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THE COHESIVE ENERGY CALCULATIONS OF SOME BCC (Li, Cr, Fe, Mo) LATTICES 4 

USING DENSITY FUNCTIONAL THEORY 5 

     6 

ABSTRACT 7 

The cohesive energies of lithium (Li), chromium (Cr), iron (Fe) and molybdenum (Mo) were computed 8 

using density functional theory (DFT). DFT based Fritz Haber Institute-ab initio molecular simulation 9 

(FHI-aims) computer code has several input parameters in which some of the variables were 10 

optimized. The cohesive energies of Li, Cr, Fe and Mo were calculated within local density 11 

approximations (LDA) of  Perdew Wang of DFT. The results obtained from the calculations of 12 

cohesive energies of Li, Cr, Fe and Mo were approximately 1.82eV, 5.33eV, 5.35eV, and 8.02eV 13 

respectively. This results obtained are in the neighborhood of experimentally found values of 1.63eV, 14 

4.10eV, 4.28eV and 6.82eV respectively for Li, Cr, Fe and Mo respectively within reasonable 15 

percentage errors. 16 

keywords: bcc; cohesive energy, DFT, ground state, lattice constant, total energy. 17 

1.   INTRODUCTION 18 

Cohesive energy calculations vis-à-vis the first principle total energy calculations using DFT is 19 

considered satisfactory in the physics of condensed matter systems, material science and physical 20 

chemistry. DFT has a wide application in molecules, bulk materials and surfaces; and remains a 21 

reliable tool to analyze as well as predict non-equilibrium and equilibrium properties. 22 

DFT being one of the most popular and quantum-mechanical approaches to many-body systems are 23 

applied to computations of ground-state properties of molecules and the band structure of solids in 24 

physics. In this computational research work, some selected body-centered cubic (BCC) lattices or 25 

crystals were investigated using DFT based FHI-aims code as a tool to calculate the cohesive 26 

energies of Li, Cr, Fe and Mo. 27 

This research puts into perspective a single alkaline metal, Li and three transition metals Cr, Fe and 28 

Mo. This choice is based on the importance of these materials for modern technology.  29 

Electrochemical batteries as of today are the most (or one of the most) promising energy storage 30 

technology in grid integration of renewables, electric vehicles, and electronics devices (Legrain F.C.G, 31 

2016). The batteries have relatively high energy and efficiency and specific example of such batteries 32 

is Li-ion battery. Also, lithium has been found effective in assisting the perfection of silicon nano welds 33 

in electronic components for electrical batteries and other devices. 34 

Stainless steel and chromium plating (electroplating with chromium) have high commercial use. Iron 35 

as well as molybdenum is used in steel alloys, including high strength alloys and superalloys. Indeed 36 

these materials have high industrial use and demands. Hence, the needs to further study the 37 

cohesive energies of these materials using FHI-aims. 38 

ur interest on structure and binding imply that the cohesive energy Ecoh of a system is very important. 39 

It is useful for studying binding strength in crystal structures and can help to gain information about 40 

structural preferences of solids. 41 

UNDER PEER REVIEW



2 

 

Cohesive energy is the energy that must be supplied to a solid or crystal to separate its constituents 42 

into free atoms at rest and at infinite separation with the same electronic configuration (Kittel 1996, 43 

Galperin, 2002). Cohesive energy is one of the parameters used to understand the nature of chemical 44 

bonding and several important parameters can be predicted using it. Its magnitude tells us the 45 

stability and chemical reactivity of solids. Eventually, it is the quantity which determines the structure, 46 

because different possible structures would have different cohesive energies (Verma et al, 2010). 47 

Many powerful methods for solving schrodinger’s equation have been developed during decades of 48 

struggling with the many-body problem. These methods are Nearly-Free-Electron Approximation, 49 

Cellular Method, Augumented Plane-Wave method, Scattering Matrix Method, Pseudopotential 50 

Method; and other methods. These methods are time-consuming, cumbersome and poses problems 51 

to researchers in this field. Hence, DFT as a powerful tool replaces the many-body electronic wave 52 

function used in the method mentioned above with the electron density as the basis quantity. 53 

In calculating basic properties of solids like cohesive energy, lattice constants, band structures and 54 

density of state, we use DFT as the most popular and successful quantum-mechanical approaches to 55 

matter ( Wienferink, et al,2011). 56 

In this research, the cohesive energies of Li, Cr, Fe and Mo were computed based on DFT package 57 

FHI-aims code in the range between 1.82eV and 8.02eV which is in reasonable agreement with 58 

experimental data in the range between 1.63eV and 6.82eV. 59 

 60 

2.   THEORETICAL FRAMEWORK 61 

Density functional theory (DFT) is a quantum mechanical technique used in physics, chemistry and 62 

material science to investigate the structural and electronic properties of many body systems. DFT 63 

has proved to be highly successful in describing structural and electronic properties in a vast class of 64 

materials, ranging from atoms and molecules to simple crystals and complex extended systems 65 

