1 ZnO and TiO₂Nanoparticles as Textile Protecting Agents

2 Against UV Radiation: A review

Abstract: This review was aimedto highlight the role of ZnO and TiO₂nanoparticles (NPs) as textile
protective agents against Ultra Violet radiation. Different syntheticmethods of ZnO and TiO₂ NPs that
affecting their nano size and their ability to absorb UV radiation have been reported. The formed ZnO
or TiO₂ NPs can be applied on treated or untreated fabrics individually to provide UV protection or in
combination with other materials to provide multifunctional finished fabrics. Cons and Pros of each
application process in addition tocomparison of the methods of preparation of ZnO and TiO₂ NPs
werediscussedseparately in this review paper.

10 Keywords: ZnO NPs -TiO₂ NPs- UV protection -NPs synthesis-NPs application.

11 Introduction

- 12 Protection against ultra violet radiation is one of the most important concerns in textile industry.UV
- 13 radiation (UV) is a form of energy which representsonly one type of invisible radiation and it is
- 14 measured on a scientific scale called the electromagnetic spectrum.Incident sunlight consists of (50%
- 15 Visible light,45% infrared and 5% ultra violet radiation)[1].
- 16 UV radiation can be subdivided according to itswavelength and effect to: UV- A (320-400nm), UV-B
- 17 (280-320nm) and UV-C (200-280nm). UV-C is absorbed by ozone layer and does not reach the surface
- 18 of the earth, so UV-A and UV-B considered as dangerous UV radiation especially UV B which has
- ashorter wavelength and consequently higher energy and more damage on(textiles, dyestuff, humanskin)[2].
- 21 To block the harmful effect of UV radiation, organic and inorganic UV blockers are used.
- 22 Inorganic UV blockers are favoredthan organic UV blockers because of their non-toxicity and
- 23 chemical stability when exposed to higher temperatures and UV radiation. The most common inorganic
- 24 UV blockers are semiconductor oxides such as ZnO and TiO₂ [3].Nanosize of ZnO and TiO₂ particles
- 25 showed more durable and effective UV protection than their bulk size [4].

26	This review was intended to focus on ZnO and TiO_2 nanoparticles and their advanced applications to
27	block the UV radiation and enhance the protection of textiles and human skin. Fabric'sUVprotection
28	factor and properties of (ZnO and TiO $_2$ NPs) have been briefly explained. Different ZnO and TiO $_2$
29	NPs preparationmethods (chemical - green) and applications (individually or in combination with other
30	materials to provide multifunctional finished fabrics) have been discussed in detail and were compared.
31	Ultra Violet Protection Factor:
32	When textile material wasexposed to UV radiation, the action of UV included absorption, reflection,
33	scattering and direct transmission. Exposing to UV radiation causes fiber, dye and skin damage. Ultra
34	violet protection factor (UPF) is related to reflection and absorbance of UV radiation.UPF value is
35	considered as a measure of blocking UV radiation by the fabric. The higher the UPF value the more
36	UV protection which provided by the textile material[5]as shown in Table 1.
37	Table 1
38	ZnO Nanoparticles in Textiles UV Protection:
39	ZnOProperties:
40	Zinc oxide (ZnO) is an inorganic semiconductor material that has a wide application in textile's UV
40 41	Zinc oxide (ZnO) is an inorganic semiconductor material that has a wide application in textile's UV protection due to its excellent properties (wide bandgap,Chemically stable,Environmental friendly,
41	protection due to its excellent properties (wide bandgap,Chemically stable,Environmental friendly,
41 42	protection due to its excellent properties (wide bandgap,Chemically stable,Environmental friendly, easily grown and Longer durability) [6,7]. In UV protection finishing, ZnO materials are preferred to
41 42 43	protection due to its excellent properties (wide bandgap,Chemically stable,Environmental friendly, easily grown and Longer durability) [6,7]. In UV protection finishing, ZnO materials are preferred to be used in nano size to provide higher durability and more intensive absorption and blocking in the
41 42 43 44	protection due to its excellent properties (wide bandgap,Chemically stable,Environmental friendly, easily grown and Longer durability) [6,7]. In UV protection finishing, ZnO materials are preferred to be used in nano size to provide higher durability and more intensive absorption and blocking in the UV region [1].
41 42 43 44	protection due to its excellent properties (wide bandgap,Chemically stable,Environmental friendly, easily grown and Longer durability) [6,7]. In UV protection finishing, ZnO materials are preferred to be used in nano size to provide higher durability and more intensive absorption and blocking in the UV region [1]. ZnO NPs Synthesis
41 42 43 44 45 46	protection due to its excellent properties (wide bandgap,Chemically stable,Environmental friendly, easily grown and Longer durability) [6,7]. In UV protection finishing, ZnO materials are preferred to be used in nano size to provide higher durability and more intensive absorption and blocking in the UV region [1]. ZnO NPs Synthesis Generally, ZnONPs are obtained by chemical or green synthesis.ZnONPs are chemically synthesized
41 42 43 44 45 46 47	protection due to its excellent properties (wide bandgap,Chemically stable,Environmental friendly, easily grown and Longer durability) [6,7]. In UV protection finishing, ZnO materials are preferred to be used in nano size to provide higher durability and more intensive absorption and blocking in the UV region [1]. ZnO NPs Synthesis Generally, ZnONPs are obtained by chemical or green synthesis.ZnONPs are chemically synthesized by sol gel and hydrothermal methods.Both chemical and green synthesis of ZnONPs depend on using
41 42 43 44 45 46 47 48	protection due to its excellent properties (wide bandgap,Chemically stable,Environmental friendly, easily grown and Longer durability) [6,7]. In UV protection finishing, ZnO materials are preferred to be used in nano size to provide higher durability and more intensive absorption and blocking in the UV region [1]. ZnO NPs Synthesis Generally, ZnONPs are obtained by chemical or green synthesis.ZnONPs are chemically synthesized by sol gel and hydrothermal methods.Both chemical and green synthesis of ZnONPs depend on using zinc source such as (zinc acetate, zinc chloride, zinc nitrate) with synthetic or natural materials.
41 42 43 44 45 46 47 48 49	protection due to its excellent properties (wide bandgap,Chemically stable,Environmental friendly, easily grown and Longer durability) [6,7]. In UV protection finishing, ZnO materials are preferred to be used in nano size to provide higher durability and more intensive absorption and blocking in the UV region [1]. ZnO NPs Synthesis Generally, ZnONPs are obtained by chemical or green synthesis.ZnONPs are chemically synthesized by sol gel and hydrothermal methods,Both chemical and green synthesis of ZnONPs depend on using zinc source such as (zinc acetate, zinc chloride, zinc nitrate) with synthetic or natural materials. Chemical Synthesis

