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ABSTRACT7

The cohesive energies of lithium (Li), chromium (Cr), iron (Fe) and molybdenum (Mo) were computed8
using density functional theory (DFT). DFT based Fritz Haber Institute-ab initio molecular simulation9
(FHI-aims) computer code has several input parameters in which some of the variables were10
optimized. The cohesive energies of Li, Cr, Fe and Mo were calculated within Perdew Wang local11
density approximations (LDA) of DFT. The results obtained from the calculations of cohesive energies12
of Li, Cr, Fe and Mo were approximately 1.82eV, 5.33eV, 5.35eV, and 8.02eV respectively. These13
results obtained are in the neighborhood of experimentally found values of 1.63eV, 4.10eV, 4.28eV14
and 6.82eV respectively, within reasonable percentage errors.15
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1.   INTRODUCTION17

Cohesive energy calculations vis-à-vis the first principle total energy calculations using DFT is18
considered satisfactory in the physics of condensed matter systems, material science and physical19
chemistry. DFT has a wide application in atoms, molecules and bulk structures; and the method can20
be used to predict properties of atomic and bulk systems.21

DFT being one of the most popular and quantum-mechanical approaches to many-body systems are22
applied to computations of ground-state properties of molecules and the band structure of solids in23
physics [5]. This research work involves some body-centered cubic (BCC) lattices or crystals that24
were investigated using DFT based FHI-aims code as a tool to calculate the cohesive energies of Li,25
Cr, Fe and Mo.26

This research puts into perspective a single alkaline metal, Li and three transition metals Cr, Fe and27
Mo. This choice is based on comparative study and practical applications of these materials for28
modern technology.29

Electrochemical batteries as of today are the most (or one of the most) promising energy storage30
technology in grid integration of renewables, electric vehicles, and electronics devices [12]. The31
batteries have relatively high energy and efficiency and specific example of such batteries is Li-ion32
battery. Also, lithium has been found effective in assisting the perfection of silicon nano welds in33
electronic components for electrical batteries and other devices.34

Stainless steel and chromium plating (electroplating with chromium) have high commercial use. Iron35
as well as molybdenum is used in steel alloys, including high strength alloys and superalloys. Indeed36
these materials have high industrial use and demands. Hence, the needs to further study the37
cohesive energies of these materials using FHI-aims.38

Our interest on structure and binding imply that the cohesive energy Ecoh of a system is very39
important. It is useful for studying binding strength in crystal structures and can help to gain40
information about structural preferences of solids.41
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Cohesive energy is the energy that must be supplied to a solid or crystal to separate its constituents42
into free atoms at rest and at infinite separation with the same electronic configuration [6, 11].43
Cohesive energy is one of the parameters used to understand the nature of chemical bonding and44
several important parameters can be predicted using it. Its magnitude tells us the stability and45
chemical reactivity of solids. Eventually, it is the quantity which determines the structure of solids,46
because different possible structures would have different cohesive energies [19].47
Many powerful methods for solving schrodinger’s equation have been developed during decades of48
struggling with the many-body problem. These methods are Nearly-Free-Electron Approximation,49
Cellular Method, Augumented Plane-Wave method, Scattering Matrix Method, Pseudopotential50
Method; and other methods. These methods are time-consuming, cumbersome and pose problems to51
researchers in this field. Hence, DFT as a powerful tool replaces the many-body electronic wave52
function used in the method mentioned above with the electron density as the basis quantity [4].53
In calculating basic properties of solids like cohesive energy, lattice constants, band structures and54
density of state, we use DFT as the most popular and successful quantum-mechanical approaches to55
matter [20].56
In this research, the cohesive energies of Li, Cr, Fe and Mo were computed based on DFT package57
FHI-aims code in the range between 1.82eV and 8.02eV which is in reasonable agreement with58
experimental data in the range between 1.63eV and 6.82eV.59

60
2. THEORETICAL FRAMEWORK61
Density functional theory (DFT) is a quantum mechanical modelling method used in physics,62
chemistry to investigate the electronic structure or ground state of many body systems, in particular63
atoms, molecules, and the condensed phases [16]. The principles of DFT are conveniently64
expounded by making reference to conventional wave-function theory. Any problem in the electronic65
structure of matter (atom and molecules) is covered by Schrödinger’s equation. DFT has proved to be66
highly successful in describing structural and electronic properties in a vast class of materials, ranging67
from atoms and molecules to simple crystals and complex extended systems (including gases and68
liquids). DFT has become a common tool in first-principle calculations aimed at molecular and69
condensed matter systems [8, 14].70

