentration differences, while (Peh , Pem) 
are the Peclet number due to heat and mass  transfers, into (1)-(5), we have

   

                               

( )
0

1 =
∂

ℜ∂+
∂

∂
x

w

r

ru

r                       (11) 
   

                               r

p

r

u

r

u

rr

u

∂
∂=−

∂
∂+

∂
∂

22

2 1

                              (12)
                                      

Φ−Θ−
∂
∂−ℜ=+−

∂
∂+

∂
∂

GcGr
x

p
wM

r

w

rr

w
)(

1 22
2

2

χ                 (13)        
                                        

                              

                        
)(

1 2
2

2

x
w

r
uPeN

rrr h ∂
Θ∂ℜ+

∂
Θ∂=Θ+

∂
Θ∂+

∂
Θ∂

                 
(14)

                                                                             
 

                         
)(

1 2
12

2

x
w

r
uPe

rrr m ∂
Φ∂ℜ+

∂
Φ∂=Φ+

∂
Φ∂+

∂
Φ∂ δ

               
(15)

  
With boundary conditions

                 
 

                ( wu, )  = (1,1)  and ( ΦΘ, ) = ( 1,1 )       at   0=r                  (16)                           

                 ( wu, )  = (0,0)  and ( ΦΘ, ) = ( ww ΦΘ , ),       at   1=r                 (17) 

for the upstream 
and    

           ( wu, )  = (0,0)  and ( ΦΘ, ) = (0,0)     at   0=r                      (18)     

          ( wu, )  = (0,0)  and ( ΦΘ, ) = ( ww ΦΘ 21 ,γγ ),   121 <= γγ     at   xr αℜ=         (19) 

for the downstream 
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 A close observation shows that the (11)-(15) are non-linear and highly coupled. To embark on 
analytical solutions, we employ the method of regular perturbation series solution of the form  

                         
( ) ...),(),(),(), 2
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10 +++= xrfxrfxrfxrf ξξ

               
(20) 

where 1Re<<=ξ is the perturbing parameter assumed to be  extremely small. The choice of this 
parameter is based on the fact that in such a channel the Reynolds number is usually very small. But, 
as the fluid flows towards the bifurcation or the nodal point, due to the change in geometrical 
configuration the inertial force rises such that the Reynolds number, and consequently, the 
momentum are increased at their own level. Now, assuming the flow is fully developed  such that  
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the daughter region), (see [1]) then the equations governing the flow in these streams are: 
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with the boundary conditions  
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for the upstream,  and 
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with the boundary conditions  
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for the downstream. 
 
The upward transport of fluid in green plants through the xylem vessels is enhanced by (i) the suction 
pressure which resulted from the osmotic pressure, and (ii) the environmental thermal gradient which 
culminated in the convective motion of the fluid. For some green plants such as  grasses, shrubs and 
the like only the suction pressure is enough to carry the fluid to their terminals, whereas in others like 
the tall trees suction pressure in addition to the buoyancy (Gr/Gc) are required to overcome the 
gravitational force for the fluid to get to its height. Therefore, for the case in which the suction 
pressure is sufficient to transport the fluid from the base to its height, buoyancy is usually neglected 
such that Gr/ Gc = 0 (see [4]), and for the other situation where buoyancy is not neglected Gr/Gc  ≠ 0. 
 
After exhaustive algebra and applying the necessary boundary conditions, we have the following 
solutions: 
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Case 1: Gr/Gc=0 
 
For the upstream, 
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In the absence of magnetic field (i.e. M2 = 0) the velocity expression becomes 
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And, this is the velocity relation in [4]. 
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(41) 
where, K = is the constant pressure gradient in the axial x-direction, In(z) is the modified Bessel 
function of order n with argument z, while Jn(z) is the ordinary Bessel function of order n. 
 
Case 2:  Gr/Gc≠0 
 
For the upstream, 
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3     Results and Discussion 
 
In sections 2 we formulated and solved for the problem of the biomechanics of bifurcating green plants when 
the environmental thermal gradient is constant with intent on investigating the effects of bifurcation angle and 
soil nature on the xylem flow. The analyses of results show that the variations in the bifurcation angle and 
magnetic field have significant effects on the flow structure. To this end, using Maple12 computational software 
for various values of angle of bifurcation α and soil parameter M2, which accounts for the effect of soil nature on 

the flow model. For realistic values of Pr =0.71, Re=0.03; γ1 = 0.6, γ2 =0.6, γ =0.7, Φw = 2.0, Θw =2.0, 0.8ℜ = , 

2.02
1 =δ , N2 = 0.2, χ2 =0.2 and for varying values of  α = 5, 10, 15, 20 and M2= 0.1, 0.5, 1.0, 10,  we have the 

results shown in fig. 2 – fig.15. These figures show the profiles for the velocities, concentration, temperature, 
Sherwood and Nusselt numbers, and they indicate that the flow velocity, concentration and Sherwood number 
increase with the angle of bifurcation (see Figs.2, 3, 4, 5, 6), whereas the increase in the magnetic field force 
decreases the velocity, temperature and Nusselt number (see Figs.7, 8, 9, 10, 11, 12, 13) but increases the 
concentration (see Figs.14, 15). 
 