53 hybrid polymer (GPTMS) network with different ratios and applied to cotton as well as

- 54 cotton/polyester fabrics by Pad-dry-cure method. The results of SEM investigation demonstrated
- 55 smoother surface of treated fabrics and uniform distribution of ZnONPs. Finished fabrics with higher
- 56 concentrations of ZnONPs indicated higher UPF values (increasing UPF value in cotton fabric from
- 57 21 to 177 and in cotton/ polyester fabric from 19 to 48).
- 58 Condeet al[9]prepared ZnONPs with an average size of (58nm). The method was based on Sol-Gel
- 59 technique combined with Zinc acetate dihydrate as precursor, but they used sodium hydroxide as a
- 60 reducing agent instead of lithium hydroxide. Sodium hydroxide action was investigated by using
- 61 different flows and different alkaline ratios. It was found that slow addition of sodium hydroxide with
- 62 maintaining alkaline ratio at 2 resulted in obtaining ZnONPs with uniform distribution and good
- 63 absorption in the UV region (380 nm).

64 Hydrothermal Method

- 55 ZnONPs had been prepared by hydrothermal process using water and 1,2-ethanediol as a solvent [10].
- 66 Sodium hydroxide was added gradually to zinc chloride dissolved in water or 1,2-ethanediol. The
- 67 resulted particles were thermally treated at 250°C then applied to cotton and cotton/Polyester fabrics
- 68 by Pad -dry-cure method. It was found that using 1,2-ethanediol instead of water resulted in smaller
- 69 size of ZnONPs (from 20 nm to 9 nm), more uniform distribution and higher UPF values for both
- 70 UVA and UVB.UPF values of cotton fabric were (8.45) against UV-A and (10.29) against UV-B.
- 71 Also, Cotton/Polyester fabric's UPF values were (11.80) against UV-A and (16.20) against UV-B.
- 72 Taunk et al.[11] aimed to more economical and ecological function in ZnONPs synthesis by applying
- 73 hydrothermal method through using low concentration of (zinc chloride sodium hydroxide -
- 74 triethanolamine) and lower thermal treatment temperature. The resulted ZnONPs hadspherical shape,
- smaller size (7nm) and absorption in the UV region (235-407 nm).
- 76 It is obvious that hydrothermal process provided smaller size of ZnO NPs than sol gel method. The
- 77 research made by Taunk and his team provided the smallest size of ZnO NPs, lower concentration of
- 78 hazardous chemicals (for economic and ecological considerations) and wide range absorption of UV
- 79 radiation (235-407nm).
- 80 Green Synthesis

- 81 Green synthesis is better than chemical synthesis of ZnO NPs as it provides the advantage of clean,
- 82 nontoxic and environmental friendly finishing. Green synthesis of ZnO NPs depends on using natural
- 83 materials with zinc source.
- Ramesh et al.[12] prepared ZnO NPs by green method. They used the extract of Citrus Aurantifolia
- 85 leaves (as a reducing and stabilizing agent) and zinc nitrate. The resulted ZnO NPs uniformly
- 86 distributed, had a size range from (9-10nm) and absorbed UV radiation at the range (208-400nm).
- 87 Also,ZnO NPs had been produced [13] by using green material (Aloe Vera) leaves as stabilizing and
- 88 reducing agent. Sodium hydroxide was added gradually to mixture of the extract of Aloe Vera leaves
- and zinc acetate. It was found that the resulted ZnO NPs had an average size (22.18nm), showed
- 90 antibacterial activity against gram positive & gram-negative bacteria andabsorbed UV radiation
- 91 within the range (340-400nm).
- 92 It can be concluded that synthesis of ZnO NPs made by Ramesh [12[was better than other methods as it
- 93 usedless chemical materials (only zinc source and the natural material used with no need to another
- 94 reducing agent), smaller size of ZnO NPs (9-10nm) and wider range of UV absorption (208-400 nm).
- 95 ZnO NPs application to provide textiles UV protection
- 96 ZnO NPs can be applied to fabrics after plasma treatment or without treatment individually or in
- 97 combination with other materials (synthetic or natural) to improve protection against UV radiation
- 98 and provide multifunctional finished textiles.
- 99 Application of ZnO NPs without Treatment:
- 100 Single Application of ZnO NPs:
- 101 ZnO NPs had been applied [1] with (average size <35nm) as a coating to cotton fabrics. Treated
- 102 cotton fabrics indicated complete covering by ZnO NPs and consequently increasing UPF values from
- 103 (27.2) to (711.4) as well as improvement in antimicrobial activity against E. coli &S. aureus bacteria.
- 104 On the other hand, ZnO NPs had been synthesized in situ and applied to cotton fabrics to provide
- 105 durable multifunctional finishing (antibacterial and UV protection).Cotton samples were padded in
- 106 different concentrations of zinc acetate hexahydrate and hexamethyltriethylene tetramine (HMTETA),
- 107 dried and cured. It was found that optimum concentration of zinc nitrate (2gm) resulted in producing