Traditional methods in electronic structure theory, in particular Hatree-Fock theory and its71
descendants are based on the complicated many-electron wave function. The main objective of DFT72
is to replace the many-body electronic wave function with the electronic density as the basis quantity.73
Whereas many-body wave function is dependent on 3N variables, three special variables for each of74
the N electrons, the density is only a function of three variables and is a simpler quantity to deal with75
both conceptually and practically. [5]76

77

2.1 THE HOHENBERG-KOHN THEOREM78
It was Hohenberg and Kohn who stated a theorem that tells us that the electron density is very useful.79
The Hohenberg-Kohn (H-K) theorem asserts that the electron density of any system determines all80
ground-state properties of the system. In this case the total ground state energy of a many-electron81
system is a functional of the density.82

83
Let us consider a system of N interacting (spinless) electrons under an external potential V(r) (usually84
the coulomb potential of the nuclei). If the system has a non-degenerate ground state, it is obvious85
that there is only one ground state charge density that corresponds to a given V(r). In 1964,86
Hohenberg and Kohn demonstrated the opposite, far less obvious result: there is only one external87
potential V(r) that yields a given ground-state charge density n(r). The demonstration is very simple88
and involves the disproof of a proposition by showing that it leads to absurdity.89

90
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For many-electron Hamiltonian H=T+U+V, with ground state wave function, ψ. T is the kinetic energy,91
U is the electron-electron interaction. V is the external potential. The charge density n(r) as defined by92
Hohenberg-Kohn is93

    drdrrrrrNrn NN ...2321 ,...,,,
2

94

(2.1)95
96

Now considering a differential Hamiltonian VUTH ''''  , with the ground state wave function  '97

. V and V ' do not differ simply by a constant: VV ' constant.98

Assuming that the ground state charge densities are the same:    VnVn '' . The following inequality99
holds[5, 8 ] :100

 '''''''' HHHHE 101

(2.2)102

 '' '' VUTVUTEE 103

(2.3)104
That is105

    drVVrnEE ''106
(2.4)107

Conversely,108

  drVVrnEE '' 109
(2.5)110

Adding (4) and (5) gives111

EEEE  '' Contradiction! (2.6)112

The inequality is strict because ψ and  ' are different, being eigen state of different Hamiltonians. By113
reversing the primed and unprimed quantities, one obtains an absurd result. This demonstrates that114
no two potentials can have the same density. The first Hohenberg-Kohn (H-K) theorem demonstrate115
the existence of a one-to-one mapping between the ground state electron density and the ground116
state wave function of a many-particle system. A straight forward consequence is that the ground117
state energy E is also uniquely determined by the ground-state charge density. In mathematical118
terms, E is a functional E [n(r)] of n(r). This is why this field is known as density functional theory [5,119
8]. We can write that:120

             drrVrnrnFVUTVUTrnE  121

(2.7)122

Where F [n(r)] is a universal functional of the charged density n(r) (and not of V(r)) also known as the123
H-K functional [18]. For this functional a variation principle holds: the ground state energy is minimized124
by the ground state charge density; this is the H-K second theorem. In this way, DFT exactly reduces125
the N-body problem to the determination of a 3-dimentional function n(r) which minimizes a functional126
E [n(r)]. Unfortunately, this is of little use as F [n(r)] is not known.[5; 8]127

2.2 THE KOHN-SHAM (KS) EQUATIONS128
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In 1965, Walter Kohn and Lu Sham proposed an educated guess that later yielded results in which129
they reformulated the problem in a more familiar form and opened the way to practical application of130
DFT. The system of interacting electrons is mapped onto a ficticious or auxillary system of non-131
interacting electrons having the same ground state charge density n(r). For a system of non-132
interacting electrons the ground-state charge density is represented as a sum over one-electron133
orbitals (the KS orbitals) ψi:134

   ri irn
2

2 135

(2.8)136

Where i runs from 1 to N/2. If we assume double occupancy of all states, and the Kohn-Sham orbitals137
are the solution to the Schrödinger equation [5, 8]:138

     rrirVm iiKS  









 2

2

2
139

(2.9)140

In closed systems, suppose there is an even number of electrons, so that they all can be paired up141
and the external potential V(r) is independent of spin. Spin-up and spin-down contribute equally to the142
total density:143

   rnnrn 2
1 
















144

(2.10)145

Therefore, we only need Ne/2 Kohn-Sham orbitals, to each of which we assign an occupation number146
of f=2. These orbitals satisfy the orthogonality condition [18]:147

   ijji drr  148

(2.11)149

Again the density can also be written as:150
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1