(including gases and liquids). DFT has become a common tool in first-principle calculations aimed at 66 

molecular and condensed matter systems (Giannozzi, 2005: Parr and Yang, 1989). 67 

Traditional methods in electronic structure theory, in particular Hatree-Fock theory and its 68 

descendants are based on the complicated many-electron wave function. The main objective of DFT 69 

is to replace the many-body electronic wave function with the electronic density as the basis quantity. 70 

Whereas many-body wave function is dependent on 3N variables, three special variables for each of 71 

the N electrons, the density is only a function of three variables and is a simpler quantity to deal with 72 

both conceptually and practically.  73 

 74 

2.1 THE HOHENBERG-KOHN THEOREM 75 

It was Hohenberg and Kohn who stated a theorem that tells us that the electron density is very useful. 76 

The Hohenberg-Kohn (H-K) theorem asserts that the electron density of any system determines all 77 

ground-state properties of the system. In this case the total ground state energy of a many-electron 78 

system is a functional of the density. 79 

 80 

Let us consider a system of N interacting (spinless) electrons under an external potential V(r) (usually 81 

the coulomb potential of the nuclei). If the system has a non-degenerate ground state, it is obvious 82 

that there is only one ground state charge density that corresponds to a given V(r). In 1964, 83 

Hohenberg and Kohn demonstrated the opposite, far less obvious result: there is only one external 84 

potential V(r) that yields a given ground-state charge density n(r). The demonstration is very simple 85 

and involves the disproof of a proposition by showing that it leads to absurdity. 86 

 87 

For many-electron Hamiltonian H=T+U+V, with ground state wave function, ψ. T is the kinetic energy, 88 

U is the electron-electron interaction. V is the external potential. The charge density n(r) as defined by 89 

Hohenberg-Kohn is 90 
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 93 

Now considering a differential Hamiltonian VUTH '''' ++= . V  and V '  do not differ simply by a 94 

constant: ≠−VV '
 constant with the ground state wave function ψ '  

. 95 

Assuming that the ground state charge densities are the same: [ ] [ ]VnVn ''= . The following inequality 96 

holds: 97 

ψψψψψψ ''''''''
HHHHE −+=<    98 

 (2.2) 99 

 ψψ '' ''
VUTVUTEE −−−+++<      100 

 (2.3) 101 

That is  102 

 ( ){ }∫ −+< drVVrnEE ''         103 

 (2.4) 104 

Conversely,  105 

 ( ){ }drVVrnEE '' −∫−<        106 

 (2.5) 107 

Adding (4) and (5) gives 108 

 EEEE +<+ ''  Contradiction!      (2.6) 109 

The inequality is strict because ψ and ψ '
are different, being eigen state of different Hamiltonians. By 110 

reversing the primed and unprimed quantities, one obtains an absurd result. This demonstrates that 111 

no two potentials can have the same density. The first Hohenberg-Kohn (H-K) theorem that has a 112 

straight forward consequence is that of the ground state energy E is also uniquely determined by the 113 

ground-state charge density. In mathematical terms, E is a functional E [n(r)] of n(r). This is why this 114 

field is known as density functional theory (Sholl D.S and steckel J.A., 2009). We can write that: 115 

( )[ ] )( )( ( ) ( )[ ] ( ) ( )drrVrnrnFVUTVUTrnE ∫+=++=++= ψψψψψψ        116 

 (2.7) 117 

Where F [n(r)] is a universal functional of the charged density n(r) (and not of V(r)) also known as the 118 

H-K functional ( Tuckerman, 2004). For this functional a variation principle holds: the ground state 119 

energy is minimized by the ground state charge density; this is the H-K second theorem. In this way, 120 

DFT exactly reduces the N-body problem to the determination of a 3-dimentional function n(r) which 121 

minimizes a functional E [n(r)]. Unfortunately, this is of little use as F [(n)] is not known. 122 

2.2 THE KOHN-SHAM (KS) EQUATIONS 123 

In 1965, Walter Kohn and Lu Sham proposed an educated guess that later yielded results in which 124 

they reformulated the problem in a more familiar form and opened the way to practical application of 125 

DFT. The system of interacting electrons is mapped onto a ficticious or auxillary system of non-126 

interacting electrons having the same ground state charge density n(r). For a system of non- 127 

interacting electrons the ground-state charge density is represented as a sum over one-electron 128 

orbitals (the KS orbitals) ψi (Martin, 2004): 129 
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 (2.8) 131 

Where i runs from 1 to N/2. If we assume double occupancy of all states, and the Kohn-Sham orbitals 132 

are the solution to the Schrödinger equation: 133 
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 (2.9)  135 