- 108 ZnO NPs with average size 359 nm. ZnO NPs maintainedgood UPF values (17.6) after 15 washes and
- 109 durable antibacterial activity of cotton fabric after 20 washes [14].
- 110 Prasad et al.[15]also synthesized ZnO NPs insitu to provide durable multifunctional finishing to
- 111 cotton fabrics. The advantageof the reported methodwas dependedon using sodium hydroxide (instead
- 112 of HMTETA) as reducing agent which is cheaper and more available material. The precursors (zinc
- 113 nitrate and sodium hydroxide) were applied to cotton samples by spraying and dipping processes.
- 114 SEM images showed that dipping method was better than spraying method as it resulted in smaller
- size of ZnO NPs (<100nm) and 3 times more uptake of NPs that cause finishing to be effective and
- 116 more durable. Dipping process included excellent and durable antibacterial activity after 50 washes
- against both S.aures and K.pneumonia bacteria besides higher UPF values (890) after 50 washes(450).
- 119 The previous finding indicated that the application method of ZnO NPs made by Prasadet al [15] is
- 120 better than the other procedures because of its advantages that include using more available and less
- 121 expensive reducing agent, in situ synthesis of ZnO NPs which saved (time and money), producing
- 122 smaller size of ZnO NPs and providing higher UPF values and more durable effect after 50 washes.
- 123 Application of ZnO NPs in Combination with Other Materials
- 124 ZnO NPs with Natural Materials
- 125 ZnO NPs could be used [16] in combination with carboxy methyl chitosan to provide antibacterial and
- 126 UV protection for cotton fabric. ZnO/carboxymethyl chitosan composite was preparedby stirring a
- 127 mixture of (caroxymethyl chitosan and zinc sulfate) at different temperatures. Different
- 128 concentrations of ZnO/ carboxymethyl chitosan composite wereapplied to cotton fabrics by padding
- 129 followed by curing at different temperatures. It was found that preparation of ZnO/CMCTS bionano
- 130 composite at 50°C resulted in smaller size of NPs (28 nm for ZnO NPs and 100nm for CMCTS).
- 131 Higher concentration of ZnO/CMCTS nanocompositeimproved antibacterial activity against both
- 132 S.aureus and E.coli bacteria.Increasing curing temperature to 160°C resulted in slight increasing in
- 133 UPF values.
- 134 A simpler and more eco-friendly method [17]could be applied by using only chitosan with ZnO
- 135 nanoparticles to provide multifunctional finishing to cotton fabric. In order to determine optimum
 - 5

136 conditions, different concentrations of ZnO in preparation of chitosan/ZnO NPs and different

- 137 temperatures were used. The resulted chitosan/ZnO NPs were applied to cotton fabric by Pad -dry-
- 138 cure method. Treated cotton fabric samples with higher concentrations of chitosan/ZnO nanoparticles
- 139 showed comparatively higher UPF values (8.3)and antibacterial activity.
- 140 The previous methodsexpressed examples of green applicationsthat were achievedby using natural
- 141 materials with ZnO NPs to provide multifunctional finished cotton fabrics.Cons and pros of each
- 142 process wereshown in Table 2.

143

Table 2

Abdelhady *et al*'s method has the advantages of, more environmentally friendly and higher UPFvalues.

146 Application of ZnO NPs with Synthetic Materials

147 ZnO NPs had been combined with sodium hypophosphite (SHP) and polycarboxylic acids to provide 148 multifunctional finishing to cotton and cotton /polyester (56/35%) fabrics [18]. ZnO NPs were 149 prepared by sol-gel method using Zinc acetate as precursor and lithium hydroxide. To investigate the 150 optimum finishing formulation, different (concentrations of ZnO NPs and sodium hypophosphite, 151 types of polycarboxylic acid butantetracarboxylic acid (BTCA) or succinic acid (SA), Curing temperatures) were used. Cotton and cotton/polyester fabrics were padded in (BTCA) or (SA) and 152 153 (SHP), dried and cured at different temperatures then ZnO NPs were applied to fabrics by Pad-dry-154 cure method.The average size of resulted ZnO NPs was 30nm. It was found that using of BTCA 155 at160°C as a curing temperature was resulted inincreasing (CRA values, roughness and yellowness) 156 than using of SA.Increasing curing temperature to 180°C was resulted in increasing (CRA values, 157 roughness and yellowness) in fabrics treated with BTCA or SA. Using of BTCAwas improvedflame-158 retardant action for both cotton and CO/PET fabric in the presence of 6% SHP after two washes.Using of BTCA or SA with 6% SHP and 5% ZnO NPs yielded higher UPF values (for cotton fabric 60 for 159 cotton/polyester fabric 57) andwas improvedflame-retardant action for both cotton and CO/PET 160 161 fabrics. Adding ZnO NPs caused slight increasing in roughness and yellowness of treated fabrics 162 especially at higher concentration.

Noorian et al [19] reported the use of Cu₂O NPs in combination with ZnO NPs to improve the UV 163 protection of cotton fabrics. They added folic acid during in-situ synthesis of Cu₂O/ZnO NPs and 164 investigated its effect. It was found that using Cu₂O/ZnO NPs resulted in more UV protection for 165 cotton fabrics than the single application of each (87.31% protection against UV radiation). Cu₂O/ 166 167 ZnO NPs caused slight increasing in thickness, decreasing CRA values and hydrophilicity of cotton 168 fabric. Adding folic acid resulted in smaller size of Cu₂O/ZnO NPs (48nm) and increasing UV 169 protection, hydrophilicity, thickness, wash fastness, anti-wrinkle property and improving the handle 170 ofcotton fabrics. Cons and Pros of ZnO NPs application with synthetic materials are summarized in 171 able 3. 172 Table 3

173 Application of ZnO NPs after Plasma Treatment

- 174 Amethod [20] has been developed to increase the adsorption rate of ZnONPs at lower concentrations 175 by treating cotton fabrics with tetrafluoromethane and water plasma. The effect of plasma was 176 investigated by treating cotton fabrics with moist CF4 plasma for 10,20 and 30 s and H₂O plasma for 177 10 s. ZnO NPs were applied to cotton fabrics (treated and untreated) by Pad-dry-cure method. It was 178 found that the optimum CF4 plasma treatment time (10 s) indicated rougher surface of cotton fabrics which resulted in higher adsorption of ZnO NPs and great increasing in hydrophilic activity and UPF 179 180 values of cotton fabric from 4.12 to 58.89, but UPF values was decreased dramatically after 10 181 washes from (58.89 to 4.58). 182 ZnO NPs and carboxymethyl chitosan(CMCS) have been used [21] to provide multifunctional 183 finishing for plasma pretreated cotton fabric. Cotton fabrics were treated by O2 plasma for 2 min at 200W. Different concentrations of ZnO/CMCS composite were applied to cotton fabric by Pad-dry-184 185 cure method. It was found that plasma treatment provided rougher surface and more deposition of 186 ZnO/CMCS NPs on cotton fabrics.Plasma treatment with higher concentration of ZnO/CMCS NPs resulted in more deposition of ZnO/CMCS NPs on the fabric, very good UPF values, durable 187
- 188 antibacterial activity even after 30 washes and improving thermal properties of cotton fabrics.
- 189 Cons and Pros of ZnO NPs application after plasma treatment are summarized in Table4
- 190