2
Ne

i
rirn 151

(2.12)152

And the kinetic energy as153

   rrT s i

Ne

i
i   



2
2
1 2

1
154

(2.13)155
The existence of a unique potential VKS in equation (2.9) having n(r) as its ground state charge density156
is a consequence of the H-K theorem, which holds irrespective of the form of electron-electron157
interaction, U. The problem is now to determine VKS(r) for a given n(r) [6]. To solve this problem, it is158
convenient to rewrite the energy functionals as:159
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           drrVrnrnErnErnTE xcH )( (2.14)160

The first term is the kinetic energy of non-interacting electrons. The second term called the Hatree161
energy contains the electrostatic interactions between clouds of charges. The third, called the162
exchange-correlation energy, contains all the remaining terms. The logic behind such procedures is to163
subtract out easily computable terms which accounts for a large fraction of the total energy. The only164
term for which no explicit form can be given is Exc [5, 8].165
Utilizing the H-K theorem, we minimize the total energy with respect to the orbitals in order to obtain166
the orbitals that give rise to the ground state energy. While performing the minimization, we prefer to167

minimize with respect to  ri  and  ri . One can prove that both yield the same result.168
Just like regular differentiation, we can employ chain rule for the functional derivatives. This of course169
works for all the terms except for kinetic energy. Kinetic energy may be differentiated directly with170
respect to the orbital. We thus have:171
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(2.15)173
Finally,174
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(2.16)175

Where the first, second and third terms in the large brackets gives the KS potential:176
  V xcVrVV ks H 177

(2.17)178
WhereV H is introduced as the Hatree potential, and the exchange-correlation potential,V xc .179

Equation (2.16) is a system of equations, which when solved simultaneously represents the many180
system in terms of single-particle orbitals.181
So far, the entire field of DFT rest on two-fundamental mathematical theorems proved by kohn and182
Hohenberg and the derivation of a set of equations by KS in the mid-1960’s [17].183

3.   METHODOLOGY184

In this research, the main production method is DFT to compute the total energy and derived185
quantities of molecules and solids of condensed matter in its electronic ground state [1]. DFT in the186
LDA is used here. An all-electron full-potential treatment that is both computationally efficient and187
accurate is achieved for periodic and cluster geometries on equal footing, including relaxation and ab-188
initio molecular dynamics [5, 9].189

To calculate the cohesive energies, we first compute the total energies of Li, Cr, Fe and Mo for single190
free atom and their bulk structures. The cohesive energies can be calculated from the total energies191

using the equation: 



 


 atom

bulkatombulk
coh E

N
E

N
NEEE192

(3.1)
193

FHI-aims code upgrade 6 (released on 17th July, 2011; version 071711_6) was used for calculations.194
It works on any Linux based operating system. Computations can only be carried out after building an195
executable binary file. FHI-aims package is distributed in a source code form and requires: a working196
Linux based operating system (ubuntu 11.10 in this case), a working FORTRAN 95(or later) compiler.197
In this case we use x86 type computer and therefore intel’s ifort (specifically composerxe 2011.6.233)198
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was installed for this work, and also a compiler version of  lapack library, and a library providing199
optimized basic linear algebra subroutines (BLAS). Standard libraries such as intel’s mkl or IBM’s essl200
provide both lapack and BLAS support. Intel’s composerxe 2011.6.233 comes with mkl.201
All necessary adjustment were made for building the executable binary file for running the code [1, 5].202
FHI-aims require two input files:  Control.in:- which contains all run time-specific information and203
Geometry.in:- which contains information directly related to the atomic structure for a given204
calculation. The two input files must be placed in the same directory where FHI-aims binary file is205
invoked at the terminal [1, 5].206
LDA is a known widely used approximation that works for materials with slowly varying or207
homogeneous electron density but in practice demonstrate surprisingly accurate results for a wide208
range of ionic, covalent and metallic materials.209
LDA is requested as the approximation to the exchange-correlation energy functional in the code.210
This is because LDA is convenient and simple in calculation of atomic and molecular structures. The211
functional depends only on the density at the coordinate where the functional is evaluated. The FHI-212
aims input files are constructed and production run are made to give results in the output files.213

214
4. RESULTS AND DISCUSSION215
The results from the output files were used to generate tables of values which were in turn used to216
plot graphs of total energies against number of iterations in order to obtain optimized parameters for217
BCC (Li, Cr, Fe and Mo) lattices within LDA. The optimized parameters were then used to obtain the218
cohesive energies of the BCC lattices.219
Below are results obtained for the calculations of cohesive energies and their discussion:220

221
Table 1: input and output parameters for BCC metals222

Metals Input parameter Output parameters

Lattice constant, a

(Ǻ)

Total energy(atom)

(eV/atom)

Total energy(bulk)

(eV/atom)