 
 Fig. 2 Velocity –bifurcating angle (α) profiles at various radial distances (r) in the daughter tube when 

Gr/Gc=0 
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 Fig. 3 Velocity-bifurcation angle (α) profiles at various radial distances (r) in the daughter tube  

        when Gr/Gc≠0       

 

 
Fig. 4 Concentration –bifurcating angle (α) profiles at various radial distances (r) in the daughter  

           tube when Gr/Gc=0 

 

 
 Fig. 5 Concentration-bifurcation angle (α) profiles at various radial distances (r) in the  daughter  

            tube when Gr/Gc≠0 
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 Fig.6 Sherwood number profiles for various bifurcating angles (α) in the daughter tube when   

       Gr/Gc=0 

 

 
 Fig 7 Velocity-magnetic field parameter (M

2
) profiles for various radial distances (r) in the mother    

           channel when Gr/Gc=0 

 

 
Fig. 8 Velocity-magnetic field parameter (M

2
) profiles for various radial distances in the daughter  

          channel when Gr/Gc=0 
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    Fig. 9 Velocity- magnetic field parameter (M

2
) profiles at various radial distances (r) in the  

           mother tube when Gr/Gc≠0 

 

 
 Fig. 10 Velocity- magnetic field parameter (M

2
) profiles at various radial distances (r) in the  

             daughter tube when Gr/Gc≠0 

 

 
Fig.11 Temperature- magnetic field parameter (M

2
) profiles at various radial distances (r) in the  

            daughter tube for Gr=0 
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Fig. 12 Temperature- magnetic field parameter (M

2
) profiles at various radial distances (r) in the  

           daughter tube for Gr≠0 

 

 
 

 

Fig. 13 Nusselt number profiles in the daughter channel for various soil parameter (M2) when  
            Gr/Gc=0 and Gr/Gc≠0 
 

 
 Fig. 14 Concentration–magnetic field parameter (M2) profiles at various radial distances (r) in the  

             daughter tube when Gr/Gc=0 
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 Fig. 15 Concentration- magnetic field parameter (M2) profiles at various values of radial   
              distance (r) in the daughter tube when Gr/Gc≠0. 
 
The increase in the bifurcation angle narrows down the diameter of the daughter channel, resulting in an 
increase in the inlet pressure, which in turn increases the flow velocity. This accounts for what is seen in Fig.2 
and Fig.3. These results are in good agreement with those of [9], [10], [12], [15] and [29]. More so, as the 
velocity increases, the rate and the quantity of soil mineral salt water transport are increased. This tends to 
explain the observation in Fig. 4 and Fig. 5.  
 
Normally, there is an ambient or equilibrium concentration at the center of the channel where r=0. With the 
increase in the quantity of fluid, the concentration may exceed normal, such that the excess is transferred to the 
wall for a possible escape through diffusion. The rate of the transfer depends on the flow rate, which in turn 
depends on the angle of bifurcation and velocity, respectively, (see Fig. 6). The gradient in concentration helps 
to create favorable situation for convective or buoyancy force which increases the flow, too.  
 
On the other hand, the chemical content of the soil mineral salt water is alkaline, and may contain some traces of 
acid. Therefore, the soil mineral salt water is electrolytic and exists as ions or charges. The motion of these 
charges in a magnetic field produces electric currents. The action of the magnetic field on the currents produces 
a mechanical force (the Lorentz force) which modifies the flow. In particular, the Lorentz force tends to freeze 
up the motion (see Fig. 7 – Fig.10). This is in consonance with the findings of [15], [20], [22], [23], [25] and 
[26]. 
 
More so, the decrease in the velocity due to the presence of magnetic field leads to a decrease in the kinetic 
energy of the fluid particles, and hence the temperature decreases. This accounts for what is noticed in Fig. 11 
and Fig. 12. Additionally, the decrease in the temperature implies that the temperature of the system is low, and 
heat is not generated. For this, the rate heat transfer to the wall drops (see Fig. 13) 
 
Furthermore, the soil mineral salt water is magnetically susceptible, therefore, is responsive to external magnetic 
field. Its material contents are fractionalized and polarized in the presence of magnetic field, and tend to flow 
toward the magnetic field and cluster around it. The magnetic force inhibits the fluid from flowing out of the 
field. This leads to a huge concentration of fluid in the field, and thus accounting for what is seen in Fig.14 and 
Fig.15.  
 
The increase or decrease in the velocity, temperature and concentration factors has some tremendous attendant 
effects on the growth potential and productivity of the plant. For example, the increase in the velocity tends to 
increase the rate at which water and soil nutrients are made available to the plants. Other factors being constant, 
this enhances the growth and yield of the plant. On the converse, the reduction in the flow velocity adversely 
affects the growth and productivity of the plant. More so, the increase in the concentration or quantity of the 
fluid transported implies an increase in the plant nutrients absorbed in to the plant. Secondly, a high 
concentration of the fluid in the plant cells means that the fluid in the plant is at higher osmotic pressure than 
that in the soil such that more water and nutrients are forced into the plant. These processes help in the growth 
and yield of the plant.    
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Contrarily, the decrease in the temperature reduces the permeability of the plant cell membranes and makes the 
fluid more viscous, thus inhibiting the flow. This has adverse effects on the plant growth and yield. Similarly, it 
is seen that the Lorentz for which depends on the electrolytic strength of the mineral salt water tends to freeze 
up the flow velocity. Therefore, the variation in the electrolytic strength of the soil mineral salt water accounts 
for why some plants do well in some regions than in the others.    
 
4     Conclusion 
 
The analysis of the results indicates that the velocity, concentration, Nusselt and Sherwood numbers increase 
with the bifurcation angle, whereas the magnetic field (or soil parameter) decreases the velocity and Nusselt 
number but increases the concentration and Sherwood number. Theses have tremendous agricultural 
implications.  The increase in the velocity and concentration enhance the growth and yield of the plant. On the 
other hand, the variation in the electrolytic strength of the soil mineral salt water leading to lower or higher 
Lorentz force accounts for why some plants do well in some regions than in the others. Furthermore, in the 
absence of bifurcation angle (i.e. α= 0) and the nature of the soil in which the plant grows the problem reduces 
to [4] model. Interestingly, the analysis presented in this model aids our understanding of the global 
biomechanics of green plants. 
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