Table4

192 TiO₂ Nanoparticles in textile's UV protection

193 TiO₂ properties

- 194 TiO_2 is an inorganic material which belongs to transition metal oxides. TiO_2 particles in nano form are
- 195 used in many fields of textile industry especially in protection against Ultra Violet radiation [22] due
- 196 to the excellent properties (lower cost, chemically stable, non-toxicity, photocatalytic activity and
- 197 longer durability) [23].
- 198 TiO₂ NPs synthesis
- 199 Many methods had been reported to prepare TiO₂ NPs by chemical[24]or green precursors[25, 26].
- 200 Solgel and hydrothermalchemical methods are the most common to synthesize TiO_2 NPs.
- 201 Chemical Synthesis
- 202 SolGel Method
- 203 Gouda et al [27]used sol gel method to prepare TiO₂ NPs to produce durable multifunctional finishing
- 204 to cotton fabrics. Titanium tetrachloride was used as a precursor, dissolved in water with polyvinyl
- 205 pyrrolidone (as a stabilizing agent) and reduced by gradual addition of boron hydride. The resulted
- 206 TiO₂ NPs were applied with different concentrations to cotton fabrics using Pad-dry-cure technique. It
- 207 was found that the resulted TiO_2NPs had smaller size (5-10 nm) and higher purity, stability and
- 208 dispersion ability. Higher concentrations of TiO₂NPs yieldedahigher UPF values (40) and increasing
- 209 antibacterial activity against S. aureus and K.pneumoniae bacteria after 20 washes.
- 210 TiO2NPs had been prepared [28] by sol gel method. A solution of trisodium citrate was added
- 211 gradually to bulk TiO_2 at room temperature with no need to calcination process. The resulted TiO_2
- 212 NPshad spherical shape with uniform distribution as shown in SEM investigation (Figure 1) and
- 213 average size (37 nm) which resulted ina higher absorbance of UV radiationand a higher thermal
- 214 stability (the remaining after 700°C was about 67%).
 - Figure 1
- 216 Hydrothermal Method

215

- 217 TiO₂NPs had been prepared by both hydrothermal and sol gel method [26]. In hydrothermal method,
- 218 sodium hydroxide was added to titanium tetrachloride and the mixture was stirred dried at 450°C. In

219	sol gel method, titanium isopropoxide (TTIP) had been used as a precursor. TTIP was dissolved in
220	ethanol and the mixture was stirred and dried. It was found that TiO_2NPs which resulted from
221	hydrothermal method had no spherical shape and agglomeration nature with an average size (about 17
222	nm) (as shown in Figure2) which resulted in absorbance of UV radiation at the wavelength of 362 nm.
223	The TiO ₂ NPs resulted from sol gel method had an average size of about 7 nm, spherical shape and
224	more uniform distribution(Figure 3).TiO ₂ NPs wasresulted in greater absorbance of UV radiation at
225	the wavelength of 351 nm and higher bandgap value about 3.5 eV.
226	Figure 2
227	Figure 3

- 228 TiO₂NPs had been synthesized [29] by hydrothermal method using ilmenite in the form of synthetic
- 229 rutile as a precursor. Sodium hydroxide was mixed with synthetic rutile at 550° C. The resulted TiO₂
- 230 NPs had smaller size (15.6 nm), more uniform distribution, higher absorbance of UV radiationand
- 231 lower bandgap (3.23 eV) than commercial TiO₂NPs.
- 232 From the results of sol gel and hydrothermal TiO2preparation methods, it is obvious that sol gel
- 233 method provided more UV protection and smaller size of TiO₂NPs. The experiment which was
- 234 reportedby Gouda et al. [27]produced smaller size of TiO2NPs, excellent and durable UV
- 235 protection, simple and energy saving process.

236 Green Synthesis

- 237 Green synthesis of TiO₂NPs depends on using natural materials and it is far better than chemical
- 238 synthesis of TiO₂NPs as it depends on less hazardous chemicals and produces ecofriendly finishes.
- 239 TiO₂NPs had been prepared by ecofriendly and low-cost method using Aspergillus Tubingensis soil
- 240 fungi [30]. Salt solution of TiO₂ was added to the soil fungi to obtain nano TiO₂. It was found that the
- 241 size of resulted TiO₂NPs ranged from (1.5 to 5.9 nm). The resulted TiO₂NPs showed an absorbance of
- 242 UV radiation within the range (300–350 nm).
- 243 TiO₂NPs had been synthesized by using leaf extracts of medicinal plant Ageratina altissima and tested
- 244 the photocatalytic activity of resulted NPs [31]. The resulted TiO₂NPs had an average size (60-100
- 245 nm), spherical shape, higher absorbance of UV radiation at 332 nm and caused dyes degradation (86.79

246 %) of methylene blue, (76.32 %) of alizarin red, (77.59 %) of crystal violet, and (69.06 %) of methyl

247 orange.

- 248 As it depicted from the above results, Tarafdar et al. [30] provided better green synthesis of TiO₂NPs
- as it included smaller size of TiO₂NPs (1.5 5.9) nm and wider range of UV absorbance (300–350

250 nm).