In closed systems, suppose there is an even number of electrons, so that they all can be paired up 136 

and the external potential V(r) is independent of spin. Spin-up and spin-down contribute equally to the 137 

total density: 138 

( ) ( )rnnrn 2
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


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


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





       139 

 (2.10) 140 

Therefore, we only need Ne/2 Kohn-Sham orbitals, to each of which we assign an occupation number 141 

of f=2. These orbitals satisfy the orthogonality condition( Tuckerman, 2004):  142 

 ( ) δψψ ijji
drr =∫

∗
           143 

 (2.11) 144 

Again the density can also be written as:  145 
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 (2.12) 147 

And the kinetic energy as 148 

( ) ( )rrT s i

Ne

i
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=

2

2

1 2

1

               149 

 (2.13) 150 

The existence of a unique potential VKS in equation (2.9) having n(r) as its ground state charge density 151 

is a consequence of the H-K theorem, which holds irrespective of the form of electron-electron 152 

interaction, U. The problem is now to determine VKS(r) for a given n(r). To solve this problem it is 153 

convenient to rewrite the energy functionals as: 154 

( )[ ] ( )[ ] ( )[ ] ( )∫+++= drrVrnrnErnErnTE xcH )(              (2.14) 155 

The first term is the kinetic energy of non-interacting electrons. The second term called the Hatree 156 

energy contains the electrostatic interactions between clouds of charges. The third, called the 157 

exchange-correlation energy, contains all the remaining terms. The logic behind such procedures is to 158 

subtract out easily computable terms which accounts for a large fraction of the total energy. The only 159 

term for which no explicit form can be given is Exc. 160 
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Utilizing the H-K theorem, we minimize the total energy with respect to the orbitals in order to obtain 161 

the orbitals that give rise to the ground state energy. While performing the minimization, we prefer to 162 

minimize with respect to ( )r
iψ ∗  and ( )r

iψ . One can prove that both yield the same result. 163 

Just like regular differentiation, we can employ chain rule for the functional derivatives. This of course 164 

works for all the terms except for kinetic energy. Kinetic energy may be differentiated directly with 165 

respect to the orbital. We thus have: 166 
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 (2.15) 168 

Finally, 169 
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Where the first, second and third terms in the large brackets gives the KS potential: 171 

( ) V xcVrVV ks H ++=        172 

 (2.17) 173 

Where V H
 is introduced as the Hatree potential, and the exchange-correlation potential,V xc

. 174 

Equation (2.16) is a system of equations, which when solved simultaneously represents the many 175 

system in terms of single-particle orbitals. 176 

So far, the entire field of DFT rest on two-fundamental mathematical theorems proved by kohn and 177 

Hohenberg and the derivation of a set of equations by KS in the mid-1960’s (Scholl and steckel, 178 

2009). 179 

3.   METHODOLOGY 180 

In this research, the main production method is DFT to compute the total energy and derived 181 

quantities of molecules and solids of condensed matter in its electronic ground state (Blum et al, 182 

2009). DFT in the LDA is used here. An all-electron full-potential treatment that is both 183 

computationally efficient and accurate is achieved for periodic and cluster geometries on equal 184 

footing, including relaxation and ab-initio molecular dynamics (Havu et al, 2009). 185 

To calculate the cohesive energies, we first compute the ground state total energies of Li, Cr, Fe and 186 

Mo for single free atom and their bulk. The energies are then converted to the cohesive energies 187 

using the equation:

 





 −−=
−

−= atom
bulkatombulk

coh E
N

E

N

NEE
E

     

188 

  (3.1) 

189 

All calculations were carried out using FHI-aims code upgrade 6 (released on 17
th
 July, 2011; version 190 

071711_6). It works on any Linux based operating system. Computations can only be carried out after 191 

building an executable binary file. FHI-aims package is distributed in a source code form and requires: 192 

a working Linux based operating system (ubuntu 11.10 in this case), a working FORTRAN 95(or later) 193 

compiler. In this case we use x86 type computer and therefore intel’s ifort (specifically composerxe 194 

2011.6.233) was installed for this work, and also a compiler version of  lapack library, and a library 195 

providing optimized basic linear algebra subroutines (BLAS). Standard libraries such as intel’s mkl or 196 

IBM’s essl provide both lapack and BLAS support. Intel’s composerxe 2011.6.233 comes with mkl. 197 

All necessary adjustment were made for building the executable binary file for running the code. FHI-198 

aims require two input files:  Control.in:- which contains all run time-specific information and 199 

Geometry.in:- which contains information directly related to the atomic structure for a given 200 
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calculation. The two input files must be placed in the same directory where FHI-aims binary file is 201 

invoked at the terminal. 202 

The FHI-aims input files are constructed and production run are made to give results in the output 203 

files. 204 

  205 

4. RESULTS AND DISCUSSION 206 

The results from the output files were used to generate tables of values which were in turn used to 207 

plot graphs of total energies against number of iterations in order to obtain optimized parameters for 208 