Li 3.49 -199.82087698 -201.63742548

Cr 2.89 -28629.40409260 -28634.73682541

Fe 2.87 -34699.31049185 -34704.66534706

Mo 3.15 -111111.31729126 -111119.34204722

223
224
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225

Fig.1. Binding curve of total energy against no. of iterations for pw-lda Li atom226

227

Fig.2. Binding curve of total energy against no. of iterations for pw-lda Li bulk228

Fig.1. shows that the total energy decreases while number of iterations increases and converges229
faster with stability from 3rd iteration to the last iteration because the  electrons of lithium atom are230
pulled closer to the positive charged nucleus(since they are physically closer to the atom and thus231
less reactive than the other alkali metals. Fig.2. on the other hand shows that the total energy tends232
towards stability as the number of iterations increases, taking more computational time and yielding233
more stable total energy than Li atom owing to metallic bonding in lithium bulk.234

The cohesive energy obtained for bcc lithium was calculated to be approximately 1.82eV. This result235
is in good agreement as compared to experimental value of 1.63eV [3]. Other result is 0.124Ry,236
equivalently 1.70eV [2].237
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238

Fig.3. Binding curve of total energy against no. of iterations for pw-lda Cr atom239

240

Fig.4. Binding curve of total energy against no. of iterations for pw-lda Cr bulk241

From Fig.3, clearly the total energy for single chromium atom is unstable at early iterations due to242
half-filled and unpaired d-orbital electrons and its eagerness to bond but becomes stable from the 7th243
iteration. However, the total energy of Cr bulk in Fig.4 becomes stable and converges with fewer244
numbers of iterations after a sharp rise from 1st iteration to the 2nd iteration.245

The cohesive energy of bcc chromium is calculated to be approximately 5.33eV which is in246
reasonable agreement with experimental value of 4.10eV [10]. Other result by P.H.T. Philipsen et al is247
5.22eV [15]248
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249

Fig.5. Binding curve of total energy against no. of iterations for pw-lda Fe atom250

251

Fig.6. Binding curve of total energy against no. of iterations for pw-lda Fe bulk252

Fig.5 shows that the total energy for single iron atom is unstable at early iterations due to unpaired d-253
orbital electrons and its eagerness to bond but becomes stable from the 7th iteration. In fig.6, the total254
energy of iron bulk significantly rises from the 1st iteration to the 2nd iteration before a stepwise fall and255
rise to the 4th iteration to become stable and converged. To attain efficient convergence the linear256
mixing parameter and broader smearing were chosen carefully since magnetic metals are hard to257
converge [20]258

The cohesive energy was calculated to be approximately 5.35eV which is in reasonable agreement259
with experimental value of 4.28eV [10]. Other result shows cohesive energy of Fe to be 6.25eV [15].260
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261

Fig.7. Binding curve of total energy against no. of iterations for pw-lda Mo atom262

263

Fig.8. Binding curve of total energy against no. of iterations for pw-lda Mo bulk264

Fig.7. shows that the total energy of Mo atom is unstable also due to half-filled d- orbitals and265
unpaired valence electrons just as chromium discussed above until the 12th iteration when it becomes266
stable for the rest of the convergence cycles. Fig.8. on the other hand shows that the total energy267
makes a sharp rise and immediately begins to converge from the 2nd iteration to the last iteration. Mo268
bulk clearly shows more stability with less number of iterations than Mo atom.269

The calculated value for cohesive energy bcc molybdenum is approximately 8.02eV which is in270
reasonable agreement with experimental value of 6.82eV [10]. LAPW calculation of cohesive energy271
of Mo is 7.782eV [13].272

5 CONCLUSIONS273

The contribution of a constituent atom to the total energy Etot might be variationally improved by basis274
functions sitting on adjacent atoms, thus leading to an overestimating of Ecoh. Using atomic states,275
however, the total energy is already converged at the level of the minimal basis, and neighboring276
basis functions have no effects [7].277

The cohesive energies of the bcc lattices were calculated with grids of 12x12x12 for all metals except278
iron with 16x16x16; a setting which gives a good compromise of computational times and physical279
accuracy within LDA of the FHI-aims code. The values obtained are in agreement with experimental280
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values and literature reports within some reasonable percentage error. The overestimation observed281
in Cr, Fe as well as Mo is likely from the exchange correlation contribution to the cohesive energy.282
The overbinding of the LDA appears to be related to a not sufficiently repulsive exchange contribution283
to the cohesive energy . Also, the large overbinding for Iron can be partly ascribed to the unphysical284
spherical restriction on the density of the iron atom [15 ]. The cohesive energies calculated for Li, Cr,285
Fe and Mo vary from experiment by 11.4%, 30.0%, 25.0%, and 17.6%.286
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