- 251 TiO₂NPs Application to Provide Textiles UV Protection
- 252 TiO₂NPs can be applied to different types of treated or untreated fabrics individually or with other
- 253 materials to enhance UV protection and provide multifunctional finishing to fabrics.
- 254 Application of TiO₂NPs without treatment
- 255 Single Application of TiO₂NPs
- 256 Adnan et al. [32] investigated UV protection effect of TiO₂NPs on samples of (pure lyocell, (80/20,
- $257 \quad 60/40, \ 50/50)\%$ lyocell silk blends and pure silk) properties. It was found that TiO_2NPs caused
- 258 durable UV protection especially for pure lyocell fabric even after 25 washes.Improving in anti-
- 259 wrinkle property and decreasing in air permeability, tensile strength and absorbency of treated fabrics
- were also observed.
- 261 Finishing with TiO₂NPs and dyeing of wool fabric had been applied [33] at the same time by
- 262 hydrothermal process. Different concentrations of reactive blue 69 and acetic acid were used to
- 263 investigate the optimum concentration. Finished and dyed samples were compared to only dyed ones.
- 264 It was found that resulted TiO₂NPs had uniform distribution and size < 10 nm. Increasing the
- 265 concentration of acetic acid with 1% dye caused both exhaustion rate and color strength(K/S) values
- 266 to increase. The addition of TiO₂NPs was resulted in higher photocatalytic activity (5h of exposure to
- 267 UV radiation yielded 93% degradation of methylene blue) and slight decreasing in breaking stress
- 268 (8.6%), elongation rate (7.8%) and thermal stability.
- 269 The antibacterial activity and UV protection effect of TiO₂NPs on cotton fabric [34] had been
- 270 investigated. Urea nitrate (UN) was used in-situ preparationof TiO₂NPs as a nitric acid source and
- 271 theeffect had been investigated. It was found that higher concentration of (UN) caused a smaller size
- 272 of TiO_2NPs (<50nm), very good UPF value (29.69) after 15 washes, excellent antibacterial activity

273	after 20 washes against S.aureus and E. coli bacteria besides decreasing in elongation rate and tensile
274	strength of treated fabric.
275	All previous researches included single application of TiO2NPs to provide UV protection for different
276	types of fabrics.Cons and pros of each process weresummarized in Table 5.
277	Table 5
278	Application of TiO ₂ NPs in Combination with Other Materials
279	Sodium hypophosphite(SHP) and citric acid(CA) had been used with $\mathrm{TiO_2NPs}$ to provide
280	multifunctional finishing for cotton/polyester fabric [35]. Different concentrations of CA, SHP and
281	$\mathrm{TiO}_{2}\mathrm{NPs}$ were used to determine optimum finishing conditions. It was found that using optimum
282	concentrations of CA (30gm/l) with (SHP)(18gm/l) and TiO_2NPs (0.5gm/l) resulted in higher flame
283	retardancy effect, lower pilling formation, improving antibacterial activity against S.aureus bacteria
284	and increasing hydrophilicity, photocatalytic activity, self-cleaning property and wash fastness of
285	treated fabrics. Also, optimum conditions resulted in slight decreasing in tensile strength, however after
286	exposure to UV radiation there was an improvement in fabrics tensile strength due to the effect of TiO_2
287	NPs.
288	AgNPs used in combination with TiO_2NPs to provide multifunctional finishing to Polyester
289	fabrics[36]. TiO ₂ colloidal solution was applied to polyester fabrics by Pad-dry-cure method, then the
290	fabrics were padded in (alanine - silver nitrate - methyl alcohol) mixture, rinsed and dried. FESEM
291	analysis showed uniform distribution of TiO2/AgNPs on polyester fabrics. Treated polyester fabrics
292	indicated:
293	• Excellent antimicrobial activity against both E.coli and S.aureus bacterium besides C.albicans
294	fungus (reduction rate of the bacteria was reached to 99.9% even after 10 washes).
295	• Higher UPF values (92.35) but after 10 washes UPF values decreased to (53.52).
296	• Release of AgNPs in first 3 washes and in artificial sweat especially alkaline sweat
297	conditions.
298	Li et al.[37] also used AgNPs with TiO2NPs but they produced more durable finishing to cotton
299	fabric. TiO2NPs were applied to cotton fabrics with two different concentrations by hydrothermal

300	treatment. AgNPs wer	e in-situ implimentedi	n cotton fabrics using different	concentrations of AgNO ₃ .
-----	----------------------	------------------------	----------------------------------	---------------------------------------

- 301 It was found that higher concentrations of Ag and TiO₂NPs gavevery good and durable antibacterial
- 302 activity against both E. coli and S. aureus and increasing in UPF values (from 3 to 56.39). Only slight
- 303 decreasing of UPF values after 50 washes was detected.
- 304 The previous results showed the application of combined TiO₂NPs with other materials on untreated
- 305 fabrics to provide durable multifunctional finishing. The advantages and disadvantages of each
- 306 process are shown in Table 6.

Table 6

308 Application of TiO₂NPs after fabric treatment

- 309 Application of TiO₂NPs after different treatment processes on fabrics improved UV protection and
- 310 other functions due to the increasing affinity of treated fabric for finishing agents.
- 311 TiO₂NPs had been applied [38]on cellulose acetate fabric (CA) after treatment with H_2O_2 in
- 312 ultrasonic bath. CA samples were padded in different concentrations of TiO₂NPs, dried and cured in
- 313 microwave oven at different conditions. It was found that using optimum conditions (Ultrasonic
- 314 treatment -0.75 % TiO₂NPs-microwave curing at 90% for 15 seconds) was resulted in:
- Increasing whiteness and slight decreasing in roughness and tensile strength of fabric.
- Higher absorbance of UV radiation and higher self-cleaning effect (87% degradation of coffee
 stain).
- 318 Hashemizad et al. [39] applied TiO₂NPs on polyester fabric pretreated with oxygen gas plasma and its
- 319 effect on fabric properties and adsorption rate of TiO₂NPs had been investigated. It was found that
- 320 treatment with Plasma before TiO₂NPs application resulted inamore uniform distribution of TiO₂NPs
- 321 on fabric surface, higher self-cleaning property and higher UV protection (decreasing in the
- 322 percentages of UV Reflectance) even after 10 washes.
- 323 Polyester cotton (80:20) blended curtains pretreated with cold plasma before the application of TiO_2
- 324 and SiO₂NPs [40]. The effect of plasma was investigated by treatment of fabrics with cold plasma for
- 325 different periods of time before the application of TiO2 and SiO2NPs. It was concluded that plasma
- 326 treatment for 6 minutes before the application of NPs gave more deposition of NPs on the fabric
- 327 surface, increasing UPF value from (8.51 to 40.24), improving antibacterial activity against S. aureus