BCC (Li, Cr, Fe and Mo) lattices within LDA. The optimized parameters were then used to obtain the 209 

cohesive energies of the BCC lattices. 210 

Below are results obtained for the calculations of cohesive energies and their discussion:  211 

 212 

 213 

  214 

Fig.1. Binding curve of total energy against no. of iterations for pw-lda Li atom 215 

 216 

Fig.2. Binding curve of total energy against no. of iterations for pw-lda Li bulk 217 

Fig.1. shows that the total energy decreases while number of iterations increases and converges 218 

faster with stability from 3
rd

 iteration to the last iteration because the  electrons of lithium atom are 219 

pulled closer to the positive charged nucleus(since they are physically closer to the atom and thus 220 

less reactive than the other alkali metals. Fig.2. on the other hand shows that the total energy 221 

increases with increase in number of iterations, taking more computational time and yielding more 222 

stable total energy than Li atom owing to metallic bonding in lithium bulk. 223 
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The cohesive energy obtained for bcc lithium was calculated to be approximately 1.82eV. This result 224 

is in good agreement as compared to experimental value of 1.63eV (Dean L., 2016)  225 

 226 

Fig.3. Binding curve of total energy against no. of iterations for pw-lda Cr atom 227 

 228 

Fig.4. Binding curve of total energy against no. of iterations for pw-lda Cr bulk 229 

From Fig.3, clearly the total energy for single chromium atom is unstable at early iterations due to 230 

half-filled and unpaired d-orbital electrons and its eagerness to bond but becomes stable from the 7
th
 231 

iteration. However, the total energy of Cr bulk in Fig.4 becomes stable and converges with fewer 232 

numbers of iterations after a sharp rise from 1
st
 iteration to the 2

nd
 iteration.  233 

The cohesive energy of bcc chromium is calculated to be approximately 5.33eV which is in 234 

reasonable agreement with experimental value of 4.10eV (Jian-Min Z. et al, 2006). 235 
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 236 

Fig.5. Binding curve of total energy against no. of iterations for pw-lda Fe atom 237 

 238 

Fig.6. Binding curve of total energy against no. of iterations for pw-lda Fe bulk 239 

Fig.5 shows that the total energy for single iron atom is unstable at early iterations due to unpaired d-240 

orbital electrons and its eagerness to bond but becomes stable from the 7
th
 iteration. In fig.6, the total 241 

energy of iron bulk significantly rises from the 1
st
 iteration to the 2

nd
 iteration before a stepwise fall and 242 

rise to the 4
th
 iteration to become stable and converged. To attain efficient convergence the linear 243 

mixing parameter and broader smearing were chosen carefully since magnetic metals are hard to 244 

converge (Wieferink, J. et al. 2011) 245 

The cohesive energy was calculated to be approximately 5.35eV which is in reasonable agreement 246 

with experimental value of 4.28eV (Jian-Min Z. et al, 2006   ). 247 
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   248 

Fig.7. Binding curve of total energy against no. of iterations for pw-lda Mo atom 249 

 250 

Fig.8. Binding curve of total energy against no. of iterations for pw-lda Mo bulk 251 

Fig.7. shows that the total energy of Mo atom is unstable also due to half-filled d- orbitals and 252 

unpaired valence electrons just as chromium discussed above until the 12
th
 iteration when it becomes 253 

stable for the rest of the convergence cycles. Fig.8. on the other hand shows that the total energy 254 

makes a sharp rise and immediately begins to converge from the 2
nd

 iteration to the last iteration. Mo 255 

bulk clearly shows more stability with less number of iterations than Mo atom.   256 

The calculated value for cohesive energy bcc molybdenum is approximately 8.02eV which is in 257 

reasonable agreement with experimental value of 6.82eV (Jian-Min Z. et al, 2006). 258 

 5 CONCLUSIONS 259 

The contribution of a constituent atom to the total energy Etot might be variationally improved by basis 260 

functions sitting on adjacent atoms, thus leading to an overestimating of Ecoh. Using atomic states, 261 

however, the total energy is already converged at the level of the minimal basis, and neighboring 262 

basis functions have no effects (R.Gehrke, 2008).  263 

The cohesive energies of the bcc lattices were calculated with grids of 12x12x12 for all metals except 264 

iron with 16x16x16; a setting which gives a good compromise of computational times and physical 265 

accuracy within LDA of the FHI-aims code. The values obtained are in agreement with experimental 266 
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values and literature reports within some reasonable percentage error. The cohesive energies 267 

calculated for Li, Cr, Fe and Mo vary from experiment by 11.4%, 30.0%, 25.0%, and 17.6%. 268 
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