328	and E. coli bacteria, increasing antistatic property and good adhesion of NPs in the fabric surface after
329	50 washes of the fabric. Also, slight decreasing in elongation, tensile strength and air permeability of
330	treated fabric was detected.
331	Polyester (PET) and polypropylene (PP) fabrics pretreated with Dielectric-barrier discharge (DBD)
332	plasma before the application of TiO ₂ , Al ₂ O ₃ and ZnONPs to provide enhanced finishing to the fabric
333	[41]. Different concentrations of Al ₂ O ₃ , ZnO and TiO ₂ NPs were applied separately to fabrics by Pad-
334	dry-cure method for comparing their effect on treated fabrics. It was found that in PET fabric:
335	• Plasma pretreatment had no significant effect on the fabric.
336	• The fabric indicated excellent UPF values with higher concentration of $TiO_2NPs(156.90)$.
337	Higher concentration of ZnONPs also gave excellent UPF value (82.98) more than Al ₂ O ₃ NPs
338	(36.76).
339	• ZnONPs showed more antibacterial activity against S. aureus and K.pneumonia bacteria.
340	- TiO_2NPs had no antibacterial effect against both types of bacteria, while Al_2O_3NPs had only
341	slight effect against K.pneumonia bacteria (reduction percentage 6.5%).
342	• In PP fabricplasma treatment before the application of NPs leaded to:
343	• More uniform distribution of NPs on the surface of the fabric.
344	• Improving UV protection of treated fabric (increasing UPF values from 2.4 to 38.1 with ZnO
345	NPs and to 17.9 with TiO ₂ NPs)
346	The aboveresearches included fabric pretreatment to provide more absorbance of NPs and improve UV
347	protection effect, but that had slight effect on fabric properties. Advantages and disadvantages are
348	summarized in Table 7.
349	Table 7
350	Conclusions:
351	This review indicated the great importance of ZnO and ${\rm TiO_2NPs}$ as textile protective agents against
352	UV radiation. Different synthetic methods (chemical–green) of ZnO and $\mathrm{TiO}_{2}\mathrm{NPs}$ werecompared to
353	find out which is a better method. In chemical synthesis of ZnONPs it is found that
354	hydrothermalmethod is better than sol gel method as it provides smaller size of NPs and higher

355	absorbance of UV radiation.On the contrary, in TiO2NPs synthesis, sol gel method included better
356	results than hydrothermal method. Green method in both ZnO and $\mathrm{TiO_2NPs}$ is better than chemical
357	synthesis method as it includes natural precursor which provides more eco-friendly synthesis.
358	Moreover, Advantages and disadvantages of the application of ZnONPs on treated and untreated
359	fabrics individually or with natural materials (chitosan, carboxymethyl chitosan) or synthetic
360	materials (UV absorber, sodium hypophosphite, CU2O NPs, Ag NPs) werediscussed. Also,
361	advantages and disadvantages of TiO_2NPs application on both treated and untreated textiles
362	individually or in combination with other materials (Sodiumhypophosphite, citric acid, Ag
363	NPs)wereincluded.Main disadvantages in ZnO and TiO2NPs application concern to insufficient
364	finishing durability tests and negative effects on fabric properties which must be fixed in future
365	researches to meet the functional demands.
366	References
367	1. A.Abdel Ghani, W. Qorshi, and E. El-Sayd, Int.Design J., 4, 104 (2015).
368	2. M. Akgun, B.Becerir, and H. Alpay, Int. Scientific Conference, 2, 301 (2010).
369	3. N. Ibrahim, E.El-Zairy, W. Abdalla, and H. Khalil, <i>Carbohydr. Polym</i> .,92, 1386 (2013).
370	4. Y. Wong, C. Yuen, and M. Leung, Autex .Res. J., 6, 2 (2006).
371	5. Y.Wu, Y.Chi, J. Nie, X. Yu, A. Chen, and H.Gu, J. Funct. Polym., 15,43(2005).
372	6. P. Uiky, and K.Vishwakarma, Int. J. Emerging Technol. Comput. Sci., 21, 239 (2016).
373	7. D.Osman, and M.Mustafa, J. Nanosci. Nanotechnol., 1, 248 (2015).
374	8. A. Farouk, T. Textor, E. Schollmeyer, A. Tarbuk, and A.Grancacic, Autex .Res. J., 10, 58(2010).
375	9. M. Conde, K. Dakhsi , H. Zouihri , K. Abdelouahdi , L. Laanab, M. Benaissa , and B. Jaber, J.
376	Mater. Sci. Eng., 1 985(2011).

- 10. S. Kathirvelu , L.Souza , and B.Dhurai, Indian J.Fibre. Text, 34, 267(2009).
- 378 11. P. Taunk , R. Das , D. Bisen , and R.Tamrakar , J. Radiat. Res. Appl. Sci., 8, 433(2015).

- 12. P. Ramesh, A. Rajendran1, and A. Subramanian, Asian. J. Phytomed. Clin. Res., 2, 189 (2014).
- 380 13. E. Varghese, and M. George, Int. J. Adv. Res. Sci. Eng., 4, 307(2015).
- 14. T. Shaheen, M. El-Naggar, A. Abdelgawad, and A. Hebeish, *Int. J. Biol. Macromol.*, 83, 426
 (2016).
- 383 15. V.Prasad, A.Arputharaj, A.Bharimalla, P.Patil, and N.Vigneshwaran, *Appl. Surf. Sci.*, 390, 936
 384 (2016).
- 385 16. A.El. Shafei, and A.Abou-Okeil, Carbohydr. Polym., 83, 920 (2011).
- 386 17. M.Abdelhady, *Carbohydr. Chem.*, 2012, 1(2012).
- 18. M.Abdelhady, A.Farouk ,and S.Sharaf , Carbohydr. Polym., 92, 400(2013).
- 388 19. S. Noorian, N. Hemmatinejad, and A. Bashari, Photochem. Photobiol., 91, 510 (2015).
- 20. M. Gorjanc , K. Jazbec , M. Sala , R. Zaplotnik , A. Vesel ,and M. Mozetic, , *Cellulose*, 21 ,
 3007(2014)
- 391 21. C.Wang, J.LV, Y.Ren ,Q.Zhou ,J.Chen ,T.Zhi ,Z.Lu, D.Gao , Z.Ma , and L.Jin, Carbohydr.
- 392 *Polym.*, **138**, 106 (2016).
- 393 22. G. Mital, and T. Manoj, Chinese Sci. Bull., 56, 1640 (2011).
- 394 23. S.Chaudhari, A. Mandot ,and B. Patel, Int. J. Eng. Res. Dev., 56, 24 (2012).
- 395 24. Z. Liu, R. Wang, F. Kan, and F. Jiang, Asian J. Chem., 26, 655(2014).
- 25. P.Purkait, S. Maitrab, S. Mandal, S. Bhunia, G. Das, and M. Chaudhuri, *Sci. Voyage*, 1, 28(2015).
- 398 26. R. Vijayalakshmi, and V. Rajendran, Arch. Appl. Sci. Res. 4, 1183 (2012).
- 399 27. M. Gouda, and A.Aljaafari, Adv. NPs, 1, 29 (2012).
- 400 28. M. Hema, A. Arasi, P. Tamilselvi, and R. Anbarasan, Chem. Sci. Trans., 2, 239 (2013).

- 401 29. E. Mahdi, M. Hamdi, M. Yusoff, and P. Wilfred, J.Nano.R, 2, 71 (2013).
- 402 30. A. Tarafdar, R. Raliya, W.Wang, P. Biswas, and J. Tarafdar, Adv. Sci. Eng. Med., 5, 1(2013).
- 31. S. Ganesan, I. Babu, D. Mahendran, P. Arulselvi, N. Elangovan, N. Geetha, and P.
 Venkatachalam, *Ann. Phytomed.*, 5, 69 (2016).
- 405 32. M.Adnan, and J.Moses, J. Tex. App. Tech. mangmt., 8, 1 (2013).
- 406 33. H. Zhang, H. Yan, and N. Mao, Ind. Eng. Chem. Res., 53, 2030 (2014).
- 407 34. M. El-Naggar, T. Shaheen, S. Zaghloul, M. El-Rafie, and A. Hebeish, *Ind. Eng. Chem. Res.*, 55,
 408 2661 (2016).
- 409 35. S.Hashemikia, and M. Montazer, Appl. Catal. A., 417-418, 200 (2012).
- 410 36. M. Milosevic, M. Radoicic, Z. Saponjic , T. Nunney , D. Markovic, J. Nedeljkovic , and M.
- 411 Radetic, J. Mater. Sci., 48, 5447 (2013).
- 412 37. S.Li, T. Zhu, j. Huang, Q.Guo, G.Chen, and Y. Lai, Int. J. Nanomedicine, 12, 2593 (2017).
- 413 38. M. Ramadan, W. Raslan, E. El-Khatib, and A. Hebeish, , Mater. Sci. Appl., 3, 872 (2012).
- 414 39. S. Hashemizad, A. Haji, and S.Mireshghi, J. Biodiv. Env. Sci., 5, 220 (2014).
- 415 40. H. Memon, and N. Kumari, Surf. Rev. Lett., 23, 1 (2016).
- 416 41. S. Gawish, A. Ramadan, G. Sayed, and A. Hussien, Int. J. Pharm. Sci. Rev. Res., 42, 239 (2017).
- 417

Tables

418 **Table 1.** Increasing ultra violet protection with higher UPF values according to ASTM D6603 [2].

UV protection	UPF range
Excellent	40-50, +50
Very good	25-39
Good	15-24

419

Table 2. Cons and Pros of ZnO NPs application with natural materials.420

1	C
т	C

Natural material	Advantages	Disadvantages	Reference
Carboxymethyl	-Smaller size of nano	-More chemical content for	El.Shafei and Abou-
chitosan	particles.	carboxymethylation of	Okeil, [2011].
	- Providing	chitosan.	
	multifunctional finishing	-No tests for finishing	
	(UV protection and	durability.	
	antibacterial activity		
	against both gram positive		
	and gram negative		
	bacteria).		
Chitosan	-Ecofriendly method only	-Comparatively larger size of	Abdelhady, [2012].
	included chitosan in its	chitosan/ ZnO NPs (300nm).	
	simplest form.	-No tests for finishing	
	- Moderate UV protection	durability.	
	and antibacterial activity		
	against both gram positive		
	and gram negative		
	bacteria.		

Table3. Advantages and disadvantages of ZnO NPs application with synthetic materials 422

Synthetic material	Advantages	Disadvantages	Reference
Sodium hypophosphite-	- Polycarboxylic acids are	-Limiteddurability test (2	Abdelhadyet al.,
Polycarboxylic acids	environmental friendly materials.	washes).	[2013]
	- Smaller size of ZnO NPs.	-Using BTCA caused	
	- Producing multifunctional	increase flame retardant	
	finishing to cotton and CO/PET	action but it caused	

	fabric (UV protection, Wrinkle	increasing roughness and	
	resistance and flame retardancy	yellowness of treated	
	effect).	fabric.	
	- Discussing the effect of ZnO	- Increasing	
	NPs, SHP and Curing	concentration of ZnO	
	temperatures.	NPs resulted in higher	
		UPF values but it caused	
		increasing in yellowness	
		and roughness	
		of treated fabric.	
CU ₂ O NPs	-Synthesis of CU ₂ O/ZnONPs in-	- Durability tests were	Noorian et al.,
	situ provided more durable	carried out after only	[2015]
	finishing.	5 washing cycles.	
	-Adding folic acid as a bio	- Slight increase in	
	template during in-situ synthesis	cotton fabric thickness.	
	of CU ₂ O/ZnO NPs provided		
	greener, more effective method to)	
	improve UV protection.		
	-Providing UV protection with		
	improving physical properties of		
	cotton fabric.		

Table4. Advantages and disadvantages of ZnO NPs application after plasma treatment424

Plasma treatment	Advantages	Disadvantages	Reference
CF4 and H ₂ O plasma.	- Using lower concentrations of	- Low finishing	Gorjanc et al.,
	ZnONPs which provide	durability.	[2014]

	economic improvement.	
	- Providing multifunctional	
	finishing to cotton fabric (higher	
	UV protection and hydrophilic	
	effect)	
O ₂ plasma	-Green method using natural -	Wang et al.,
	material (carboxymethyl	[2016]
	chitosan).	
	-Higher adsorption of ZnO/CMCS	
	NPs due to plasma treatment.	
	- Providing multifunctional	
	finishing (antibacterial and UV	
	protection finishing) to cotton	
	fabric .	
	- Including durable test after 30	
	washes.	
	- Producing durable antibacterial	
	and UV protection finishing after	
	30 washes.	
	- Improvement in thermal	
	properties of cotton fabric.	
		425

environmental and

Table5. Advantages and disadvantages of TiO₂NPs single application on different fabric t#26s

Targeted fabric	Advantages	Disadvantages	Reference
Pure lyocell - (80/20-	- Including durability tests for 25	- TiO ₂ NPs finishing	Adnanand Moses,

60/40-50/50) % lyocell	washes.	caused negative	[2013]
silk blends - Pure silk	-Providing durable	effectson physical	
fabrics	multifunctional finishing for	properties of all treated	
	treated fabrics (UV protection	fabrics.	
	and anti-wrinkling effect).		
Wool fabrics	- saving money, time and effort.	- No tests for dyeing and	Zhang et
	- Producing smaller size of TiO_2	finishing durability.	al.,[2014].
	- Improving photocatalytic	- Negative effects on	
	activity.	physical properties of	
		wool fabric.	
Cotton fabrics	- In situ synthesis of TiO ₂ NPs	- Also, there was	El-Naggar et al.,
	which save(time -effort-money).	negative effect on	[2016]
	- Investigating the effect of (UN)	physical properties of	
	as a peptizing agent used in TiO_2	cotton fabrics (tensile	
	NPs synthesis.	strength and elongation	
	-Providing durable	rate and).	
	multifunctional finishing to		
	cotton fabrics(UV protection and		
	antibacterial activity against two		
	types of bacteria).		
	- Including durability tests for 20		
	washes.		
			427

Table 6. Advantages and disadvantages of TiO2NPs application with other materials. 428

Applied material	Advantages	Disadvantages	Reference
Sodium hypophosphiteP	roviding multifunctional	-Antibacterial tests	Hashemikia and

Citric acid- TiO ₂ NPs.	finishing to fabric.	included only one type	Montazer,
	- Investigating The optimum	of bacteria.	[2012].
	concentrations of CA, SHP	- Decreasing in fabric	
	and TiO ₂ NPs.	tensile strength.	
	- Increasing flame retardancy and	- Including durability	
	anti-pillingeffect.	tests for only 10 washes.	
	- Improving antibacterial activity		
	against S.aureus bacteria .		
	- Increasing hydrophilicity and		
	self-cleaningproperty.		
	- Improving tensile strength		
	- Including durability tests for 10		
	washes.		
AgNPs - TiO ₂ NPs.	- Providing multifunctional	- Including durability	Milosevic et al.
	finishing to Polyester fabrics	tests for only 10 washes.	[2013].
	- Higher antimicrobial activity	-Decreasing UPF values	
	aginst E.coli , S.aureus	after 10 washes.	
	bacteria and C.albicans fungus -	-Low fastness (for	
	Increasing UV protection of	washing and	
	treated fabrics .	perspiration)due to Ag	
	- Including durability tests for 10	NPs release.	
	washes.		
	- Durable antibacterial activity		
	after 10 washes.		
Ag NPs - TiO ₂ NPs.	- Providing multifunctional	-	Li et al., [2017].
	finishing to cotton fabric.		
	- Investigating the effect of Ag		

and TiO₂NPs.
Including hydrothermal treatment for higher crosslinking.
In situ synthesis of AgNPs which provided more durability.
Providing excellent UV protection and antibacterial
Including durability tests for 50 washes.
Durable UV protection and antibacterial activity after 50 washes.

429

 Table 7. Advantages and disadvantages of TiO₂NPs application on treated fabrics.
 430

Treatment process	Advantages	Disadvantages	Reference
Treatment with H ₂ O ₂ in	- Using microwave curing after	- Decreasing in	Ramadan et al.,
ultrasonic bath.	the application of TiO ₂ NPs.	Roughness and tensile	[2012].
	-Including investigation of the	strength of treated	
	optimum conditions (TiO ₂ NPs	fabrics.	
	concentration -microwave curing	- No tests for finishing	
	conditions).	durability were	
	-Providing multifunctional	included.	
	finishing to CA fabric.		
	- Improving UV protection and		
	self-cleaning property of CA		
	fabric.		

	- Increasing the whiteness of		
	treated fabric.		
	- Decreasing in of CA fabric.		
Plasma and oxygen gas.	- Plasma pretreatment provided	- Including durability	Hashemizad et
	more uniform distribution of TiO_2	tests for only 10	al., [2014].
	NPs on PET fabric.	washes.	
	- Providing enhanced		
	multifunctional finishing to PET		
	fabric.		
	- Including durability test.		
	- Providing higher UV absorbance		
	even after 10 washes.		
	- Improving self-cleaning of		
	treated fabric.		
Cold plasma treatment	- Including investigation of the	- Negative effects on	Memon and
	optimum conditions of plasma	physical properties of	Kumari, [2016] .
	treatment.	polyester/ cotton blends	
	- Plasma treatment provided	fabric (decreasing in	
	higher deposition of NPs on the	elongation, tensile	
	fabric surface.	strength and air	
	- Providing improved	permeability).	
	multifunctional finishing to	- No tests for UPF	
	polyester cotton blended fabric.	values, antibacterial	
	- Improving UV protection,	and antistatic property	
	antistatic and antibacterial	after 50 washes.	
	property of treated fabric.		
	- Including durability tests for 50		

	washes.		
(DBD) plasma	-Including comparison of Al ₂ O ₃	- Antibacterial activity	Gawish et al.
treatment.	, ZnO and TiO ₂ NPs effect on	of PP fabric was not	[2017].
	PET and PP fabrics.	tested.	
	-Investigating the effect of	- TiO ₂ NPs showed no	
	plasma treatment on PP and	antibacterial effect on	
	PET fabrics.	polyester fabric.	
	- Providing more uniform	- No tests for finishing	
	distribution of NPs on PP	durability were	
	fabric due to plasma treatment.	included.	
	- Improving UV protection of		
	PP fabric. ZnONPs> TiO ₂ NPs		
	> Al ₂ O ₃ NPs.		
	- Providing excellent UV		
	protection for PET fabric		
	TiO ₂ NPs>ZnONPs>		
	Al ₂ O ₃ NPs.		
	Figures		

Figure 1.SEM images of synthesized titania with different magnification [28]

- 435 Figure 2. TEM images of TiO₂ nanoparticles synthesized and hydrothermal method [26]

Figure 3.TEM images of TiO₂ nanoparticles synthesized via sol-gelroute [26]

